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Thermal ripples in bilayer graphene
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We study thermal fluctuations of freestanding bilayer graphene subject to vanishing external tension. Within
a phenomenological theory, the system is described as a stack of two continuum crystalline membranes,
characterized by finite elastic moduli and a nonzero bending rigidity. A nonlinear rotationally invariant model
guided by elasticity theory is developed to describe interlayer interactions. After neglection of in-plane phonon
nonlinearities and anharmonic interactions involving interlayer shear and compression modes, an effective
theory for soft flexural fluctuations of the bilayer is constructed. The resulting model, neglecting anisotropic
interactions, has the same form of a well-known effective theory for out-of-plane fluctuations in a single-layer
membrane, but with a strongly wave-vector-dependent bare bending rigidity. Focusing on AB-stacked bilayer
graphene, parameters governing interlayer interactions in the theory are derived by first-principles calculations.
Statistical-mechanical properties of interacting flexural fluctuations are then calculated by a numerical iterative
solution of field-theory integral equations within the self-consistent screening approximation. The bare bending
rigidity in the considered model exhibits a crossover between a long-wavelength regime governed by in-plane
elastic stress and a short wavelength region controlled by monolayer curvature stiffness. Interactions between
flexural fluctuations drive a further crossover between a harmonic and a strong-coupling regime, characterized
by anomalous scale invariance. The overlap and interplay between these two crossover behaviors is analyzed at
varying temperatures.
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I. INTRODUCTION

The statistical properties of thermally fluctuating two-
dimensional (2D) membranes have been the subject of
extensive investigations [1–3]. Crystalline layers, character-
ized by fixed connectivity between constituent atoms and a
subsequent elastic resistance to compression and shear, ex-
hibit a particularly rich thermodynamical behavior, both in
clean and disordered realizations [1–16]. In the absence of
substrates and without the action of an externally applied
tension, fluctuations are only suppressed by elasticity and the
bending rigidity of the layer. Although a naive application
of the Mermin-Wagner theorem suggests the destruction of
spontaneous order at any finite temperature, it has long been
recognized that these freely fluctuating elastic membranes
exhibit an orientationally ordered flat phase at low tempera-
tures [4,5]. As a result of strong nonlinear coupling between
bending and shear deformations, thermal fluctuations in the
flat phase present anomalous scale invariance characterized
by universal noninteger exponents. In the long-wavelength
limit, the scale-dependent effective compression and shear
moduli are driven to zero as power laws of the wave vector
q, while the effective bending rigidity diverges as κ (q) ≈
q−η [6–8,10,11,17,18]. This anomalous infrared behavior sets
in at a characteristic Ginzburg scale q∗ ≈

√
3TY/(16πκ2),

where κ , Y , and T are, respectively, the bare bending rigid-
ity, Young modulus, and temperature [3,19]. For shorter
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wavelengths, q > q∗, within a membrane model based on con-
tinuum elasticity theory, fluctuation effects become negligible
and the effective elastic moduli approach their bare values.

The first theoretical developments in the statistical me-
chanics of elastic membranes were driven by the physics
of biological layers, polymerized membranes, and other
surfaces [1,2,20]. After the isolation of atomically thin 2D ma-
terials, the relevance of statistical mechanical predictions for
these extreme membrane realizations has raised vast interest,
in both theory [3,10,12,13,19,21,22] and experiments [23–27]
(see also Refs. [28–32]).

In the case of atomically thin 2D membranes, nu-
merical simulations with realistic atomic interactions are
accessible [19,21,22,33–36], which allows material-specific
predictions of the fluctuation behavior. Furthermore, the
physics of graphene and other 2D materials stimulated new
questions as compared to previously considered membrane
realizations.

By exfoliation of graphite, it is possible to controllably ex-
tract multilayer membranes composed of N stacked graphene
sheets. As in the parent graphite structure, covalently bonded
carbon layers are tied by weaker van der Waals interactions.
The large difference between the strengths of covalent and
interlayer binding forces generates an intriguing mechanical
and statistical behavior, which has attracted vast research in-
terest [37–42].

The properties of defect-free multilayers subject to small
fluctuations, in the harmonic approximation, are already non-
trivial. Mechanical properties are crucially determined by the
coupling between interlayer shear deformation and out-of-
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plane, bending fluctuations. If layers are free to slide relative
to each other at zero energy cost, we expect that the bending
rigidity of the stack is controlled by the curvature stiffness of
individual layers. We can thus assume that the bending rigidity
is approximately Nκ , where N is the number of layers and κ is
the monolayer bare bending stiffness [39–42]. By contrast, the
presence of a nonzero interlayer shear modulus forces layers
to compress or dilate in response to curvature. Assuming rigid
binding between layers, the bending stiffness is then con-
trolled by in-plane elastic moduli and it grows proportionally
to N (N2 − 1) for N � 2 [43]. For large N , the limiting N3

scaling of the bending stiffness [39–43] is consistent with the
continuum theory of thin elastic plates [3,39,43,44]. In the
case of a graphene bilayer, the corresponding contribution to
the bending rigidity can be written as (B + μ)l2/2, where
B and μ are compression and shear moduli, and l is the
interlayer distance [39].

A theory interpolating between these extreme regimes was
developed, within a harmonic approximation, in Ref. [39]. As
a modeling framework, the system was described as a stack of
continuum 2D elastic media. The energy functional describing
coupling between layers was constructed by discretizing the
continuum theory of a 3D uniaxial solid. Within this model,
coupled and decoupled fluctuation regimes are recovered as
limiting cases for long and short wavelengths, connected by
a crossover: Coupling between flexural and interlayer shear
deformations sets in for wave vectors smaller than charac-
teristic scales determined by elastic stiffnesses and interlayer
interactions [39].

Recent experimental measurements of the bending rigid-
ity [37,40,42,45,46] present a large scatter and indicate
smaller values compared to the theoretical prediction for
the long-wavelength, rigidly coupled case. In the case of
bilayer graphene, different experimental techniques lead to
κ = 35.5+20.0

−15.0 eV [45] and 3.35 ± 0.43 eV [46], significantly
smaller than the elastic contribution (B + μ)l2/2, which cor-
responds to a rigidity of the order of 100 eV (theoretical
predictions in Ref. [43] lead to κ � 160 eV). For few-layer
membranes with N � 2, Ref. [45] reported evidence that
the overall bending rigidity scales as N2. More recently,
by analyzing pressurized bubbles in multilayer graphene,
MoS2, and hexhagonal BN, Ref. [40] reported values of κ

intermediate between the uncoupled limit Nκ and the rigidly-
coupled case, and interpreted the observed behavior as the
result of interlayer slippage between atomic planes. Finally,
Ref. [42] observed multilayer graphene membranes under
varying bending angles. Values of the bending stiffness close
to Nκ were observed for large angles, which was interpreted
by a dislocation model of interlayer slippage.

Reported results for the interlayer shear modulus in mul-
tilayer graphene also exhibit a large dispersion, see, e.g.,
Ref. [37].

At finite temperatures, statistical properties of fluctuating
stacks of crystalline membranes have been long investigated.
A rich physics was predicted in early studies motivated by
lamellar phases of polymerized membranes. In particular,
Ref. [47] predicted a sharp phase transition between a coupled
state and a decoupled phase, in which algebraic decay of
crystalline translational order makes interlayer shear coupling
irrelevant. Refs. [48,49] elaborated on the properties of the

decoupled state, within a nonlinear 3D continuum theory and
determined logarithmic renormalizations due to thermal fluc-
tuations.

In the context of crystalline bilayer and multilayer
graphene membranes, finite-temperature anharmonic lattice
fluctuations were extensively addressed by numerical simu-
lations (see, e.g., Refs. [34,36,50]).

In this paper, we study thermal fluctuations of ideal,
defect-free bilayer graphene within a phenomenological, elas-
ticitylike model. The theory of Ref. [39] is assumed as a
starting point and generalized to include crucial nonlineari-
ties which control anomalous scaling behavior. An interesting
aspect introduced by finite temperatures stems from the in-
terplay of different wave vector scales: characteristic scales
marking the onset of coupling between flexural and interlayer
shear, and Ginzburg scales q∗ controlling the transition from
harmonic to strongly nonlinear fluctuations. To obtain a global
picture of correlation functions at arbitrary wave vector q, we
derive a numerical solution of Dyson equations within the
self-consistent screening approximation (SCSA) [9,10,51]. In
the long wavelength limit, the universal power-law behavior
predicted by membrane theory is recovered and the SCSA
scaling exponent η = 4/(1 + √

15) is reproduced with high
accuracy. The finite-wavelength solution, furthermore, gives
access to crossovers in correlation functions and to nonuni-
versal properties specific to bilayer graphene. To develop
material-specific predictions, we develop an ab initio predic-
tion of model parameters focusing on the case of AB-stacked
bilayer graphene.

