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Helicity maximization below the diffraction limit
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Optimally chiral electromagnetic fields with maximized helicity density, recently introduced by Hanifeh et al.
[M. Hanifeh, M. Albooyeh, and F. Capolino, ACS Photonics 7, 2682 (2020)], enable chirality characterization of
optically small nanoparticles. Here we demonstrate a technique to obtain optimally chiral near fields that leads to
the maximization of helicity density under the constraint of constant energy density, beyond the diffraction limit.
We show how optimally chiral illumination induces balanced electric and magnetic dipole moments in an achiral
dielectric nanoantenna, which leads to generating optimally chiral scattered and total near fields. In particular,
we explore helicity and energy densities in the near field of a spherical dielectric nanoantenna illuminated by
an optimally chiral combination of azimuthally and radially polarized beams. This beam combination generates
parallel induced electric and magnetic dipole moments in the nanoantenna that in turn generate an optimally
chiral scattered field with the same helicity sign of the incident field. The application of helicity maximization
to near fields results in helicity enhancement at the nanoscale, which is of great advantage in the detection of
nanoscale chiral samples, microscopy, and optical manipulation of chiral nanoparticles.
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I. INTRODUCTION

Chiral nanoparticles are not superimposed on their mirror
images [1], and each pair of their mirror-imaged structures,
called enantiomers, have the same constitutions but different
optical properties [2]. Considering their broad range of appli-
cations in sciences and technologies in areas like chemistry,
biology, and pharmacology [3–5], many studies have been
performed to enhance the range of chirality detection, e.g.,
by introducing the concept of super-chiral light [6], by the
use of near fields of plasmonic structures [7–25], of dielectric
structures [26–31], and structures combing the two [32,33].

Recently, in Ref. [34], we have introduced the concept of
helicity maximization and have defined optimally chiral fields
that possess the maximum helicity density among all possible
fields with same energy density. In optimally chiral fields the
electric E and magnetic H field components (in phasor terms)
satisfy the condition

E = ±iη0H, (1)

where the +/− sign indicates positive/negative helicity den-
sity and η0 is the intrinsic wave impedance of vacuum.
Monochromatic electromagnetic fields with time dependence
exp(−iωt ), where ω is the angular frequency, are considered
throughout the paper.

In optimally chiral fields, i.e., fields satisfying Eq. (1), the
linear relationship |h| = u/ω exists between time-averaged
helicity density, defined as h = �{E · H∗}/(2ωc0), and time-
averaged energy density, u = (ε|E|2 + μ0|H|2)/4, of the field.
Here “*” denotes complex conjugation and �{·} indicates
the imaginary part of a complex value. Moreover, ε0, μ0,
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and c0 are, respectively, the permittivity, permeability, and
speed of light in vacuum. The concept of helicity density of
electromagnetic fields is discussed also in Refs. [35–41]. In
Ref. [34], we have elaborated that it is possible to characterize
the chirality of a nanoparticle when fields with maximum
helicity density, called optimally chiral fields, are employed in
the determination of the dissymmetry factor g [42], defined as

g = �Pext

P̄ext
. (2)

Here, P̄ext and �Pext are, respectively, the arithmetic aver-
age of and difference between the two extinction powers of the
nanoparticle sample, measured in the two experiments where
optimally chiral fields with E = +iη0H and E = −iη0H are
used. The dissymmetry factor g is proportional to the ratio
of helicity over energy density of the excitations [6,34,43].
Conveniently, the use of optimally chiral fields enables the
removal of the values of helicity and energy densities of the
field from the expression of the dissymmetry factor g due
to the linear relationship |h| = u/ω. This offers a simplified
way for chirality characterization at nanoscale, as shown in
Ref. [34].

Here we investigate how to generate optimally chiral near-
field and helicity enhancement at nanoscale by employing an
achiral dielectric nanoantenna (NA). To that end, we show that
helicity density of the near field of a NA is divided into three
parts: helicity densities of the incident and scattered fields and
a part related to interference between these two. We prove that
to have an optimally chiral total near field (the superposition
of incident and scattered fields) it is required to excite the
NA by an optimally chiral incident field. We also derive the
required conditions a NA needs to satisfy in terms of induced
electric and magnetic dipole moments, and hence of its dipolar
polarizabilities, to generate an optimally chiral scattered near
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field whose helicity is constructive with that of the incident
field and the “interference” helicity term.

One example of an optimally chiral field to excite the NA
is a plane wave with circular polarization. Helicity density
around a dielectric NA exposed to circularly polarized light
has been studied in Refs. [26–30]. In particular, in Ref. [27]
we have shown that the near field of an array of spherical
dielectric NAs illuminated by a plane wave with circular
polarization is very close to being optimally chiral. Other
practical examples of optimally chiral fields can be obtained
using structured light. In this paper we show that the super-
position of an azimuthally polarized beam (APB) [44–49]
and a radially polarized beam (RPB) [49–57], called ARPB,
with appropriate relative amplitudes and phase difference [58]
is optimally chiral. In particular, we investigate the helicity
density of an optimally chiral ARPB and how this can be
used to excite a NA made of a high-refractive-index dielectric
material, e.g., by silicon (Si) or titanium dioxide (TiO2). Note
that an achiral NA made of a high index material can also
represent the tip of a scanning probe microscope; therefore
this work has also several potential applications in nanoscale
chiral studies [58].

