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Intrinsic nonreciprocal reflection and violation of Kirchhoff’s law of radiation in planar type-I
magnetic Weyl semimetal surfaces
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This work demonstrates that Kirchhoff’s law of radiation, stating that the spectral directional emissivity and
absorptivity of a surface are equal at thermal equilibrium, can be violated in planar surfaces without an external
magnetic field or structures such as gratings. Modeling a type-I magnetic Weyl semimetal with an antisymmetric
dielectric tensor, we show an intrinsic violation of Kirchhoff’s law due to nonreciprocal surface polaritons
induced by the Berry curvature and anomalous Hall velocity. This work provides a simple way to physically
realize the violation of Kirchhoff’s law.
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I. INTRODUCTION

Conventional knowledge of thermal radiation believes the
spectral directional emissivity of a surface equals its spectral
directional absorptivity at thermal equilibrium: ε(ω, θ, φ) =
α(ω, θ, φ) [1,2]. This is known as Kirchhoff’s law of ra-
diation (henceforth referred to as “Kirchhoff’s law”) and
is usually thought of as a consequence of the second
law of thermodynamics. In reality, Kirchhoff’s law is de-
rived assuming Lorentz reciprocity holds [1,3–5], which
requires the reflectivity of the surface to be reciprocal; i.e.,
ρ(ω, θ, φ) = ρ(ω, θ, φ + 180◦) for specular surfaces [2,6].
However, Lorentz reciprocity does not always hold, such as in
magnetic systems [3,4]. By relaxing the constraint of Lorentz
reciprocity, a more general form of Kirchhoff’s law has been
derived using thermodynamic arguments [3–5,7]:

ε(ω, θ, φ) − α(ω, θ, φ) = ρ(ω, θ, φ) − ρ(ω, θ, φ + 180◦).

(1)

Although most everyday surfaces are reciprocal, there is
a growing interest in nonreciprocal surfaces because of their
potential to experimentally violate Kirchhoff’s law and en-
able the development of photovoltaic and thermophotovoltaic
cells with efficiencies beyond the Shockley-Queisser limit [8],
novel emitters and absorbers [9,10], and more compact optical
switches, isolators, and circulators [11,12].

Lorentz reciprocity can be broken either by inducing a
nonlinear optical response or by materials with nonsymmet-
ric dielectric or permeability tensors (¯̄εT �= ¯̄ε, ¯̄μT �= ¯̄μ, or
both) [13]. Since electric and magnetic fields in most appli-
cations are not strong enough to induce nonlinear responses
[14], the search for nonreciprocal systems has focused on
the second condition. One way to induce an antisymmet-
ric ¯̄ε is by applying a magnetic field to break time-reversal
symmetry [12,13]. For example, magneto-optic materials are
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known to have antisymmetric ¯̄ε, but in order to appreciably
violate Kirchhoff’s law, the antisymmetric part of ¯̄ε must be
at least the same order of magnitude as the symmetric part
[15], which usually requires a large gyration vector [12]. For
many magneto-optic materials, this is not the case unless a
sufficient external magnetic field is applied. For example, Zhu
and Fan [4] and Zhao et al. [16] showed via simulation that
strong nonreciprocity can be achieved by applying an external
magnetic field (3 and 0.3 T, respectively) to a grating structure
made of InAs. However, the need for an external magnetic
field makes these systems impractical for physically realizing
the violation of Kirchhoff’s law, although Remer et al. [7]
were able to measure the nonreciprocal reflectivity of n-type
InSb via attenuated total reflection for external magnetic fields
up to 10 T. In fact, they recognized that this nonreciprocal
reflectivity is equivalent to the violation of Kirchhoff’s law
via Eq. (1) and calculated the inequality between ε and α

[7]. However, they only presented semiquantitative results for
long wavelengths (102 − 103μm), which are less relevant to
thermal applications, and did not discuss the connection be-
tween Kirchhoff’s law and Lorentz reciprocity in general nor
suggest a detailed physical explanation of the nonreciprocity
and resulting violation of Kirchhoff’s law.