The paper is organized as follows: In Sec. II, after a brief
discussion of theories for single-layer membranes, we intro-
duce a phenomenological model which extends the theory
of Ref. [39] with the inclusion of nonlinearities required by
rotational invariance. Subsequently, the model is simplified
by neglecting all nonlinearities but interactions of the collec-
tive out-of-plane displacement field. In Sec. II C, we derive
an effective model for flexural fluctuations by successively
integrating out all other fields. After neglecting anisotropic
interactions, this model takes the form of a standard theory
for crystalline membranes, with a strongly q-dependent bare
bending rigidity. In Sec. III, we discuss model parameters
for AB-stacked bilayer graphene and describe first-principles
calculations of the interlayer coupling moduli. In Sec. IV,
correlation functions of the resulting model are calculated
at an arbitrary wave vector within the SCSA [9,10,51]; an
iterative algorithm is used to determine numerical solutions
of SCSA equations. Results are illustrated in Sec. V. Finally,
Sec. VI discusses an extension to the theory in which nonlin-
earities in flexural fields of both layers are taken into account.
Section VII summarizes and concludes the paper.

II. MODEL

A. Single layer

This section briefly introduces existing models for
2D crystalline membranes, extensively discussed in
Refs. [1–8,10,12].

In a long-wavelength continuum limit, membrane config-
urations are specified by the coordinates r(x) in 3D space
of mass points in the 2D crystal, identified by an internal
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2D coordinate x. After specification of an energy functional
H[r(x)], the statistics of fluctuating configurations at a tem-
perature T is governed by the Gibbs probability distribution,

P[r(x)] = 1

Z
e−H0[r(x)]/T , (1)

where

Z =
∫

[dr(x)]e−H0[r(x)]/T (2)

is the partition function, and
∫

[dr(x)] denotes functional inte-
gration over the field r(x).

In the spirit of elasticity theory, a model for membranes
with nonzero stiffness to curvature and strain is defined by the
configuration energy [5,7,8],

H0 =
∫

d2x

[
κ

2
(∂2r)2 + λ

2
(Uαα )2 + μUαβUαβ

]
, (3)

where κ , λ, and μ are, respectively, the bending rigidity and
Lamé elastic coefficients. The notation ∂α = ∂/∂xα indicates
differentiation with respect to internal coordinates, and Uαβ =
1
2 (∂αr · ∂βr − δαβ ) is the strain tensor, proportional to the
local deformation of the metric gαβ = ∂αr · ∂βr from the Eu-
clidean metric δαβ . In Eq. (3), mass points are labeled via their
coordinates in a configuration of mechanical equilibrium:
Reference coordinates x1, x2 are chosen in such way that states
of minimum energy are r(x) = xαvα + t = x1v1 + x2v2 + t,
where v1, v2 is any given pair of mutually orthogonal unit
vectors and t is an arbitrary constant vector.

The energy functional Eq. (3) has been extensively dis-
cussed as a Landau-Ginzburg model for critical phenomena at
the crumpling transition and also as a starting point to discuss
scaling properties of the flat phase [1,2,5,8,11].

In the flat phase, it is convenient to parametrize r(x) =
(xα + uα (x))vα + h(x)n, where n = v1 × v2 denotes the nor-
mal to the membrane plane. Assuming that displacement
fields and their gradients are small, such that |∂2u| � |∂u|
and |∂u| � 1, Eq. (3) can be reduced by the replacements
Uαβ → uαβ = (∂αuβ + ∂βuα + ∂αh∂βh)/2, (∂2r)2 → (∂2h)2,
which leads to the standard approximate form [1,4,6,12,52]

H̃0 =
∫

d2x
[κ

2
(∂2h)2 + λ

2
u2

αα + μu2
αβ

]
. (4)

The neglected terms are expected to be unnecessary for an
exact calculation of universal quantities such as scaling expo-
nents. This is supported by a power-counting argument in the
framework of a field-theoretic ε-expansion method [6]: After
extension of the problem to D-dimensional membranes in a
d-dimensional embedding space, neglected terms are irrele-
vant by power counting at the upper critical dimension D = 4.
Equation (4) thus plays the role of an effective theory [6,8]
suitable for calculation of scaling indices to all orders in an
ε = (4 − D) expansion.

In the transition from Eq. (3) to Eq. (4), neglected nonlin-
earities lead to an explicit breaking of rotational symmetry.
However, as is well known [2,8], the underlying invariance
is preserved in a deformed form: H̃0 is invariant under the

transformations

h(x) → h(x) + Aαxα + B,
(5)

uα (x) → uα (x) − Aαh(x) − 1
2 AαAβxβ + B′

α

for arbitrary coordinate-independent Aα , B, and B′
α . This de-

formed symmetry and the subsequent Ward identities are
crucial in the renormalization of the theory of membranes,
and, most importantly, in the protection of the softness of
flexural modes, which ensures the criticality of the theory
without fine tuning of parameters [2,6,8–10].

It is useful to compare Eqs. (3) and (4) with the Canham-
Helfrich model for fluid membranes [1] and with the model
for crystalline membranes developed in Ref. [6]. In Ref. [6],
bending rigidity of the layer was introduced via an energy
contribution of the form

κ

2

∫
d2x(∂αN)2 = κ

2

∫
d2xKα

β · Kαβ, (6)

where N is the local normal to the surface, Kαβ is the curvature
tensor, and Kα

β = gαγ Kβγ . Using that Kαβ = N(N · ∂α∂βr) for
2D surfaces (see, e.g., Chap. 7 of Ref. [1]), Eq. (6) can be
written as

κ

2

∫
d2xgβγ (N · ∂α∂βr)(N · ∂α∂γ r) . (7)

Here gαβ denotes the inverse matrix of the metric tensor gαβ =
∂αr · ∂βr. For small fluctuations, such that gαβ � δαβ and N �
n, the curvature energy reduces, at leading order, to

κ

2

∫
d2x∂α∂βh∂α∂βh

= κ

2

∫
d2x[(∂2h)2 + (δαβ∂2 − ∂α∂β )(∂αh∂βh)], (8)

which, up to boundary terms, is equivalent to

κ

2

∫
d2x(∂2h)2, (9)

the curvature term in Eq. (4).
In the Canham-Helfrich model [1], the curvature stiffness

for a fluid membrane with vanishing spontaneous curvature
reads ∫

d2x
√

g[2κbH2 + κGK], (10)

where H and K are the mean and the Gaussian curvature, and
g = det[gαβ].

For 2D surfaces [1],

H = 1
2 Kα

α and K = 1
2

[(
Kα

α

)2 − Kα
β Kβ

α

]
, (11)

where Kαβ = N · ∂α∂βr, Kα
β = gαγ Kβγ . The Canham-Helfrich

energy functional Eq. (10) is reparametrization invariant, ex-
pressing that the configuration energy is only sensitive to the
geometrical shape of the surface in 3D space and not on
its internal coordinate system. As was discussed in Ref. [6],
in crystalline layers the crystal lattice singles out a natural
parametrization of the membrane and reparametrization in-
variance is not a necessary requirement (see also Ref. [8]
for a more general discussion in presence of nonflat internal
metric).

165421-3



MAURI, SORIANO, AND KATSNELSON PHYSICAL REVIEW B 102, 165421 (2020)

For small fluctuations about a flat configuration, the mean
and Gaussian curvatures reduce to

H � 1
2 (∂2h) (12)

and

K � 1
2 [(∂2h)2 − (∂α∂βh)(∂α∂βh)]

= − 1
2 (δαβ∂2 − ∂α∂β )(∂αh∂βh), (13)

while
√

g � 1. Integration over K then leads to a boundary
term and a curvature energy density proportional to (∂2h)2 is
recovered. More generally, the Gauss-Bonnet theorem implies
that the integral

∫
d2x

√
gK is topological invariant for closed

surfaces and the sum of boundary terms and a topological
invariant for open surfaces.

In this paper, curvature energy is considered to a leading or-
der in the limit of small fluctuations about a flat configuration,
and boundary terms arising from the surface integration of the
leading-order Gaussian curvature, Eq. (13), are neglected.

We note, however, that the Gaussian curvature energy
plays an important role in processes which involve a change
of membrane topology [1] or finite-size membranes with a
boundary. For example, a recent analysis of thermal fluctu-
ations within the harmonic approximation [53] indicated an
important role of Gaussian curvature energy in the statis-
tics of fluctuating membranes with a free edge. Finally, we
note that models with higher-order powers of curvature were
considered in Refs. [54,55], in relation with the problem of
bolaamphiphilic vesicles.

As a concluding remark, we notice that the models dis-
cussed above assume locality of the configuration energy and,
therefore, do not include infinite-range forces such as van
der Waals [56], dipole interactions [57], or the coupling with
gapless electrons, discussed in connection with graphene in
Refs. [58,59].