We investigate the helicity density of the near field of a
spherical dielectric NA illuminated by an optimally chiral
ARPB. This analysis reveals that the interference helicity
density has a considerable role in helicity enhancement of
the near field of the NA, which emphasizes the importance
of excitation to be optimally chiral. Moreover, in the present
analysis we elaborate that maximum helicity enhancement
does not coincide with maximum energy enhancement for
optically small NAs modeled by induced dipole moments.
Indeed, we show that the radius of a dielectric NA, which
results in generating maximum helicity enhancement, takes a
value between those radii corresponding to maximum energy
density enhancement and an optimally chiral near field. A
related concept involving the ARPB was also considered in
[59] to excite a NA with both electric and magnetic dipole
moments; however, in that work the two RPB and APB beams
were in phase so the composed beam does not provide chiral
light, while in this paper the ARPB carries optimally chiral
light. In [59] helicity of the scattered field was generated by
having a proper phase shift between the electric and magnetic
polarizabilities of the NA; however, the incident field was
not chiral, and the concept of interference helicity was not
considered.

Here we focus on generating optimally chiral electromag-
netic fields, reaching the upper bound of helicity density at a
given energy density introduced in Ref. [34]. Potential appli-
cations are in chiral force microscopy at nanoscale [58,60] and
circular dichroism at nanoscale [6,27,34,43,61]. Interested
readers are referred to Refs. [35,36,41,62–65] for stimulating
discussions about conservation of helicity.

II. OPTIMALLY CHIRAL NEAR FIELD

Near fields of NAs overcome the diffraction limit and
provide high spatial resolution in microscopy and spec-
troscopy. In the quest for chiral spectroscopy and microscopy
at nanoscale, we found it essential to investigate how to design
a NA that generates maximized helicity density, with spatial

FIG. 1. Near field of a NA is used to generate enhanced helicity
density with respect to that of an incident beam. (a) An optical beam
propagating along the +z direction illuminates a NA located at the
center of the coordinate system. (b) The dielectric NA is modeled
by induced electric and magnetic dipole moments pNA and mNA,
respectively, and their scattered near fields demonstrate high helicity
density in the vicinity of the NA.

focusing below the diffraction limit. To that end we assume
that a NA is located at the center of a Cartesian coordinate
system and is illuminated by an optical beam propagating
along the +z direction, as in Fig. 1(a).

The total near field of a NA includes contributions from
both the incident optical beam and its scattered near field,
denoted respectively by subscripts “inc” and “sca”:

E = Esca + Einc,

H = Hsca + Hinc. (3)

Substituting Eq. (3) into h = �{E · H∗}/(2ωc0), the helic-
ity density h of the near field around a NA reads

h = hinc + hsca + hint, (4)

where hsca = �{Esca · H∗
sca}/(2ωc0) and hinc = �{Einc ·

H∗
inc}/(2ωc0) are, respectively, the helicity densities of the

scattered and incident fields. Moreover, hint, which we call
interference helicity density, reads

hint = 1

2ωc0
�{Esca · H∗

inc + Einc · H∗
sca}. (5)

Equation (4) suggests that for an improvement of helicity
density we need to boost some of the helicity densities hsca and
hint . Moreover, we need to manipulate incident and scattered
fields so that all terms in Eq. (4) interfere constructively.
Indeed, for the helicity contributions from both incident and
scattered fields, as well as interference, one should have simi-
lar signs to sum up constructively.

When both incident and scattered fields are optimally chi-
ral, i.e., Einc = ±iη0Hinc and Esca = ±iη0Hsca, the total near
field is optimally chiral as well, i.e., in phasor terms E =
Esca + Einc = ±iη0(Hsca + Hinc) = ±iη0H. Therefore we il-
luminate the NA by an optimally chiral beam and devote the
rest of this section to investigate the helicity density of the
scattered near field hsca and to study how the interference be-
tween the incident and scattered fields influences the helicity
density of the total near field. Later in the paper we discuss
the importance of helicity density of the interference between
incident and scattered fields.