One approach not requiring an external magnetic field is
to use materials exhibiting the anomalous Hall effect (AHE),
which can result in naturally large off-diagonal components of
¯̄ε [17]. In particular, magnetic Weyl semimetals (WSMs) are
a class of materials that has attracted great attention as a can-
didate for violating Kirchhoff’s law due to their time-reversal
symmetry breaking and large AHE. For example, Co3Sn2S2, a
confirmed [18] type-I magnetic WSM, has a measured anoma-
lous Hall angle of 20% [19], which leads to large off-diagonal
components of ¯̄ε [5]. The large AHE of magnetic WSMs
results from the momentum space interaction between the
Berry curvature �n of electrons and an external electric field
E. The electronic band structure of WSMs is characterized by
pairs of “band touching points” of opposite chirality in mo-
mentum space, called Weyl nodes, which behave as sources
and sinks of Berry curvature [20]. The separation between a
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FIG. 1. Schematic of the air-Weyl semimetal (WSM) reflection
configuration. The linearly polarized incident wave I strikes the
surface of the WSM with Weyl node separation 2b at polar and
azimuthal angles of incidence θ and φ, respectively, producing a
reflected wave R and two transmitted waves O (ordinary wave) and
X (extraordinary wave).

pair of Weyl nodes, 2b, points in the same direction as the
Berry curvature (from source to sink). Under the influence
of E, electrons, collectively excited as Weyl fermions [20],
experience an anomalous Hall velocity orthogonal to �n and
E: vAHE ∼ E × �n. This is known as the intrinsic mechanism
of the AHE [17] and plays an important role in nonreciprocity
in magnetic WSMs. In fact, the optical anisotropy [21,22]
and gyrotropy [21–25] of magnetic WSMs as well as their
nonreciprocity [22,23] as a result of their large AHE have
been recognized. Recently, Zhao et al. [15] and Tsurimaki
et al. [5] showed via simulation that magnetic WSMs can be
used with grating structures to achieve strong nonreciprocity
and violation of Kirchhoff’s law without an external magnetic
field.

Here, we show that nonreciprocal reflectivity can be
achieved using a planar interface between a type-I magnetic
WSM and air without the need for an external magnetic field
or surface structuring (e.g., gratings like in previous stud-
ies). Our work highlights the intrinsic nonreciprocal nature of
magnetic WSMs due to their Berry curvature-induced AHE.
We also suggest a physical explanation linking the Berry
curvature-induced AHE to the existence of nonreciprocal sur-
face polaritons, which in turn manifest in the nonreciprocal
reflectivity. The ability to achieve nonreciprocity without an
external magnetic field and surface structuring opens up op-
portunities to experimentally demonstrate the violation of
Kirchhoff’s law and for compact nonreciprocal devices.

II. AIR-WEYL SEMIMETAL REFLECTIVITY MODEL

Figure 1 shows the WSM surface under study. An s- or
p-polarized plane wave I of angular frequency ω propagates
at polar and azimuthal angles of incidence θ and φ, with
wave vector k = (ω/c)s in air (refractive index n = 1), where
s = [sin θ cos φ, sin θ sin φ, cos θ ]T . At the air-WSM inter-
face, the incident wave produces a reflected wave R and two
transmitted waves O and X, corresponding to ordinary and
extraordinary modes. In this work, we use the model of the
bulk dielectric tensor of a type-I magnetic Weyl semimetal
derived by Chen et al. [21] and built upon in our previous

study [5]. For a WSM with one pair of Weyl nodes separated
in the y direction (ky direction in momentum space), as shown
in Fig. 1, the bulk dielectric tensor is

¯̄ε(ω) =
⎡
⎣ εxx 0 ig

0 εyy 0
−ig 0 εzz

⎤
⎦. (2)

In Eq. (2), g = σyz(ω)/ε0ω represents the contribution to
¯̄ε from the AHE [5], where σyz(ω) is the yz component of
the bulk optical conductivity and ε0 is the permittivity of
free space. The diagonal terms are given by εnn(ω) = ε∞ +
i σnn(ω)