B. Bilayer

We will model bilayer graphene as a stack of two coupled
elastic membranes [39]. The corresponding energy functional
can thus be written as

H =
2∑

i=1

Hi + Hc, (14)

where

Hi =
∫

d2x

[
κ

2
(∂2ri )

2 + λ

2
U 2

iαα + μU 2
iαβ

]
(15)

are single-layer energies, and Hc represents coupling between
membranes [60]. In Eq. (15), ri and Uiαβ denote the coor-
dinates and the local deformation tensor of the ith layer in
the stack. As a model for interlayer interactions, we assume a
local coupling [61] truncated at the leading order in a gradient
expansion. This corresponds to an energy functional of the
form

Hc =
∫

d2x Hc(x) (16)

with an energy density Hc(x) depending only on r1(x) and
r2(x) and their leading-order gradients at x. After introduction

(a) (b)

FIG. 1. (a) Lattice structure of bilayer graphene in the Bernal
(AB) stacking. (b) Top view of AB-stacked bilayer graphene.

of sum and difference coordinates r = 1
2 (r1 + r2), s = r1 −

r2, invariance under translations in the 3D ambient space im-
plies that Hc cannot depend on r but only on its derivatives. In
the leading order of a gradient expansion, we will thus assume
that Hc(x) depends only on the local separation vector s and
on the tangent vectors ∂αr, neglecting dependence on higher
derivatives such as ∂αs or ∂2r. This level of approximation is
analogous to the approach in Ref. [39], where the coupling
energy is derived by discretization of a continuum 3D elas-
ticity theory. In the following, we will assume the developed
elasticitylike theory as a model to describe finite-wavelength
phenomena.

The most general form of Hc depending on s and ∂αr and
consistent with rotational and inversion symmetries of the 3D
ambient space is a generic function of the scalar products [62]

∂αr · ∂βr, s · ∂αr, s2 . (17)

In the configuration of mechanical equilibrium, neglecting a
small uniform strain induced by interlayer coupling, r(x) =
xαvα and the relative displacement between layers is s(x) =
ln, where l is the interlayer distance and n = v1 × v2. For
small fluctuations, the coupling energy can thus be expanded
in powers of the strain tensor Uαβ = 1

2 (∂αr · ∂βr − δαβ ), the
field s · ∂αr, which measures interlayer shear, and s2 − l2,
which describes local dilations of the layer-to-layer distance.

Consistency with the dihedral D3d symmetry of AB-
stacked bilayer graphene [63] [see Figs. 1(a) and 1(b)] selects,
among general combinations of these terms, a subset of al-
lowed invariant functions. Symmetry-consistent terms can be
directly constructed by group theory arguments or, equiva-
lently, by adapting invariants from theory of 3D elastic media.
Identification of s/l = (r1 − r2)/l with a discrete version of
∂zr in a corresponding 3D theory indicates that s · ∂αr/l and
(s2 − l2)/l2 have the same transformation properties of strain
tensor components Uαz = ∂αr · ∂zr and Uzz = ∂zr · ∂zr − 1,
respectively. The general elastic free-energy of uniaxial me-
dia with D3d point group subject to uniform deformation
reads [44,64]

F = 1
2C̄1(Uαα )2 + C̄2UαβUαβ

+ 1
2C1U

2
zz + 1

2C2U
2
αz + C3UααUzz

+ C4[(Uxx − Uyy)Uxz − 2UxyUyz], (18)

where Greek indices run over x and y components and C̄i and
Ci are constants. In Eq. (18) and in the following, reference-
space coordinates are interchangeably denoted as (x1, x2) or
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(x, y). Returning to the bilayer case, by drawing from anal-
ogous invariants in Eq. (18), we can write the functional Hc

as

Hc =
∫

d2x

[
g1

8l4
(s2 − l2)2 + g2

2l2
(s · ∂αr)2

+ g3

4l2
(s2 − l2)Uαα + g4

2l
((s · ∂xr)(Uxx − Uyy)

− 2(s · ∂yr)Uxy)

]
, (19)

up to terms of quadratic order in the strains. Among functions
of s and ∂αr, other terms could be added to Eq. (19). One is an
isotropic tension, σ

∫
d2x Uαα , reflecting uniform strain due

to a small difference in lattice constants between monolayer
and bilayer graphene. This tension can be eliminated by mod-
ifying the reference state about which strain is defined (see
Refs. [7,15,65] for a discussion on thermally induced uniform
stretching). Such redefinition of the point of expansion implies
a small shift in the elastic moduli. In addition, symmetry does
not rule out a coupling of the form

λ′

2
(Uαα )2 + μ′UαβUαβ, (20)

which contributes to the stretching elasticity of the bilayer as
a whole. Due to the large difference in scale between covalent
carbon-carbon interactions and interlayer van der Waals inter-
actions, it is expected that λ′ and μ′ are much smaller than
the monolayer Lamé moduli λ and μ. Similarly, it is expected
that corrections to λ, μ, and κ due to uniform strain are small.
These effects are thus neglected in Eq. (19).

Collecting terms in Eq. (14), the model Hamiltonian for
graphene bilayer thus reduces to

H = H1 + H2 +
∫

d2x

[
g1

8l4
(s2 − l2)2

+ g2

2l2
(s · ∂αr)2 + g3

4l2
(s2 − l2)Uαα

+ g4

2l
((s · ∂xr)(Uxx − Uyy) − 2(s · ∂yr)Uxy)

]
. (21)

Within the harmonic approximation, after neglection of the
anisotropic term in the last line, Eq. (21) reduces to the func-
tional derived in Ref. [39].

In analogy with the standard crystalline membrane theory,
it is convenient to parametrize the coordinate vectors r(x)
and s(x) by separating in-plane and out-of-plane displacement
fields: r(x) = (xα + uα )vα + hn and s(x) = ūαvα + (l + h̄)n,
where u, ū ∈ R2, h, h̄ ∈ R. Fluctuations of relative coordinate
h̄ and the shear mode ūα + l∂αh are bounded by the cou-
plings g1 and g2. For simplicity, similarly to the approach of
Ref. [39], fluctuations of h̄ and ūα will thus be treated within
a harmonic approximation. Furthermore, repeating standard
approximations for single membranes [1,4], we neglect the
contribution κ (∂2uα )2/2 to the energy density and terms non-
linear in uα in the strain tensor

Uαβ = 1
2 (∂αr · ∂βr − δαβ )

= 1
2 (∂αuβ + ∂βuα + ∂αh∂βh + ∂αuγ ∂βuγ ) (22)

which is thus replaced with the approximate form uαβ =
1
2 (∂αuβ + ∂βuα + ∂αh∂βh).

After expansion of Eq. (21), these approximations lead to

H̃ =
∫

d2x

[
κ (∂2h)2 + λ(uαα )2 + 2μuαβuαβ

+ κ

4
(∂2h̄)2 + λ

4
(∂α ūα )2 + μ

8
(∂β ūα + ∂α ūβ )2

+ g1

2l2
h̄2 + g2

2l2
(ūα + l∂αh)2 + g3

2l
h̄uαα

+ g4

2l
((ūx + l∂xh)(uxx − uyy) − 2(ūy + l∂yh)uxy), (23)

which will be used as a starting point in Sec. II C.
Similar to the standard theory of crystalline mem-

branes [2,8] [see Eqs. (5)], this configuration energy possesses
a continuous symmetry, which reflects the underlying invari-
ance under rotations and translations in the embedding space:
the Hamiltonian Eq. (23) is invariant under

h(x) → h(x) + Aαxα + B,

uα (x) → uα (x) − Aαh(x) − 1
2 AαAβxβ + B′

α, (24)

h̄(x) → h̄(x), ūα → ūα − lAα,

for arbitrary Aα , B, B′
α . As in Eqs. (5), transformations with

Aα 
= 0 represent linearized versions of rotations in 3D space.

C. Effective theory for flexural fluctuations

Starting from the Gibbs probability distribution

P[h(x), uα (x), h̄(x), ūα (x)] = 1

Z
e−H̃/T (25)

for fluctuations of the displacement fields h(x), uα (x), h̄(x),
ūα (x), we proceed to construct an effective theory describing
the statistical properties of the flexural fluctuations h(x) only,
by systematically integrating out the remaining degrees of
freedom. In Eq. (25), the Hamiltonian H̃ is assumed to be
the approximate configuration energy of Eq. (23) and the
normalization Z is given by the partition function

Z =
∫

[dhduαdh̄dūα]e−H̃ [h,uα,h̄,ūα ]/T . (26)

By explicit integration over relative fluctuations h̄ and ūα , the
effective Hamiltonian for fluctuations of uα and h fields,

H̃ ′
eff [h(x), uα (x)] = −T ln

{∫
[dh̄dūα]e−H̃ [h,uα,h̄,ūα ]/T

}
,

(27)

is calculated as

H̃ ′
eff =

∫
q

[
1

2
κ0(q)q4|h(q)|2 + 1

2
λ0(q)|uαα (q)|2

+ μ0(q)|uαβ (q)|2 + g2
4l2

16g2
2

(λ + μ)dL(q)dT (q)|A(q)|2

− g4l2

4g2
(λ + 2μ)dL(q)q2h(q)A∗(q)

]
. (28)

Details of the calculation are presented in the Appendix. In
Eq. (28), h(q) and uαβ (q) are Fourier components of h(x) and
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uαβ (x), A(q) is the Fourier transform of the anisotropic D3d -
invariant field

A(x) = ∂xuxx − ∂xuyy − 2∂yuxy, (29)∫
q = ∫

d2q/(2π )2 denotes momentum integration, and

|uαβ (q)|2 = uαβ (q)u∗
αβ (q). Furthermore, we introduced the

dimensionless functions

dL(q) =
[

1 + (λ + 2μ)l2q2

2g2

]−1

,

dT (q) =
[

1 + μl2q2

2g2

]−1

,

d̄ (q) =
[

1 + κl2q4

2g1

]−1

, (30)

and defined

κ0(q) = 2κ + (λ + 2μ)l2

2
dL(q),

λ0(q) = 2λ − g2
3

4g1
d̄ (q) + g2

4

4g2
dT (q),

μ0(q) = 2μ − g2
4

4g2
dT (q) . (31)

In the first three terms of Eq. (28), we recognize a Hamiltonian
identical in form to the standard effective theory of crystalline
membranes, Eq. (4), but with a q-dependent bending rigidity
κ0(q) and Lamé coefficients λ0(q) and μ0(q). The additional
interaction involving |A(q)|2 is a quadratic functional of the
strain tensor and represents an anisotropic stiffness associated
with gradients of the strain. Finally, the term proportional to
q2h(q)A∗(q) introduces a coupling between the component
A(x) of the gradient of strain and the local curvature ∂2h(x).
In the following, these last two interactions are neglected for
simplicity.