Without loss of generality, we assume that the NA is
isotropic operating in its dipolar regime and model it by the
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induced electric and magnetic dipole moments pNA and mNA,
respectively, located at the origin of the coordinate system [see
Fig. 1(b)]. Therefore scattered electric and magnetic fields at
position r = rr̂, where the hat denotes a unit vector, read

Esca =
{

(r̂ × pNA) × r̂ − c−1
0

(
1 + i

kr

)
(r̂ × mNA)

+
(

1

k2r2
− i

kr

)
[3r̂ (r̂ · pNA) − pNA]

}
k2eikr

4πrε0
(6)

and

Hsca =
{

(r̂ × mNA) × r̂ + c0

(
1 + i

kr

)
(r̂ × pNA)

+
(

1

r2k2
− i

rk

)
[3r̂(r̂ · mNA) − mNA]

}
k2eikr

4πr
, (7)

respectively, with k being the wave number in vacuum. These
two equations imply that the scattered field of the proposed
NA is optimally chiral everywhere in space, i.e., Esca =
±iη0Hsca, hence not only in the near-field zone of the NA,
when mNA = ∓ic0pNA. Therefore the dominant contribution
of the helicity density hsca of scattered fields in the near zone
of the NA at the radial positions r = rr̂ reads

hsca ≈ η0

32π2ωr6
� {3(r̂ · pNA)(r̂ · m∗

NA) + pNA · m∗
NA}. (8)

Note that in evaluating Eq. (8) for the near field of a
NA we have only considered the dominant terms with r−3

dependence. The term �{pNA · m∗
NA} in Eq. (8) not only re-

lates helicity to the strength of induced electric and magnetic
dipole moments in a NA but also implies that the dipoles
relative spatial orientation and phase should be controlled to
maximize the helicity density of the scattered near field. Note
that when the vector r is parallel to both dipole moments, the
term � {3(r̂ · pNA)(r̂ · m∗

NA)} has a constructive contribution
to the enhancement of the helicity density hsca. In other words,
the location vector r that satisfies this parallel property defines
the regions where helicity around a NA is the strongest.

Electric and magnetic dipole moments induced in a NA are
obtained by employing a dielectric NA with high refractive
index [27,28,48,66–70]. In what follows we examine thor-
oughly how to obtain an optimally chiral scattered field when
an achiral dielectric NA which does not possess electromag-
netic polarizability is irradiated by an optimally chiral beam.

A. Dielectric NA illuminated by optimally chiral illumination

The dipole moments pNA and mNA are, respectively, related
to the incident electric and magnetic fields Eo

inc and Ho
inc at

the position of the NA through the electric and magnetic
polarizabilities αNA

ee and αNA
mm of the NA as

pNA = αNA
ee Eo

inc, mNA = αNA
mmHo

inc. (9)

The superscript “o” denotes the NA’s position, which is the
origin of the coordinate system in our example. Since we con-
sider an optimally chiral incident field, i.e., Eo

inc = ±iη0Ho
inc,

according to Eq. (9), the relation mNA = ∓ic0pNA holds when
the balance relation between the polarizabilities of the NA,

αNA
ee = ε0α

NA
mm, (10)

known as the first Kerker condition [71], is satisfied. There-
fore, based on our previous discussion on Eqs. (6) and (7), the
scattered field of the proposed NA (and not only in the near-
field zone) is optimally chiral. In other words, the condition
in Eq. (10) establishes the occurrence of the best possible
scattered near field everywhere, in terms of optimal chirality
of light, since the scattered field carries the same helicity of
the incident field.

In case the NA has a chiral component (i.e., it has an
electromagnetic polarizability), the satisfaction of condition
(10) still results in an optimally chiral scattered near field
when the incident field is optimally chiral, as shown in Ap-
pendix. However, a chiral NA unfavorably contributes to the
circular dichroism signal in the chirality characterization of a
nanoparticle sample [34]. Therefore in this work we focus on
describing achiral NAs.

Therefore the problem of obtaining the maximum achiev-
able helicity density of the scattered near field at a given
energy density is reduced to acquiring a NA that satisfies
the balance polarizability relation (10). Such a balance re-
lation implies that the NA simultaneously possesses both
electric and magnetic polarizabilities. Though materials with
significant magnetic properties are not available at optical fre-
quencies [72], “resonant magnetism” is possible, for example,
with plasmonic clusters [45,73–80] or dielectric nanostruc-
tures [28,31,67,68,81–90], which supports magneticlike Mie
resonances. In the next step, to illustrate in a simple way the
proposed concepts, we analyze an isotropic achiral dielec-
tric NA with spherical shape made of high-refractive-index
material and investigate the possibility of generating an opti-
mally chiral, total near field around this structure. Moreover,
we analyze helicity enhancement due to the scattered and
interreference fields and demonstrate that they have almost
equal importance in enhancing helicity density with respect
to that of the excitation beam. Furthermore, we investigate the
relation between enhancement in energy and helicity densities
in the near field of this NA.