ε0ω
, where ε∞ is the background dielectric constant, σnn(ω)

is the directional bulk optical conductivity, and n = x, y, z.
We also take μ = 1, which is a common approximation for
magneto-optic materials [13,26]. There are six parameters
determining ¯̄ε(ω) [21]: the Weyl node separation 2b = 2|b|,
the Fermi velocity vF , the Fermi energy EF , the damping
factors due to bulk Weyl fermions γb and Fermi arc surface
states γs, and the background dielectric constant ε∞. We
chose the same parameters as in our previous work [5] but
briefly summarize our justifications for choosing them here.
We chose 2b = 0.45 Å−1, which is close to reported values
for Co3Sn2S2 (0.3 Å−1) [27] and Mn3Sn (0.5–1 Å−1) [28]. We
chose vF = 1 × 105 m/s and EF = 60 meV, which are inde-
pendent in this model. This is in line with predicted values for
Co3Sn2S3 (EF = 60 meV) [19], Co2MnGa (EF = 80 meV)
[29], Y2Ir2O7 (vF = 2 × 105 m/s) [30], and Mn3Sn (EF ∼
50 meV) [28]. Paralleling Chen et al. [21] and our previous
study [5], we chose γb = γs = 15 meV as a representative
value since these are generally more difficult to estimate and
depend on the types of interactions and disorder present in
the WSM being modeled. Lastly, we chose ε∞ = 10, which
is the same order of magnitude as the background dielectric
constant in Eu2Ir2O7 (ε∞ = 13) [31]. The real and imaginary
parts of the components of ¯̄ε(ω) (i.e., εxx, εyy, εzz, and g) are
plotted in Figs. 2(a) and 2(b), respectively.

We calculate the reflectivity using a simplified version
of the Berreman 4 × 4 matrix method [32] derived by Ab-
dulhalim [33]. This method exactly calculates the reflection
matrix between two media with arbitrary dielectric tensors,
as long as the tangential components of the electric and mag-
netic fields are continuous: E‖|z=0+ = E‖|z=0− and H‖|z=0+ =
H‖|z=0− [33]. Although type-I magnetic WSMs can host Fermi
arc surface states, which would introduce surface dipole layer
and surface current terms in the electric and magnetic field
boundary conditions, respectively [21], in our previous work,
we showed that such states do not significantly affect the
optical response for the bulk dielectric tensor we used in our
models [5]. Under these conditions, the reflection matrix in
the (p, s) polarization basis is given by[

rp,p rp,s

rs,p rs,s

]
= T −1

(
E−1

12nE34m − H−1
12nH34m

)−1

× (
H−1

12nH12m − E−1
12nE12m

)
T, (3)

where Ei jl = (VeiUe j )l and Hi jl = (VhiUh j )l; i, j = 1, 2, 3, 4
denote propagation modes—i.e., 1 = forward-propagating
O wave, 2 = forward-propagating X wave, 3 = backward-
propagating O wave, and 4 = backward-propagating X wave
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FIG. 2. (a) Real and (b) imaginary parts of the components of the bulk dielectric tensor of the Weyl semimetal (WSM). Bulk plasmon
dispersion of (c) ordinary (O) and (d) extraordinary (X) modes supported by the WSM, plotted as the real and imaginary parts of the effective
index of refraction squared of each mode for θ = 60◦ and φ = 0◦.

(in air, the 3 and 4 wave vectors are degenerate). The subscript
l = m, n denotes the lower (m, z < 0) or upper (n, z > 0)
medium, Ve,h and Ue,h are eigenvectors of the electromagnetic
wave equation corresponding to the electric (e) and magnetic
(h) fields, and T is a transformation matrix that rotates the
x- and y directions to coincide with the p- and s-polarization
directions. If medium m is air, E12m = E34m = I, where I is
the identity matrix, and H12m = −H34m. Finally, the reflec-
tivities of s- and p-polarized light are ρs = |rs,s|2 + |rs,p|2
and ρp = |rp,p|2 + |rp,s|2, respectively, where the reflection
coefficient subscripts denote the polarizations of the incident
and reflected waves in that order. Details on this method can
be found in Appendix A.