The neglection of the first of these two terms is related
to the assumption that the response of the bilayer to space-
dependent strain is dominated by the sum of the stiffnesses of
the two isolated layers at the scales of interest. With the same
assumption, we approximate

λ0(q) � λ0 = 2λ, μ0(q) � μ0 = 2μ, (32)

neglecting the q-dependent contributions in Eq. (31). An es-
timate from the identification g3 = 2c13l , the experimental
value c13 = (0 ± 3)GPa for graphite [66,67], and the parame-
ters l � 3.25 Å, g1 � 0.8 eVÅ−2 (see Sec. III) shows that the
correction −g2

3/(4g1)d̄ (q) is much smaller than 2λ and 2μ for
any wave vector, which supports this approximation [68]. We
assume that also terms g2

4/(4g2)dT (q) play a minor role.
With these approximations, we are led to consider the

effective Hamiltonian

H̃ ′′
eff = 1

2

∫
q
[κ0(q)q4|h(q)|2 + λ0|uαα (q)|2 + 2μ0|uαβ (q)|2],

(33)

which is identical in form to the standard effective theory of
crystalline membranes, Eq. (4), although the bending rigidity
κ is replaced by the q-dependent κ0(q). The remaining inte-
gration over in-plane fields, therefore, proceeds in an usual

way [1,4,7,9,10,15] (see the Appendix). The resulting effec-
tive Hamiltonian for the flexural field h(x) reads

H̃eff = 1

2

∫
q
κ0(q)q4|h(q)|2 + 1

2

∫ ′

q
Y0

∣∣∣∣K (q)

q2

∣∣∣∣
2

, (34)

where

Y0 = 4μ0(λ0 + μ0)

λ0 + 2μ0
(35)

and K (q) is the Fourier transform of the composite field

K (x) = − 1
2 (δαβ∂2 − ∂α∂β )(∂αh∂βh)

= 1
2 [(∂2h)2 − (∂α∂βh)(∂α∂βh)], (36)

and the primed integral
∫ ′

q is meant to run over the nonzero
wave-vector components, with the q = 0 contribution ex-
cluded [1,7].

At leading order for small deformations, K (x) coincides
with the Gaussian curvature, Eqs. (13) and (34) thus expresses
a long-range curvature-curvature interaction. Physically, this
nonlinearity encodes a frustration of out-of-plane fluctuations
due to the elastic stiffness of the layer [1,4]. Given an out-of-
plane displacement field h(x), it is not possible, in general, to
choose the two displacement fields ux(x) and uy(x) in such
way that the three components of the strain tensor uxx(x),
uyy(x), uxy(x) vanish at all points. As Eq. (34) shows, regions
with a finite Gaussian curvature inevitably induce a strain of
order O(h2) in the lattice, and involve an energy cost con-
trolled by the elastic moduli [1,4].

To conclude, we briefly discuss the neglected term propor-
tional to ∫

q
dL(q)q2h(q)A∗(q) . (37)

After integration over in-plane fields, this term generates an
anisotropic contribution to the q-dependent rigidity κ0(q) of
the form

δκ0(q) = − g2
4l4

32g2
2

(λ + 2μ)2

μ
d2

L (q)
[
1 − λ + μ

λ + 2μ
cos2(3θ )

]
q2,

(38)

where cos θ = qx/|q|. This contribution vanishes for q → 0
and it is maximal for q2 ≈ 2g2/((λ + 2μ)l2), where it is of the
order of g2

4l2/(32g2). In addition, the term Eq. (37) generates
a nonlocal interaction

i
(λ + μ)g4l2

2g2

∫ ′

q
dL(q)qx

(
q2

x − 3q2
y

)
h(q)

K∗(q)

q2
, (39)

which couples the curvature tensor ∂α∂βh to the approximate
Gaussian curvature K (x). Consideration of these effects is
beyond the scope of this paper. It is expected that the term
Eq. (37) does not modify the exponent of the scaling behavior.

III. MODEL PARAMETERS FOR AB-STACKED
BILAYER GRAPHENE

As discussed above, the bending rigidity κ and the Lamé
coefficients λ and μ are approximated by their values for
monolayer graphene, which is justified by the weakness of van
der Waals interactions in comparison with in-plane bonding.
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TABLE I. Parameters for bilayer graphene obtained from first-principle calculations, compared with the elastic constants of AB-stacking
graphite reported in Ref. [66]. In the elastic moduli of graphite, results in brackets were calculated considering van der Waals corrections [66].
The lattice constant a and interlayer distance l are expressed in Å, the couplings g1 and g2 in eV Å−2, and the elastic moduli c33, c44 in GPa. In
the case of graphite, the values of g1 and g2 in the table are defined by the identifications g1 ≡ c33l , g2 ≡ c44l , where l is the graphite interlayer
distance.

a l g1 g2 c33 c44

Bilayer 2.46 3.2515 0.80 0.11 − −
Graphite 2.45 3.42±0.01 0.62(0.90) 0.096(0.10) 29(42) 4.5(4.8)

In the case of the in-plane Young modulus Y , this approx-
imation is consistent with experimental values illustrated in
Ref. [37], which indicate for bilayer graphene a value of Y
approximately equal to twice the corresponding monolayer
modulus.

The elastic moduli and the bending stiffness of a mono-
layer graphene have been investigated extensively (see, e.g.,
Refs. [37,43,69,70]). Theoretical predictions and estimates
of κ lead to values between 0.69 eV and approximately
2.4 eV [69–71].

By comparing results of atomistic Monte Carlo simulations
and continuum membrane theory, the bare bending rigidity
κ was predicted to present a significant temperature depen-
dence [19]. This was attributed to anharmonic interactions
between acoustic modes and other phonon branches or, more
generally, with degrees of freedom not captured by the mem-
brane model. In Ref. [34], a similar result was obtained for
bilayer graphene. In addition, by a similar fitting, method
Ref. [34] determined temperature dependencies of the inter-
layer compression modulus, analog to g1 in Eq. (23).

In the following, we neglect these temperature dependen-
cies and, similarly, effects of thermal expansion on the lattice
constant a and the interlayer distance l . In further calcula-
tions, we adopt the values λ � 3.8 eV Å−2 and μ � 9.3 eV
Å−2, which we deduced from the first-principles results of
Ref. [72], and assume κ = 1 eV [21,22].

To determine interlayer coupling parameters g1 and g2,
we have performed density-functional theory calculations on
AB-stacked bilayer graphene [see Figs. 1(a) and 1(b)]. We
use the plane-wave-based code PWSCF as implemented in
the QUANTUM ESPRESSO ab initio package [73]. A vacuum
layer of more than 15 Å has been added to avoid perpendicu-
lar interaction between neighboring cells. The quasi-Newton
algorithm for ion relaxation is applied until the components
of all forces are smaller than 10−5 Ry/bohr. The interlayer
distance l and the lattice parameter a obtained after relaxation
are shown in Table I. For the self-consistent calculations,
we use a 36 × 36 × 1 grid. The kinetic energy cutoff is
set to 100 Ry. Projector augmented wave pseudopotentials
within the Perdew-Burke-Ernzerhoff approximation [74] for
the exchange-correlation functional are used for the C atoms.
Van der Waals dipolar corrections are introduced during re-
laxation through the Grimme-D2 model [75].