As an example, we assume the spherical NA with radius
a to be made of silicon (Si), and in Fig. 2(a) we plot the
logarithm of normalized |αNA

ee − ε0α
NA
mm| versus wavelength λ

and radius a. The quantity |αNA
ee − ε0α

NA
mm| is normalized to

its maximum in the shown wavelength-radius range, and it
vanishes when the balance relation (10) is satisfied, which
approximately corresponds to negative large values of its log-
arithm base 10. Note that polarizabilities take complex values,
and the balance relation αNA

ee = ε0α
NA
mm is satisfied when both

magnitudes and phases of αNA
ee and ε0α

NA
mm are equal. The

difference |αNA
ee − ε0α

NA
mm| vanishes when the simultaneous

satisfaction of equal magnitudes and phases of αNA
ee and ε0α

NA
mm

is satisfied. Also note that for an efficient NA low losses are
desired, and here we assume the dielectric NA to be made of
crystalline Si with dielectric permittivity taken from Ref. [81].

Note that when condition (10) approximately holds for a
dielectric NA [e.g., on the dark regions in Fig. 2(a)], the scat-
tered near field, and consequently, the total field, is optimally
chiral. Moreover, although the spatial distribution of helicity
density of the scattered near field is nonuniform around the
NA, the relation |h| = u/ω holds everywhere in space as
long as αNA

ee = ε0α
NA
mm is valid for the proposed NA. We note

that quadrupoles for the considered parameters λ and a are
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FIG. 2. The polarizabilities of a spherical NA made of Si ap-
proximately satisfy the balance relation αNA

ee = ε0α
NA
mm. (a) Plot of

the logarithm of |αNA
ee − ε0α

NA
mm| (normalized to its maximum), which

takes negative large value, around -2, where the balance relation
αNA

ee = ε0α
NA
mm is approximately satisfied, vs radius a of the NA and

wavelength λ of the excitation field. (b) Magnitudes of and phase
difference �ϕ between electric αNA

ee and magnetic αNA
mm polarizabili-

ties of a NA with radius a = 78 nm vs wavelength λ. The refractive
index of Si is obtained from Ref. [91], and the polarizabilities are
calculated using the Mie scattering coefficients [92].

negligible since a/λ � 1. In Fig. 2(b) we depict the magni-
tudes of the electric and magnetic polarizabilities and their
normalized phase difference �ϕ/π of a spherical NA made of
Si with radius a = 78 nm. At wavelength λ = 680 nm both
relations |αNA

ee | = |ε0α
NA
mm| and �ϕ = 0 are approximately

satisfied. This corresponds to a dark region with value of −2
shown in Fig. 2(a). We conclude this section by observing
that helicity can be also enhanced without the constraint of
having an optically chiral field, as previously observed in
the literature using plasmonic NAs [9,13–17,21]. The con-
cept of optimally chiral light is local and implies that at a
given point the maximum helicity density is |h| = u/ω, where
u = ue + um, with ue = ε0|E|2/4 and um = μ0|H|2/4 denot-
ing the time average electric and magnetic energy densities.
When the optimal chirality condition is not met, light locally
satisfies |h| < u/ω because u/ω is the helicity upper bound
[34]. In some publications [9,13–17,21] the electric field is

enhanced via plasmonic NAs, leading to an enhancement of
both ue and possibly also helicity. However, in this case the
resulting light is not optically chiral and subject to the bound
|h| � (ue + um )/ω. Furthermore, since this latter case does
not constitute optimally chiral light, there are consequences
on the determination of chirality through using the dissym-
metry factor g as described in [34]. Finally, we shall also note
that helicity at a given electric field energy density ue could be
enhanced by locally increasing only the magnetic field (i.e.,
enhancing um); therefore structured light with an enhanced
magnetic field [44,46,66–70,75,93] could be rather important
for enhancing helicity.

III. DIELECTRIC NANOANTENNA UNDER
ARPB ILLUMINATION

So far we have shown how to generate optimally chiral
near fields—it is required to illuminate a NA by an optimally
chiral beam and that the NA has balanced electric and mag-
netic polarizabilities. Now we discuss some scenarios when
a dielectric NA is exposed to an external optimally chiral
beam. A trivial example of an optimally chiral field is a
Gaussian beam (GB) with circular polarization [30]. Under
this illumination, induced dipole moments are transverse to
the beam propagation direction, which results in a uniform
helicity density distribution in the transverse plane [30]. Here,
instead, we analyze helicity density in the near field of a di-
electric NA when it is irradiated by an optimally chiral ARPB,
and induced dipole moments are oriented along the optical
axis of the beam, which leads to a localized helicity density
along this axis. The localized helicity density may be used
as a nanoprobe to detect chirality at nanoscale using circular
dichroism applied to nanoparticles [34] or using photoinduced
chiral force microscopy [58,60]. Next, we briefly summarize
the pertinent properties of an ARPB.