III. RESULTS AND DISCUSSION

A. Reflectivity of s- and p-polarized light

We investigated ρs and ρp and emphasize two limiting
cases: the Voigt configuration (propagation normal to b, φ =
0◦, 180◦), which is nonreciprocal for p-polarized waves and
has been used in studies on the violation of Kirchhoff’s law
[4,5,15], and the Faraday configuration (propagation parallel
to b, φ = 90◦, 270◦), which is reciprocal for both polariza-
tions [5,15,34,35]. Thus, we focus here on p-polarized waves,
although results on s-polarized waves will be briefly discussed

at the end of this section. Figure 3(a) shows plots of ρp as
a function of ω and φ at θ = 60◦. At φ = 0◦ and 180◦, the
WSM exhibits a Drude-like response at lower frequencies
[21] and a Lorentzian response at higher frequencies (a peak
followed by a falling edge in the reflectivity). This parallels
the bulk plasmon dispersion of X waves, plotted in Fig. 2(d),
which are p-polarized and thus couple to p-polarized inci-
dent waves. The nonreciprocity in the Voigt configuration is
clear: ρp at φ = 0◦ and 180◦ are not identical, and further-
more, the largest nonreciprocity, expressed as ρp(ω, θ, φ) −
ρp(ω, θ, φ + 180◦), is at the approximate frequencies 0.028
and 0.088 eV, at which there are reflectivity falling edges. The
nonreciprocity can also be seen in the analytical equations
for the reflection coefficients in the Voigt configuration (see
Appendix A). By contrast, at φ = 90◦ and 270◦ (not shown
but identical to 90◦), the reflectivity is reciprocal with only
one falling edge at approximately 0.046 eV.

The physical significance of the reflectivity falling edges
and their nonreciprocity is linked to the surface polaritons
(SPs) supported by the WSM. Whereas the bulk plasmon
dispersion [Figs. 2(c) and 2(d)] is strictly reciprocal [36],
WSMs are known to support surface plasmon polaritons
whose dispersion is nonreciprocal in the Voigt configuration
and reciprocal in the Faraday configuration [34,37]. Phys-
ically, this can be understood via the AHE and arguments
similar to those in Ref. [38] explaining the chirality of Berry
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FIG. 3. (Counterclockwise) (a) Reflectivity of p-polarized waves ρp as a function of the frequency ω and azimuthal angle of incidence
φ at a polar angle of incidence θ = 60◦ for φ = 0◦ (red, forward-propagating Voigt configuration), 90◦ (green, Faraday configuration), and
180◦ (blue, backward-propagating Voigt configuration). (b) Schematic explaining the nonreciprocity of surface polaritons (SPs) in the Voigt
configuration. The electric field of a p-polarized incident wave E creates an anomalous Hall velocity vAHE orthogonal to E and b. vAHE changes
the velocity of Weyl fermions in the longitudinal (q) direction, creating nonreciprocal SPs. (c) Reciprocity of SPs in the Faraday configuration.
vAHE is normal to q and does not affect the longitudinal motion of Weyl fermions. (d) Undamped and damped SP dispersions in the same
directions as the reflectivity, with matching colors. The dotted lines are the frequencies where the damped SP dispersion intersects the light
line, ω = ck. Only the real parts of the damped SP dispersions are shown.

plasmons. Since vAHE ∼ E × �n and �n points in the y di-
rection (parallel to 2b), vAHE is restricted to the xz plane (as
implied by the off-diagonal components of ¯̄ε). Since SPs are
restricted to the xy plane, only those propagating along the
x axis can be influenced by the AHE. Figure 3(b) shows the
direction of vAHE for p-polarized incident waves in the Voigt
configuration. Treating the charge carriers as semiclassical
wave packets of Weyl fermions, at φ = 0◦, vAHE retards each
Weyl fermion moving in the q direction (where q is the SP
in-plane wave vector). At φ = 180◦, vAHE accelerates each
Weyl fermion moving in the q direction. Clearly, the effect of
vAHE on the longitudinal motion of Weyl fermions depends
on q. Collectively, vAHE should affect the propagation of SPs,
which consist of Weyl fermions excited by the incident wave.
Since the effect of vAHE on the Weyl fermions and thus the SPs
is different in opposing directions, the SPs are nonreciprocal
in the Voigt configuration. In the absence of the AHE, Weyl
fermions would not feel a direction-dependent influence at all,

so the SPs would be reciprocal. In the Faraday configuration,
shown in Fig. 3(c), vAHE ,s and vAHE ,p, created by s- and
p-polarized incident waves, respectively, are both normal to q
and do not affect the longitudinal motion of Weyl fermions. As
a result, the SPs are reciprocal in the Faraday configuration.