To calculate the interlayer shear modulus g2 and the out-
of-plane compression modulus g1, we apply deformations
as shown in Figs. 2(a) and 2(b), respectively, to the bilayer
graphene unit cell. For simplicity, a frozen-ion approxima-
tion is assumed: During deformation, all atoms are displaced
rigidly without allowing for a relaxation of the internal struc-

ture of the unit cell. After application of a sequence of relative
shifts δx between carbon layers and variations δl of the
layer-to-layer distance, the total energy per unit area E/A is
fitted as

E

A
= E0

A
+ g1

2

δl2

l2
, (40)

E

A
= E0

A
+ g2

2

δx2

l2
. (41)

The resulting values for g1 and g2 are illustrated in Table I.
It is natural to compare the values of g1 and g2 with

corresponding 3D elastic moduli in graphite. A stack of
membranes with interactions of the form Eq. (23) between
nearest-neighboring layers and vanishing interactions be-
tween non-neighboring layers exhibits 3D elastic moduli
c33 = g1/l and c44 = g2/l , where c33 and c44 are defined
according to the Voigt notation:

E

V
= 1

2

∑
i, j

ci jεiε j, uαβ =

⎡
⎢⎣

uxx uxy uxz

uyx uyy uyz

uzx uzy uzz

⎤
⎥⎦

=

⎡
⎢⎣

ε1
ε6
2

ε5
2

ε6
2 ε2

ε4
2

ε5
2

ε4
2 ε3

⎤
⎥⎦, (42)

where E/V is the energy density of the 3D solid under uni-
form strain. In Table I, our results for bilayer graphene are
compared with ab initio calculations for ideal AB-stacking
graphite reported in Ref. [66]. The comparison indicates that
values of g1 and g2 calculated in this work are of the same
order of the corresponding graphite stiffnesses. We note, how-
ever, that the exact value of the shear modulus in multilayer
graphene is still far from being understood. Reported values
for the interlayer shear modulus exhibit a large dispersion
(see, e.g., Refs. [37,46]). Raman measurements give values
of the order of 4–5 GPa, while direct measurements using

(a) (b)

FIG. 2. Scheme of the shear and out-of-plane strains.
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(a)

(b)

FIG. 3. Graphical representation of the self-consistent screening
approximation.

mechanical approaches give values of 0.36–0.49 GPa, increas-
ing with the number of layers. This big discrepancy calls
for a better understanding of interlayer dipolar or van der
Waals interactions in layered materials, which is beyond the
scope of this work. Experimental values of the interlayer shear
modulus in graphite also exhibit a large scatter [37].

IV. SELF-CONSISTENT SCREENING APPROXIMATION

Equilibrium correlation functions of the flexural field h(x)
at a temperature T can be calculated by functional integration
from the effective Hamiltonian H̃eff , Eq. (34). In this work, the
two-point correlation function G(q) = 〈|h(q)|2〉 is calculated
within the SCSA [9,10,51].

In the considered model for bilayer graphene, the prob-
lem differs from conventional membrane theory only by the
q-dependence of κ0(q). Therefore, SCSA equations can be
written in a standard way [10], by adapting the conventional
equations with the replacements κ → κ0(q), Y → Y0.

The SCSA is defined diagrammatically in Fig. 3: By ne-
glecting vertex corrections, Dyson equations are truncated to
a closed set of integral equations for G(q) and a screened-
interaction propagator D(q). For physical 2D membranes in
3D space, SCSA equations read [10]

G−1(q) = G−1
0 (q) + �(q),

(43)
b̃−1(q) = b−1

0 (q) + 3I (q),

where the self-energy �(q) and the polarization bubble I (q)
are, respectively,

�(q) = 2
∫

k
[q2k2 − (q · k)2]2 b̃(k)

k4
G(q − k) (44)

and

I (q) = 1

3q4

∫
k
[q2k2 − (q · k)2]2G(q − k)G(k) . (45)

For membranes described by Eq. (4), the zero-order propaga-
tors are

G−1
0 (q) = κq4

T
, b0(q) = Y

2T
. (46)

For bilayer graphene, after the approximations λ0(q) � 2λ

and μ0(q) � 2μ (see Sec. II C), the zero-order flexural-field
and interaction propagators for bilayer graphene read

G−1
0 (q) = κ0(q)q4

T
, b0(q) = Y0

2T
, (47)

where, as in Eq. (31),

κ0(q) = 2κ + (λ + 2μ)l2

2

[
1 + (λ + 2μ)l2q2

2g2

]−1

. (48)

In the long-wavelength limit, identification of power-law
solutions of SCSA equations within the strong-coupling as-
sumption �(q) � G−1

0 (q), I (q) � b−1
0 (q) yields analytical

equations for the universal exponent η. After generaliza-
tion to a theory of D-dimensional membranes embedded in
a (D + dc)-dimensional ambient space, the SCSA exponent
η(D, dc) is exact to first order in ε = 4 − D, to leading order
in a 1/dc-expansion and for dc = 0 [9,10]. For the phys-
ical case D = 2, dc = 1, the SCSA exponent η = 4/(1 +√

15) � 0.821, shows a good agreement with complementary
approaches such as numerical simulations and the nonper-
turbative renormalization group [11]. As compared with the
SCSA, a second-order generalization which includes dressed
diagrams with the topology of O(1/d2

c ) graphs in a large-
dc expansion, leads to quantitatively small corrections to
universal quantities for D = 2, dc = 1 [51], which supports
the accuracy of the method. Recently, SCSA predictions
have been compared with exact analytical calculations of η

in second-order large-dc [76] and ε-expansions [17,18]. In
Ref. [17], it was shown that the SCSA equations are exact at
O(ε2) within a nonstandard dimensional continuation of the
theory to arbitrary D. A more general two-loop theory was
developed in Ref. [18], where a larger space of theories was
considered. For models equivalent to the conventional dimen-
sionally continued membrane theory, the O(ε2) was shown to
deviate from the SCSA prediction.

To determine correlation functions at an arbitrary wave
vector q, we solve SCSA equations numerically by an it-
erative algorithm. Starting from noninteracting propagators
G(q) = G0(q), b̃(q) = b0(q), Eqs. (45) and (46) are used to
determine the zero-order polarization bubble I (q) and the
first approximation to the screened interaction b̃1(q). The
self-energy diagram in Fig. 3(b) is then calculated as a loop
integral of b̃1(q) and G0(q), leading to a dressed Green’s
function G1(q). Iteration of the process generates a sequence
of screened functions and dressed propagators,

G−1
n+1(q) = G−1

0 (q) + �n(q),

b̃−1
n+1(q) = b−1

0 (q) + 3In(q),

�n(q) = 2
∫

k
[q2k2 − (q · k)2]2 b̃n+1(k)

k4
Gn(q − k),

In(q) = 1

3q4

∫
k
[q2k2 − (q · k)2]2Gn(q − k)Gn(k), (49)

which, after convergence, approach solutions to the SCSA
equations. At each step in the iteration process, correla-
tion functions are calculated on a grid of 50 wave-vector
points, evenly spaced in logarithmic scale and ranging be-
tween 10−7 Å−1 and 110 Å−1. Calculations with grids of 26
and 29 points are also performed to estimate the numerical
accuracy [77].

Twenty-five steps of the iteration algorithm are illustrated
in Fig. 4. To calculate loop integrals, at each iteration G(q)
and b̃(q) are interpolated by cubic splines [78] in loga-
rithmic scale: G(q) and b̃(q) are interpolated as Gn(q) =
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FIG. 4. Sequence of correlation functions (red solid lines) and
screened interactions (blue dashed lines) obtained by 25 iterations
of the convergence algorithm. Data in the graph refer to a bilayer
membrane with the parameters λ = 3.8 eV Å−2, μ = 9.3 eV Å−2,
κ = 1 eV, l = 3.2515 Å, g2 = 0.11 eV Å−2, and T = 300 K. Corre-
lation functions evaluated at the last iteration on the 50-point grid are
shown by dots.

A1 exp[ f1(ln(q/B))], b̃n(q) = A2 exp[ f2(ln(q/B))], where f1

and f2 are cubic splines and A1, A2, B are constants. In the
region q < 10−7 Å−1, which is not covered by the wave-
vector grid, functions are extrapolated as pure power laws,
Gn ∝ q−η(n) and b̃n ∝ qηu (n) with exponents and amplitudes
matching the first two points in the grid.

In the calculation of integrals, we split 2D wave-vector
integration into a sequence of 1D integrals over ky and kx,
the components of k, respectively, transverse and longitudi-
nal to the external wave vector q. In the computation, we
use an adaptive algorithm for single-variable integration [78],
and include ky integration in the function called by the outer
kx integral. Inner and outer integrals are evaluated within a
relative accuracy 1.49 × 10−8 and 10−7, respectively.

Although the self-energy and polarization bubble are con-
vergent, a hard ultraviolet cutoff � = 100 Å−1 is imposed in
explicit calculations. To estimate the numerical error due to
the finite UV cutoff, we compared data sets calculated with
� = 100 Å−1 and � = 1000 Å−1, which were obtained by
calculating numerical solutions on wave-vector grids consist-
ing of 26 and 29 points respectively. Upon this change in
UV cutoff, data sets for G(q) and b̃(q) deviate by less than
10−5 [77].

In the numerical calculations, difficulties stem from the
rapid variation of functions in regions of much smaller
size than the integration domain and from the slow decay
of integration tails at large k. To address these problems,
integrals are performed piecewise. Specifically, the ky in-
tegration domain is split into contiguous intervals with
extrema {0, 10−1q1, q1, 10q1, q2, 10q2, 102q2, 103q2}, where
q1 = √

q|q − k| and q2 = max[q, |q − k|]. For any q and kx

and at any steps in the iteration process, characteristic scales
q1 and q2 define roughly the width in ky integration which
contributes mostly to the integral value. The piecewise calcu-
lation defined above is then able to capture a small-scale peak

in the integrand function and a long tail for ky � q2. In the
subsequent kx integrations, similarly, subintervals are chosen
as {..,−10q,−q, 0, q, 10q, 102q..}.