A. Optimally chiral ARPB illumination

The APB and RPB are obtained by superposing
Laguerre Gaussian beams with opposite angular momenta
[44,46,47,58,60]. The electric field vector (in phasor terms)
in an APB propagating along the +z direction (optical axis of
the beam) is polarized along the azimuthal direction ϕ̂ in the
transverse plane that, after suppressing the time dependence
exp(−iω t ), reads [44]

EAPB = 2VAρ√
πw2

e−(ρ/w)2ζ e−2itan−1(z/zR )eikzϕ̂, (11)

where VA (with the unit of volt) is the complex amplitude
of the beam. Here, zR = πw2

0/λ, w = w0

√
1 + (z/zR)2, ζ =

1 − i z/zR, and R = z [1 + (zR/z)2], where w0 and λ are, re-
spectively, the beam parameter and the excitation wavelength.
The beam parameter w0 represents half of the minimum beam
waist when the beam is not tightly focused [44]. Moreover, ρ

is the radial distance from the beam axis (the z axis). Com-
ponents of the magnetic field vector in an APB are obtained
from a source-free Maxwell’s curl equation ∇ × EAPB =
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FIG. 3. An optimally chiral ARPB with total power of 1 mW, beam parameter w0 = λ, and amplitudes VA = ±iVR propagating along
z direction at wavelength λ = 680 nm. (a) Three-dimensional plot of electric field’s magnitude |EARPB| in x-y and y-z planes. (b) Magnitudes
of longitudinal and tangential components of electric and magnetic fields at the minimum waist plane z = 0. (c) Real part of the electric field
vector represented by cones at various z = constant planes. The results are obtained via FEM full-wave numerical analysis.

iωμ0HAPB and read

HAPB
ρ =−EAPB

ϕ

η0

[
1 + 1

kzR

ρ2 − 2w2
0

w2
− 4i

w2

z

zR

1

k2

(
1 − ρ2ζ

w2

)]

HAPB
z = 2EAPB

ϕ

iωμ0ρ

(
1 − ρ2

w2
ζ

)
. (12)

It is important to note that such a beam has a van-
ishing electric field and vanishing transverse magnetic
fields at its optical axis. Moreover, the longitudinal mag-
netic field component takes the value limρ→0 HAPB

z =
4VA(iωμ0

√
πw2)−1e−2itan−1(z/zR )eikz along its optical axis. In

summary, around the beam’s optical axis, a magnetic domi-
nant region exists.

Dual to the APB, the RPB has magnetic field vectors which
are polarized along the azimuthal direction and read

HRPB = 2VRρ

η0
√

πw2
e−(ρ/w)2ζ e−2itan−1(z/zR )eikzϕ̂, (13)

with a complex amplitude VR (with the unit of volt). Compo-
nents of electric field in an RPB are obtained via source-free
Maxwell’s curl equation ∇ × HRPB = −iωε0ERPB and read

ERPB
ρ = η0HRPB

ϕ

[
1 + 1

kzR

ρ2 − 2w2
0

w2
− 4i

w2

z

zR

1

k2

(
1 − ρ2ζ

w2

)]

ERPB
z = −2HRPB

ϕ

iωε0ρ

(
1 − ρ2

w2
ζ

)
. (14)

Note, an RPB has a nonzero longitudinal electric field com-
ponent limρ→0 ERPB

z = ic04VR(ω
√

πw2)−1e−2itan−1(z/zR )eikz

along its axis [44,58,94], where the magnetic field HRPB and
the transverse component of the electric field ERPB

ρ vanish.
The ARPB is the superposition of these two vortex beams,

i.e.,

EARPB = EAPB + ERPB, HARPB = HAPB + HRPB, (15)

with the same beam parameters. Indeed, it is easy to deduce
that an ARPB possesses both electric and magnetic field com-
ponents along the azimuth direction ϕ̂, as well as along the
radial and longitudinal directions ρ̂ and ẑ. Moreover, since
EAPB = η0VAV −1

R HRPB, Eq. (15) simplifies to

EARPB = η0VAV −1
R HRPB + ERPB

HARPB = HRPB + η−1
0 V −1

A VRERPB, (16)

which shows that electric and magnetic field components
of an ARPB are linked through EARPB = η0VAV −1

R HARPB.
Therefore, when the amplitudes satisfy VA = ±iVR, the ARPB
constitutes an optimally chiral optical beam that satisfies con-
dition (1) everywhere in space (under paraxial approximation)
because VAV −1

R = ±i.
In Fig. 3(a) the electric field magnitude |EARPB| of an op-

timally chiral ARPB with VA = ±iVR propagating along the z
direction with total power of 1 mW and beam parameter w0 =
λ is depicted. The plot is obtained by a full-wave simulation
using the finite element method (FEM) implemented in the
CST STUDIO SUITE at wavelength λ = 680 nm. One interesting
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feature of an ARPB is that it has exclusively longitudinal
electric EARPB

z and magnetic HARPB
z fields on the beam axis.

In Fig. 3(b) the magnitude of longitudinal and transverse
components of electric and magnetic fields in the same ARPB
in Fig. 3(a) are depicted at the minimum waist plane of the
beam (here the z = 0 plane). Moreover, the real part of the
electric-field-vector component of the same beam at various
z = constant planes is illustrated in Fig. 3(c).

In summary, the electric and magnetic fields have a phase
shift of ±π/2, everywhere, in their longitudinal and trans-
verse components. In particular, we stress that the purely
longitudinal field components on the beam axis are phase
shifted by ±π/2 and form an optimally chiral field. Indeed,
helicity density on the axis of ARPB illumination, and at its
minimum waist, reads

hinc = μ0

2ω
|HARPB|2�{

VAV −1
R

} = 2um

ω
�{

VAV −1
R

}
, (17)

or equivalently,

hinc = − ε0

2ω
|EARPB|2�{

VRV −1
A

} = −2ue

ω
�{

V −1
A VR

}
, (18)

which shows that

hinc = ±2ue,inc

ω
= ±2um,inc

ω
= ±uinc

ω
(19)

when VA = ±iVR. Here ue,inc, um,inc, and uinc are, respectively,
electric, magnetic, and total energy densities of the incident
ARPB.

B. Helicity maximization in near field of a spherical
dielectric NA under ARPB illumination

We consider a situation where a spherical Si NA with po-
larizabilities which satisfy condition (10) is illuminated by an
optimally chiral ARPB propagating in the +z direction with
half-beam waist parameter w0 = λ. The optical axis of the
beam coincides with the z axis, and on this axis its electric and
magnetic fields vectors are purely longitudinal, i.e., parallel
to each other (in phasor terms), and form an optimally chiral
incident field. Hence the induced electric and magnetic dipole
moments pNA and mNA in the dielectric NA are parallel to
the z axis under such an illumination, and the helicity density
of the scattered near field, introduced in Eq. (8), at location
(r, θ, φ) near the NA reads

hsca ≈ |Eo
inc|2

32π2ωr6
(3cos2θ + 1) 
{

αNA
ee

(
αNA

mm

)∗}
. (20)

Now we define the helicity enhancement factor|hsca|/|ho
inc|,

which is the ratio of scattered near-field helicity density hsca

to the helicity density of the incident field at the origin, where
the NA is located. Note that normalizing scattered helicity
density to that of the incident field at the position of the NA,
ho

inc, eliminates the influence of the incident field intensity
from the enhancement factor |hsca|/|ho

inc|. Since the electric

FIG. 4. Enhancement of (a) helicity and (b) energy densities of
the scattered field on the surface of a Si NA, evaluated along the
+z direction, i.e., at r = aẑ, when illuminated by an optimally chiral
ARPB propagating along the positive z direction with beam’s half-
waist parameter w0 = λ. They are normalized with respect to the
analogous densities of the incident ARPB evaluated at the origin.
The very bright region represents the area where scattered helicity
density is 11 times larger than that of the incident ARPB beam at
its axis. Helicity and energy enhancements occur in regions close
to each other. Interference (c) and total (d) helicity densities, both
normalized to that of the incident APRB beam, evaluated at r = aẑ.
The maximum of total helicity density enhancement |h/ho

inc| is ap-
proximately 20. The plots also show that the interference helicity
density hint in Eq. (22) has a considerable contribution to the total
helicity enhancement. That is why it is important that the interference
term has the same sign of the scattered and incident helicities.

Einc and magnetic Hinc components of the incident field
satisfy Einc = ±iη0Hinc , the magnitude of helicity density of
the incident field at the position of the NA reads |ho

inc| =
|Eo

inc||Ho
inc|/(2ωc0) . Consequently, the helicity enhancement

FIG. 5. Radius of the dielectric NA that guarantees the maximum
enhancement of energy density umax, maximum helicity density hmax,
and the “optimal chirality” condition |h| = u/ω to be satisfied vs
free-space wavelength λ. In all cases the power of the incident field
is kept constant. Note that for a chosen operating wavelength, the
maximum of helicity enhancement, energy enhancement, and the
condition αNA

ee = ε0α
NA
mm (for optimal near-field chirality) occur at

different radii of the dielectric NA. Maximum helicity enhancement
occurs at radial values between the other two.
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FIG. 6. Total helicity enhancement h/ho
inc around a spherical Si NA in the x-z plane under optimally chiral ARPB illumination with half-

waist w0 = λ, obtained by free-space Green’s functions and Mie scattering calculations at λ = 680 nm. At this wavelength, for a dielectric NA
with radius a = 78 nm (a), the optimal chirality condition (1) is satisfied in the near field, whereas for a = 84 nm (b) and a = 85 nm (c) the
maximum helicity and maximum energy enhancements are obtained, respectively. Maximum helicity enhancement occurs for a radius between
that corresponding to the optimally chiral near field and that corresponding to maximum energy density. In (d) and (e) helicity enhancement
and the quantity hω/u, which takes the value of +1 for an optimally chiral ARPB, with VA = iVR around the Si NA with radius 78 nm obtained
from FEM analysis are plotted.

due to scattered near field of the NA is approximated as

|hsca|∣∣ho
inc

∣∣ ≈ 1

16ε0π2r6
(3cos2θ + 1)

∣∣
{
αNA

ee

(
αNA

mm

)∗}∣∣. (21)

It is clear from Eq. (21) that the maximum helicity den-
sity occurs at θ = 0, π , i.e., along the z direction, since both
moments pNA and mNA are oriented along z.