After 25 iterations of the algorithm, the values of Gn(q)
and b̃n(q) at the grid of sampled wave-vector points converge
within a relative deviation smaller than 10−10. The final re-
sults (see Sec. V) reproduce the analytically known SCSA
exponent and amplitude ratio [9,10,51] closely: An estimate
of the exponents η, ηu and the amplitudes z1, z2 of the scaling
behavior

G−1(q) = z1q4−η, b̃(q) = z2qηu , (50)

from the first two points of the wave-vector grid
gives values in the range η = 0.8208515 ÷ 0.8208524,
ηu = 0.35829478 ÷ 0.35829524, and z2

1/z2 = 0.1781321 ÷
0.1781381 for considered data sets for monolayer graphene
at T = 300 K and bilayer graphene at different temperatures
between 10 and 1500 K. These results are in close agreement
with the analytical predictions η = 4/(1 + √

15) �
0.82085238, ηu = 2 − 2η � 0.35829523, and [10,51]

z2
1

z2
= 3

16π

�2(1 + η/2)�(1 − η)

�2(2 − η/2)�(2 + η)
� 0.17813212... (51)

The individual amplitudes z1 and z2 and the crossover be-
haviors at finite q are more sensitive to numerical error. A
limitation to numerical accuracy derives from the need to
interpolate G(q) and b̃(q) from a discrete set of data points.
To estimate the order of the corresponding error, the numerical
solution of SCSA equations was repeated after reduction to a
broader grid, consisting of 26 wave-vector points. Compared
to data evaluated with the 50 q-point grid, interpolating func-
tions exhibit a maximum relative deviation of the order of 2%
in all considered sets of data (see Ref. [77] for a more detailed
analysis). The amplitudes z1 and z2 of the long-wavelength
scaling regime exhibit a smaller discrepancy, of the order of
10−3, upon change from the finer to the broader wave-vector
grid.

Numerical results indicate that the numerical values of
the exponent and the amplitude ratio z2

1/z2 are much more
accurate than the numerical precision in calculations of
nonuniversal properties such as the amplitude and finite-
wavelength dependencies of G(q) and b̃(q). Qualitatively,
universal properties are only sensitive to the region of small
momenta, where G(q) and b̃(q) approach pure powers and the
precision of numerical interpolation improves significantly.

V. RESULTS

The numerical algorithm described in Sec. IV was used
to determine solutions to the SCSA equations for graphene
monolayer and bilayers at temperatures T = 10, 300, and
1500 K. Results are illustrated in Figs. 5–8, while numerical
data are reported in Ref. [77].

All reported results are derived within the framework of
continuum models discussed in Sec. II, which do not capture
the effects of discreteness of the lattice. Figures 5–8 illustrate
correlation functions in the full wave-vector range employed
for the numerical calculation of the continuum-limit solution,
10−7 Å−1 < q < 102 Å−1, although, on the lattice, only de-
grees of freedom with q � 1 Å−1 are physical.
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FIG. 5. Renormalized bending rigidity κ̃ (q) = T G−1(q)/q4 and
renormalized elastic coefficient b̃(q) for continuum models of mono-
layer (blue dashed lines) and bilayer graphene (red solid lines) at
T = 300 K. For q → 0, κ̃ (q) diverges for both curves as q−η and
b̃(q) approaches 0 as q2−2η.

The renormalized bending rigidity κ̃ (q) ≡ T G−1(q)/q4,
and the renormalized elastic modulus b̃(q) [9,10] for single-
layer graphene at room temperature are illustrated by blue
dashed lines in Fig. 5. As it is completely general within the
framework of the elasticity model, Eq. (4), interaction effects
are weak for q � q∗, where q∗ =

√
3TY/(16πκ2) [10,19]. In

the limit q � q∗, b̃(q) and κ̃ (q) approach their bare values

(a)

(b)

FIG. 6. (a) Renormalized bending rigidity and (b) renormalized
elastic modulus for bilayer graphene at T = 10 K (thick blue
lines), 300 K (intermediate red lines), and 1500 K (thin green lines).
Dashed lines illustrate the corresponding functions in the harmonic
approximation.

FIG. 7. Renormalized bending rigidity and renormalized elastic
modulus for bilayer graphene at T = 10 K (top panel) and T =
300 K (bottom panel). Thick solid grey lines represent κ̃ (q)/T and
b̃(q) obtained by numerical solution of SCSA equations for bilayer
graphene. The corresponding functions in the harmonic approxima-
tion κ0(q) and b0(q) = b0 = Y0/(2T ) are illustrated as black dotted
lines. The blue dashed curves show the SCSA correlation functions
for a single membrane with Young modulus 2Y and bending rigidity
2κ , i.e., twice as large than in monolayer graphene. The correlation
functions of a single membrane with Young modulus 2Y and the
much larger bending rigidity 2κ + (λ + 2μ)l2/2 is illustrated by red
dash-dotted lines.

Y/(2T ) and κ , with negligible renormalizations. In contrast,
for q � q∗ a strong coupling regime sets in. For q � q∗ the
self-energy �(q) and the polarization function I (q) are much
larger than the harmonic propagators G−1

0 (q) and b−1
0 (q); cor-

relation functions scale as power laws [9,10,51]:

G−1(q) = z1q4−η, b̃(q) = z2qηu . (52)

As mentioned above, numerical results are in close agreement
with the scaling relation ηu = 2 − 2η, and the predic-
tions, exact within SCSA, η = 4/(1 + √

15) and z2
1/z2 �

0.17813212 [9,10,51].
By a simple rescaling, the numerical solution obtained

for monolayer graphene can be adapted to any membrane
described by the elasticity model, Eq. (4). For any such mem-
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FIG. 8. Ratio between the renormalized bending rigidity κ̃ (q)
and the bare effective rigidity κ0(q) (grey dotted lines), the renor-
malized rigidity κ̃1(q) of a single-layer membrane with parameters
2Y and 2κ (blue dashed line), and the analog function κ̃2(q) for
parameters 2Y and κ̄0 (red solid line). Panels (a)–(c) refer to data
at T = 10, 300, and 1500 K, respectively. A horizontal line at 1 is
drawn as guide to the eye.

brane, the statistics of out-of-plane fluctuations is governed
by a Hamiltonian of the form (34) with a wave-vector-
independent rigidity κ0(q) = κ and Young modulus Y0(q) =

Y . A scaling analysis then shows that

G(q) = T

κq4
g

(
q

q∗

)
(53)

and

b̃(q) = b0 f

(
q

q∗

)
= Y

2T
f

(
q

q∗

)
, (54)

where g(x) and f (x) are independent of temperature and elas-
tic parameters. In particular, the coefficient z1 governing the
amplitude of the scaling behavior has the form [79]

z1 = z̄1
κqη

∗
T

, (55)

where z̄1 is independent of T , κ , and Y . An estimate from
the amplitude of G in monolayer graphene gives z̄1 � 1.177
within SCSA. In the following, the scaling-analysis relations
Eqs. (53) and (54) are used to convert numerical data collected
for monolayer graphene at T = 300 K to single membranes
with arbitrary elastic parameters and temperature.

As Figs. 5–7 show, correlation functions in bilayer
graphene exhibit a more intricate crossover behavior which
extends from microscopic to mesoscopic scales. In contrast
with the monolayer elasticity theory, the behavior of a bi-
layer is controlled by several length scales. The effective bare
bending rigidity κ0(q), Eq. (48), approaches limiting values
2κ and κ̄0 = 2κ + (λ + 2μ)l2/2 for q � q1c and for q � q2c

respectively, where

q1c =
√

g2

2κ
� 0.2Å−1 (56)

and

q2c = 1

l

√
2g2

λ + 2μ
� 3 × 10−2Å−1 . (57)

A crossover in the mechanical behavior [39] takes place
between these two scales: q2c < q < q1c. The strong q
dependence of κ0(q) has a crucial impact on the harmonic cor-
relation functions. The effective rigidity κ̃ (q) = T G−1(q)/q4

and elastic coefficient b̃(q) = b0 in the harmonic approxima-
tion, which coincide with their bare value κ0(q) and b0(q) =
b0, are illustrated by dashed lines in Fig. 6 and by grey dotted
lines in Fig. 7.

At finite temperatures, for a single membrane, crossover
from weak to strong coupling is marked by the Ginzburg scale
q∗ =

√
3TY/(16πκ2). In the case of bilayer graphene, two

scales analog to q∗ can be anticipated:

q1∗ =
√

3T

16π

(2Y )

(2κ )2
= q∗√

2
(58)

and

q2∗ =
√

3T

16π

(2Y )

κ̄2
0

. (59)

While q1∗ is close to the Ginzburg scale for a monolayer
graphene, q2∗ is smaller by two orders of magnitude due to
the strong enhancement of κ̄0 � 2κ .
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The inverse lattice spacing 1/a � 1 Å−1 defines a further
scale for fluctuations of the atomic crystal, which marks a
limit of validity for the continuum model employed here.

To study the interplay and overlap between these crossover
effects, we analyzed fluctuations in bilayer graphene at tem-
peratures T = 10, 300, and 1500 K. For small temperatures,
the mechanical and the weak-strong coupling crossovers are
disentangled. At T = 10 K both q2∗ � 4 × 10−4 Å−1 and
q1∗ � 2 × 10−2 Å−1 are smaller than q1c, and furthermore
q2∗ � q2c. As confirmed by the numerical results, throughout
the region q2c < q < q1c thermal effects are negligible. Strong
coupling behavior sets in only at q < q2∗ < q2c, a region
where κ0(q) has already converged to its limiting value κ̄0. A
more detailed analysis of the collected numerical data shows
that for q > 4 × 10−3 Å−1, κ̃ (q) = T G−1(q)/q4 and b̃(q)
differ from their harmonic approximations κ0(q) and b0(q)
by less than 3%. For q < 4 × 10−3 Å−1, instead, numerical
data agree within 3% with correlation functions of a single
membrane with Young modulus 2Y and rigidity κ̄0, which
was obtained by rescaling monolayer graphene results via
Eqs. (53) and (54). In particular, in the scaling region q � q2∗,
the amplitude z′

1 of the power-law behavior G−1(q) = z′
1q4−η

differs from the corresponding single-membrane value

z1 = z̄1
κ̄0qη

2∗
T

� 1.177
κ̄0qη

2∗
T

(60)

only by a deviation of the order of 10−3.
Figure 7 illustrates an explicit comparison between full

correlation functions for bilayer graphene at T = 10 K, their
harmonic approximation, and the corresponding functions for
single membranes having Young modulus 2Y and bending
rigidity 2κ and κ̄0. Ratios between corresponding functions
are presented in Fig. 8.

At room temperature, the mechanical and the weak-strong
coupling crossovers have a more sizable overlap: The char-
acteristic scale q1∗ � 0.13 Å−1 is of the same order of q1c.
As can be seen in Fig. 8(b), the renormalized bending rigidity
κ̃ (q) exhibits a larger deviation from the harmonic approx-
imation at scales of the order of 10−1 Å−1. However, the
effect is relatively small. For q � 10−2 Å−1, κ̃ (q) and b̃(q)
differ from the corresponding functions in the harmonic ap-
proximation by less than 10%. In the long-wavelength region
q � 10−2 Å−1, instead, κ̃ (q) and b̃(q) agree within 9% with
the renormalized rigidity κ̃1(q) and elastic modulus b̃1(q) of
a single membrane with bare bending stiffness κ̄0 and Young
modulus 2Y . In particular, comparing amplitudes of the lead-
ing scaling behavior in the limit q → 0 shows that κ̃ (q) and
b̃(q) deviate from κ̃1(q) and b̃1(q) by approximately 3% and
6%, respectively [80]. An explicit comparison is illustrated
graphically in Fig. 7.

The effects of thermal renormalizations are more pro-
nounced at T = 1500 K, as Fig. 8(c) shows. Within the
considered model, the amplitude of the long-wavelength
power-law behavior κ̃ (q) = T z′′

1q−η differs from the scal-
ing limit of κ̃1(q), κ̃1(q) = z̄1κ̄0(q2∗/q)η, by approximately
10% [80].

In correspondence with crossover regions for κ̃ (q), the
renormalized elastic coefficient b̃(q) exhibits a flection (see
Fig. 7). Since b0(q) is assumed to be wave-vector indepen-

dent, this behavior reflects corresponding crossovers in the
polarization function I (q).

As a final remark, it should be noted that features in the
reported results with q of the order of 1Å−1 and their contri-
bution to the renormalization of the long-wavelength behavior
can be sensitive to microscopic effects not captured by the
continuum approximation employed here. Renormalizations
beyond the continuum model are expected to grow with in-
creasing temperature and to become important when strong
nonlinear effects occur at microscopic scales.

VI. INCLUSION OF INTERLAYER FLEXURAL
NONLINEARITIES

In the model considered in this paper, nonlinearities in
h̄ = h1 − h2 and ūα have been neglected. As a result of the
harmonic approximation, however, Eq. (23) fails to recover
the theory of two independent nonlinearly fluctuating layers
in the complementary limit g1, g2, g3, g4 → 0. A minimal ex-
tension of the theory necessary to connect this limiting regime
can be constructed by including nonlinearities in the interlayer
flexural field h̄, while neglecting anharmonicity in in-plane
displacement fields. With this extension, an analog of Eq. (23)
reads

H̃ = 1

2

∫
d2x

[
κ (∂2h1)2 + λ(u1αα )2 + 2μ(u1αβ )2

+ κ (∂2h2)2 + λ(u2αα )2 + 2μ(u2αβ )2

+ g1

l2
h̄2 + g2

l2
(ūα + (l + h̄)∂αh)2 + g3

2l
(u1αα + u2αα )

+ g4

l
((ūx + (l + h̄)∂xh)(uxx − uyy)

− 2(ūy + (l + h̄)∂yh)uxy)

]
, (61)

where uiαβ = 1
2 (∂αuiβ + ∂βuiα + ∂αhi∂βhi ) are approximate

strain tensors of the ith layer. For g1, g2, g3, g4 = 0, Eq. (61)
reduces to two copies of the well-known nonlinear effective
theory for monolayer membranes [4,6,8,12].

Developing a general theory for weakly coupled mem-
branes with large interlayer-distance fluctuations is a complex
problem. If the field h̄ is regarded as critical, with a propagator
scaling as q−4, power counting indicates an infinite number
of relevant and marginal perturbations (see, e.g., Ref. [81]
for a related analysis). Eq. (61), therefore, is not a general
Hamiltonian but rather, a minimal extension which connects
the harmonic theory to a nonlinear decoupled regime of the
two membranes.

The theory defined by Eq. (4) is invariant under the trans-
formations (see Refs. [2,8])

h1(x) → h1(x) + Aαxα + B,

h2(x) → h2(x) + Aαxα + B,

u1α (x) → u1α (x) − Aα

(
l

2
+ h1(x)

)
− 1

2
AαAβxβ + B′

α,

u2α (x) → u2α (x) + Aα

(
l

2
− h2(x)

)
− 1

2
AαAβxβ + B′

α,

(62)
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which represent deformed versions of rotations in the em-
bedding space, adapted to match the neglection of in-plane
nonlinearities.

Qualitatively, in the case of bilayer graphene, anharmonic
terms in h̄ are expected to play a minor role.

VII. SUMMARY AND CONCLUSIONS

In summary, this paper analyzed the statistical mechanics
of equilibrium thermal ripples in a tensionless sheet of sus-
pended bilayer graphene. The individual graphene membranes
forming the bilayer were described as continuum 2D media
with finite bending rigidity and elastic moduli. For the de-
scription of interlayer interactions, a phenomenological model
in the spirit of elasticity theory was constructed. Although
the fluctuation energy is expanded to leading order for small
deformations, anharmonicities emerge as a necessary conse-
quence of rotational invariance, which forces the energy to be
expressed in terms of nonlinear scalar strains.

For explicit calculations, the model was simplified by ne-
glecting nonlinearities in the interlayer shear and compression
modes, and by dropping anharmonic interactions of collective
in-plane displacements. An effective theory describing the
statistics of soft flexural fluctuations was then derived by
Gaussian integration. The resulting model is controlled by
bending rigidity and a long-range interactions between local
Gaussian curvatures and it is identical in form to the analog
theory for a monolayer membrane. However, the bare bend-
ing rigidity κ0(q) exhibits a strong wave-vector dependence
at mesoscopic scales. Relevant phenomenological parame-
ters governing the strength of interlayer interactions were
derived in the case of AB-stacked bilayer graphene through
ab initio density-functional theory calculations, by combining
an exchange-correlation functional within the Perdew-Burke-
Ernzerhoff approximation and van der Waals corrections in
the Grimme-D2 model.

Due to the formal equivalence to a corresponding single-
membrane theory, the statistical mechanics of fluctuations can
be addressed by well-developed approaches. In this paper,
the field theory integral equations of motion were solved
within the SCSA. To access correlation functions at arbitrary
wave-vector q, SCSA equations were solved numerically by
an iterative algorithm.

The numerical solutions recover with good accuracy an-
alytical SCSA predictions for universal properties in the
long-wavelength scaling behavior. At mesoscopic lengths, the
calculated correlation functions exhibit a rich crossover be-
havior, driven by the harmonic coupling between bending
and interlayer shear and by renormalizations due to nonlinear
interactions.