To investigate the influence of satisfaction of condition (10)
and the relation between energy and helicity density enhance-
ments in an optimally chiral near field around a spherical Si
NA, we also define the energy enhancement ratio usca/uo

inc as
the time-averaged energy density of the scattered near field at
a desired location with respect to that of the incident field at
the origin, i.e., at the center of the NA. Figures 4(a) and 4(b)
depict energy and helicity density enhancements. These plots
show that helicity and energy density enhancements in the
scattered field around the Si NA follow the same trends. Note
that in Eq. (21) we only considered the dominant terms of
the near field of the NA, generated by the superposition of an
electric and a magnetic dipole, to provide a simple analytical
formula. However, the values demonstrated in Figs. 4(a) and

4(b) include all the terms of the dynamic Green’s function for
completeness, and we note that these values are very close to
those provided by the approximate formula given in Eq. (21).

To investigate further, using the evaluated time-averaged
helicity and energy densities at the surface of the NA at
r = aẑ, in Fig. 5 we plot the required radius of the NA versus
excitation wavelength λ to enforce (a) that the balance relation
(10) leading to an optimally chiral field is satisfied, which
is equivalent to having a scattered near field satisfying the
condition |hsca| = usca/ω; (b) the maximum helicity enhance-
ment hmax; and (c) the maximum energy density enhancement
umax. In all the cases the power of the incident ARPB is kept
constant.

As it is clear from this figure, at each wavelength the maxi-
mum helicity and energy densities hmax and umax do not occur
at the same NA radius. Indeed, the concept of optimal chirality
refers to |h| = u/ω, since we know that at given frequency,
|h| cannot be larger than |h| = u/ω. On the other hand, for
other radius values, the energy density is locally increased,
whereas at a given radius |h| it is maximum (though with
|h| < u/ω). This is why the two curves of maximum |h| and
maximum |u| are close to each other. In the case of a spherical

165419-7



HANIFEH, ALBOOYEH, AND CAPOLINO PHYSICAL REVIEW B 102, 165419 (2020)

dielectric NA, at the radius where the maximum of energy
density enhancement occurs, condition (1) is not precisely
satisfied, which means that although the energy density of
the field is enhanced considerably, helicity density does not
reach its upper bound |h| = u/ω. (Again, the upper bound
denotes the “optimal chirality” of light [34].) Note that the
maximum helicity density hmax curve is located between the
curve of umax and that corresponding to the optimal chirality
condition |h| = u/ω. Moreover, the curve corresponding to
the optimally chiral field, i.e.,|h| = u/ω, does not cross the
curve associated to hmax.

So far we have discussed helicity enhancement due to the
scattering near field of the NA. However, the overall helicity
density of the field around the NA is determined by Eq. (4). In
the following we discuss the importance of the inter f erence
term hint [see Eq. (5)] to total helicity enhancement.

Under the balance relation (10) for NAs and considering
the optimally chiral ARPB excitation, interference helicity
density in Eq. (5) reduces to

hint = 1

4πωr3

{

eikrαNA
ee

[
3(r̂ · E∗

inc)
(
r̂ · Eo

inc

) − Eo
inc · E∗

inc

]}
.

(22)

We recall that here Einc is the incident field at the location
where helicity is evaluated, while Eo

inc is the incident field at
the center of the NA.

Total helicity enhancement is given by
∣∣∣∣ h

hinc

∣∣∣∣ =
∣∣∣∣1 + hsca

hinc
+ hint

hinc

∣∣∣∣. (23)

Enhancement of both interference helicity density
|hint/ho

inc| and total helicity density |h/ho
inc|, evaluated at

the surface of the NA along the +z direction, i.e., at r = aẑ,
is illustrated in Figs. 4(c) and 4(d). As it is obvious from
this figure, although the enhancement contribution due to
interference helicity hint is weaker than that associated to
the scattering field in Figs. 4(a) and 4(b), its contribution
is not negligible in the total helicity enhancement and must
be considered in computations and in NA engineering. It is
also important to say that to maximize helicity density it is
convenient to have the sign of the interference helicity density
term equal to that of the scattered and incident helicities.