In the final part of the paper, a minimal extension of the
theory, including nonlinearities in the flexural fields of both
layers was briefly discussed.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
THEORY FOR FLEXURAL FLUCTUATIONS

The statistical distribution for fluctuations of h(x) and
uα (x) is obtained from the complete Gibbs distribution of the
problem by integration over h̄(x) and ūα (x):

P[h(x), uα (x)] = 1

Z

∫
[dh̄dūα]e−H̃/T . (A1)

This leads to an effective Hamiltonian:

H̃ ′
eff = −T ln

{∫
[dh̄dūα]e−H̃/T

}
. (A2)

Since H̃ , Eq. (23), is quadratic in ūα (x) and h̄(x) functional in-
tegrations over h̄(x), ūα (x), take the form of general Gaussian
integrals

z[Ja] =
∫

[dϕa] exp

{
−

[
1

2

∫
x

∫
x′

Bab(x, x′)ϕa(x)ϕb(x′)

+
∫

x
Ja(x)ϕa(x)

]}
, (A3)

where Ja(x) is a space-dependent source and Bab(x, x′) =
Bba(x′, x) is a symmetric, positive definite operator indepen-
dent of Ja(x). By explicit calculation, the Gaussian integral
reads

z[Ja(x)] = Z exp

[
1

2

∫
x

∫
x′

�ab(x, x′)Ja(x)Jb(x′)
]
, (A4)

where the propagator �ab(x, x′) is the inverse of Bab(x, x′),∫
d2x′′Bac(x, x′′)�cb(x′′, x′) = δabδ(x − x′) , (A5)

and the normalization Z , formally given by

Z =
∫

[dϕa]e− 1
2

∫
d2x

∫
d2x′Bab(x,x′ )ϕa (x)ϕb(x′ ), (A6)

is independent of the source Ja(x).
To integrate over ūα , it is convenient to shift variables

by the replacement ūα → ūα − l∂αh. With these shifted vari-
ables, Eq. (23) reads, up to boundary terms,

H̃ =
∫

d2x

[
κ (∂2h)2 + λ(uαα )2 + 2μuαβuαβ

+ κ

4
(∂2h̄)2 + λ

4
(∂α ūα )2 + μ

8
(∂α ūβ + ∂β ūα )2

+ (λ + 2μ)l2

4
(∂2h)2 − (λ + 2μ)l

2
(∂α ūα )∂2h

+ g1

2l2
h̄2 + g2

2l2
ū2

α + g3

2l
h̄uαα + g4

2l
ūαAα

]
, (A7)

where Ax = uxx − uyy and Ay = −2uxy. From the ūα-
dependent terms, we read the inverse propagator

Bαβ (x, x′) = 1

T

{
− 1

2
[(λ + μ)∂α∂β + μδαβ∂2]

+ g2

l2
δαβ

}
δ(x − x′), (A8)

165421-13



MAURI, SORIANO, AND KATSNELSON PHYSICAL REVIEW B 102, 165421 (2020)

and the source

Jα (x) = 1

T

[
(λ + 2μ)l

2
∂α∂2h + g4

2l
Aα (x)

]
. (A9)

The propagator �αβ , inverse of Bαβ , is then

�αβ (x, x′) = T
∫

q

{[
PL

αβ (q)

g2/l2 + (λ + 2μ)q2/2

+ PT
αβ (q)

g2/l2 + μq2/2

]
eiq·(x−x′ )

}

= T

g2/l2

∫
q

{[
dL(q)PL

αβ (q) + dT (q)PT
αβ (q)

]
× eiq·(x−x′ )}, (A10)

where PL
αβ (q) = qαqβ/q2 and PT

αβ (q) = δαβ − qαqβ/q2 are
longitudinal and transverse projectors and dL(q) and dT (q) are
dimensionless functions defined in Eqs. (30). Using Eq. (A4),
we obtain, up to an unimportant normalization factor,∫

[dūα]e−H̃/T

= exp

{
T

2g2/l2

∫
q

[(
dL(q)PL

αβ (q)

+ dT (q)PT
αβ (q)

)
Jα (q)J∗

β (q)
]

− 1

T

∫
d2x

[
κ (∂2h)2 + λ(uαα )2 + 2μuαβuαβ

+ (λ + 2μ)l2

4
(∂2h)2 + g1

2l2
h̄2 + g3

2l
h̄uαα

]}
, (A11)

where Jα (q) is the Fourier transform of Jα (x),

Jα (q) = 1

T

[
− i

(λ + 2μ)l

2
qαq2h(q) + g4

2l
Aα (q)

]
, (A12)

h(q) and Aα (q) being the Fourier transforms of h(x) and
Aα (x), respectively. After introduction of A(x) = ∂αAα and
the corresponding Fourier components A(q) = iqαAα (q), an
explicit calculation of Eq. (A11) gives∫

[dūα]e−H̃/T

= exp

{
− 1

T

[∫
q

(
1

2
κ0(q)|h(q)|2 + μ0(q)|uαβ (q)|2

+ g2
4

8g2
dT (q)|uαα (q)|2−g4l2

4g2
(λ + 2μ)dL(q)q2h(q)A∗(q)

+ g2
4l2

16g2
2

(λ + μ)dL(q)dT (q)|A(q)|2
)

+
∫

d2x

(
λ(uαα )2 + κ

4
(∂2h̄)2 + g1

2l2
h̄2 + g3

2l
h̄uαα

)]}
,

(A13)

where κ0(q) and μ0(q) are the q-dependent bending rigidity
and shear modulus introduced in Eq. (31). In the derivation, it

is useful to take advantage of the identity

Aα (q)A∗
α (q) = 2|uαβ (q)|2 − |uαα (q)|2 . (A14)

As a next step, we can integrate out the h̄ field. This generates
an effective interaction between the sources g3uαα (x)/(2T l ),
mediated by the propagator

�(x, x′) = T
∫

q

eiq·(x−x′ )

g1/l2 + κq4/2
= T

g1/l2

∫
q

d̄ (q)eiq·(x−x′ ),

(A15)

the inverse of

B(x, x′) = 1

T

[
κ

2
∂4 + g1

l2

]
δ(x − x′) . (A16)

Using Eq. (A4), we then obtain∫
[dūαdh̄]e−H̃/T

= exp

{
− 1

T

[∫
q

(
1

2
κ0(q)|h(q)|2

+ μ0(q)|uαβ (q)|2 + λ|uαα (q)|2

+ g2
4

8g2
dT (q)|uαα (q)|2 − g2

3

8g1
d̄ (q)|uαα (q)|2

− g4l2

4g2
(λ + 2μ)dL(q)q2h(q)A∗(q)

+ g2
4l2

16g2
2

(λ + μ)dL(q)dT (q)|A(q)|2
)]}

, (A17)

from which we recognize the effective Hamiltonian
H̃ ′

eff [h(x), uα (x)], Eq. (28) in the main text.
We finally wish to eliminate the in-plane displacement

fields uα (x). Neglecting, as in the main text, the interactions∫
q |A(q)|2 and

∫
q q2h(q)A∗(q), we are led to the calculation of

H̃eff [h(x)] = −T ln

{∫
[duα] exp[−H̃ ′′

eff/T ]

}
, (A18)

with

H̃ ′′
eff = 1

2

∫
q
[κ0(q)q4|h(q)|2 + λ0(q)|uαα (q)|2

+ 2μ0(q)|uαβ (q)|2]. (A19)

Although, eventually, we will assume q-independent Lamé
coefficients λ0(q) and μ0(q), it is not difficult to keep general
q-dependent couplings in the course of the derivation.

Equation (A19) is identical in form with the standard con-
figuration energy of a crystalline membrane, but with elastic
and bending parameters replaced by the q-dependent func-
tions defined in Eq. (31). Integration over uα then proceeds in
an usual way (see Chap. 6 of Ref. [1] and Refs. [7,9,10,15]).

As a first step, it is important to separate the q = 0 compo-
nent of the strain tensor uαβ (x) [1] (see also Ref. [15] for an
analysis of zero modes in presence of external tension):

uαβ (x) = u0
αβ + c0

αβ + 1

2

∫ ′

q
(iqαuβ (q) + iqβuα (q)

+ cαβ (q))eiq·x. (A20)
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Here

cαβ (q) =
∫

d2xe−iq·x∂αh(x)∂βh(x) (A21)

is the Fourier transform of the field cαβ = ∂αh∂βh, c0
αβ is

its q = 0 component, and u0
αβ is the uniform component of

(∂αuβ + ∂βuα )/2. The primed integral,
∫ ′

q, is intended to run
over all nonzero wave vectors, with the q = 0 term excluded.

In the functional integral, we can consider separate integra-
tions over uniform and finite-wavelength components. After
the translation of variables u0

αβ → u0
αβ − c0

αβ , the integral over
uniform components factorizes and gives an irrelevant nor-
malization constant, independent on the h(x) field.

To perform the remaining integral over the q 
= 0 com-
ponents of uα , it is convenient to decompose cαβ (q) in the
form [1]

cαβ (q) = iqαφβ (q) + iqβφα (q) + PT
αβ (q)ω(q), (A22)

where φα (q) is a two-component vector and

ω(q) = PT
αβ (q)cαβ (q) . (A23)

This decomposition is possible for any 2D symmetric ma-
trix. After the shift of integration variables uα (x) → uα (x) −
φα (x), the Fourier components of the strain tensor become
independent of φα (q). An explicit calculation then leads to
the effective Hamiltonian

Heff = 1

2

∫
q
κ0(q)q4|h(q)|2 +

∫ ′

q

Y0(q)

8
|ω(q)|2, (A24)

with

Y0(q) = 4μ0(q)(λ0(q) + μ0(q))

λ0(q) + 2μ0(q)
. (A25)

Inspecting Eq. (A23), we recognize that ω(q) = 2K (q)/q2,
where K (q) is the Fourier transform of the approximate Gaus-
sian curvature, Eq. (13). With the approximation λ0(q) � 2λ,
μ0(q) � 2μ, Y0(q) = 4μ0(λ0 + μ0)/(λ0 + 2μ0), we thus ob-
tain Eq. (34) of the main text.
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