Finally, three illustrative NAs with three NA radii of a =
78, 84, and 85 nm are considered in Fig. 6, at the oper-
ational wavelength of λ = 680 nm. These three values are
chosen from Fig. 5 because at this wavelength they respec-
tively generate (a) the optimum chirality condition |h| = u/ω,
(b) the maximum enhanced total helicity |h/ho

inc|, and (c)
the maximum enhanced energy umax/uo

inc. The figure shows
the distribution of the helicity densities around the dielectric
NA. As it is clear, a 20-fold enhancement of helicity density,
localized at r = aẑ, is achieved with a spherical dielectric NA
with a radius of a = 84 nm. Note that this value is larger
than the 10-fold enhancement obtained with the optimum
chirality condition (|h| = u/ω), because at radius a = 84nm
one has larger energy density u, though satisfying the con-
dition |h| < u/ω. Maximum helicity enhancement occurs for
a radius between that corresponding to the optimally chiral
near field and that corresponding to maximum energy density.

The radii generating maximum helicity and maximum energy
density are very close to each other.

In parts (d) and (e) of Fig. 6 we plot the helicity enhance-
ment and the quantity hω/u, which takes +1 for an optimally
chiral ARPB with VA = iVR around a spherical Si NA with
radius a = 78 nm obtained by FEM analysis with the CST

STUDIO SUITE at wavelength λ = 680 nm.

IV. CONCLUSION

We have presented an analysis of helicity density in the
near field of a dielectric achiral NA and proved that a NA with
balanced electric and magnetic dipole moments, i.e., mNA =
±ic0pNA, generates an optimally chiral scattered near field
everywhere. To have an optimally chiral near field we have
used an optimally chiral excitation, and under this condition,
balanced electric and magnetic polarizabilities αNA

ee = ε0α
NA
mm

guarantee that mNA = ±ic0pNA. The dipolar polarizabilities
of a spherical high-density dielectric NA mainly satisfy this
requirement when the NA’s radius is chosen appropriately.
Furthermore, upon illumination of a dielectric NA by an op-
timally chiral ARPB, which is a combination of azimuthally
and radially polarized vortex beams with electric and mag-
netic fields with a 90-deg phase difference and appropriate
relative amplitudes, we have demonstrated that the NA’s near
field is optimally chiral, i.e., it satisfies Eq. (1) everywhere in
space. The optimally chiral longitudinal fields of the APRB
generate parallel magnetic and electric dipoles that generate
optimally chiral scattered fields. We have shown that the
NA’s near field localizes helicity density below the diffraction
limit and that helicity is enhanced by more than an order of
magnitude compared to that of the illuminating chiral field.
These findings enable possible realizations of efficient NAs
for chirality characterization at nanoscale.

We have observed that helicity can be enhanced even more
than what is possible with the constraint of having an opti-
mally chiral field but at the expense of having a higher energy
density. For example, plasmonic NAs may locally enhance
helicity but they strongly enhance electric field energy density
as well; the enhancement of electric energy density is larger
than the enhancement in helicity when structured light is not
optically chiral. Optimally chiral fields are important when
one desires to obtain the maximum possible helicity while
keeping a low electric field that could alter the specimen to
be detected or even the detection scheme. Another advantage
of using illuminations and NAs that provide optimal chiral
light is the simplification of the expression of the dissymmetry
factor g, as explained in Ref. [34].
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APPENDIX: OPTIMALLY CHIRAL SCATTERED
NEAR FIELD OF A CHIRAL NA

In the literature there are a few notations to define magnetic
dipoles and polarizabilities. In this paper we use the SI unit
system, and the magnetic dipole moment induced in the NA is
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defined as m = 1
2

∫
V r × J(r)dv, where J (r) is displacement

current density in the NA, and as a consequence, the magnetic
polarizability has unit of m3.

In a reciprocal chiral NA, the dipole moments pNA and
mNA are related to the incident electric and magnetic fields
Eo

inc and Ho
inc at the position of the NA as

pNA = αNA
ee Eo

inc + αNA
em Ho

inc,
(A1)

mNA = αNA
mmHo

inc − μ−1
0 αNA

em Eo
inc,

where αNA
em is the electromagnetic polarizability of the NA and

represents its chirality. The relation mNA = ∓ic0pNA holds
when

αNA
mmHo

inc − μ−1
0 αNA

em Eo
inc = ∓ic0

(
αNA

ee Eo
inc + αNA

em Ho
inc

)
.

(A2)

When the NA is illuminated by an optimally chiral incident
field, i.e., when Eo

inc = ±iη0Ho
inc, after some algebraic calcu-

lations, Eq. (A2) simplifies to

(
αNA

mm ∓ ic0α
NA
em

)
Ho

inc = (
ε0α

NA
ee ∓ ic0 αNA

em

)
Ho

inc. (A3)

This is then reduced to αNA
mmHo

inc = ε0α
NA
ee Ho

inc, which is
satisfied when αNA

ee = ε0α
NA
mm. In summary, dipole moments of

a chiral NA satisfy mNA = ∓ic0pNA when (i) αNA
ee = ε0α

NA
mm

and (ii) an optimally chiral field is used to illuminate the NA.
Therefore the near field of a chiral NA is optimally chiral
under these two conditions. Note that these are the same
conditions that an achiral NA should satisfy to generate an
optically chiral scattered near field and far field.
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