The SP dispersions in both configurations are derived
in Appendix B and plotted in Fig. 3(d), agreeing with the
conclusions of our physical arguments. The WSM hosts
two nonreciprocal SPs in the Voigt configuration and one
reciprocal SP in the Faraday configuration, similar to magne-
toplasmons in n-type InSb [39]. The reflectivity falling edges
match the frequencies at which the damped SP dispersions
intersect the light line, indicated by the colored dashed lines.
This indicates coupling between incident waves and SPs [7].

We remark that in between the Voigt and Faraday con-
figurations, s-polarized waves are nonreciprocal, as can be
seen in Fig. 4(a), which shows plots of ρs as a function of
ω and φ at θ = 60◦. At φ values in between the limiting
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FIG. 4. (a) Reflectivity of s-polarized waves ρs as a function of
the frequency ω and azimuthal angle of incidence φ at a polar angle
of incidence θ = 60◦ for φ = 0◦, 45◦, 90◦, and 215◦, with φ = 180◦

and 270◦ being identical to φ = 0◦ and 90◦, respectively. (b) Polar
plots of ρs at θ = 60◦ and the frequencies 0.028, 0.068, and 0.088 eV,
as indicated by the purple dotted lines in (a).

cases (φ = 45◦ and 215◦), the WSM supports two elliptically
polarized waves, so both s- and p-polarized waves can couple
to SPs. However, the wave vector has components normal and
parallel to b, meaning the SPs should be weakly nonreciprocal
compared to the Voigt configuration and become reciprocal as
the wave vector becomes parallel to b. This is illustrated by
Fig. 4(b), which shows polar plots of ρs at the frequencies
highlighted by the dotted lines in Fig. 4(a), which include
the reflectivity falling edges from Fig. 3(a) and 0.068 eV, a
nonreciprocal frequency between 0.028 and 0.088 eV. The
nonreciprocity is weak in the sense that the polar plots are
only slightly asymmetric with respect to the y axis (φ = 90◦).

B. Reflectivity of unpolarized light

To illustrate the overall nonreciprocity of the WSM,
we calculated the reflectivity of unpolarized light,

given by

ρ(ω, θ, φ) = ρp(ω, θ, φ) + ρs(ω, θ, φ)

2
, (4)

which we derive in Appendix C based on the randomness
of unpolarized light emitted by thermal sources. Figure 5(a)
shows polar plots of ρ at the approximate reflectivity falling
edges, 0.028 and 0.088 eV, and θ = 60◦. Clearly, ρ is non-
reciprocal in the Voigt configuration (φ = 0◦ and 180◦) and
reciprocal in the Faraday configuration (φ = 90◦ and 270◦). In
between, the system appears to smoothly transition between
the limiting cases as vAHE becomes normal to q. Additionally,
the polar plots in Fig. 5(a) appear very asymmetric compared
to Fig. 4(b), suggesting that p-polarized waves dominate the
nonreciprocity compared to s-polarized waves, which paral-
lels our physical arguments and the general trends seen so far.

We also computed the difference in ρ at φ to ρ at φ + 180◦
[15,40], equivalent to the difference between ε and α ac-
cording to Eq. (1). Figure 5(b) shows plots of ε − α as a
function of ω and θ at φ = 0◦. We observe the inequality
between ε and α and thus the violation of Kirchhoff’s law.
Although ε − α is largest near the reflectivity falling edges at
θ = 60◦, at θ = 89.3◦, which we found maximizes ε − α, it
is largest in between the reflectivity falling edges, specifically
where the damped SP dispersion intersects the light line in
between the “buckled” parts of the curve in Fig. 5(c), ap-
proximately 0.0545 and 0.0512 eV in the φ = 0◦ and 180◦
directions, respectively. The maximum value of ε − α, ap-
proximately 0.40, is between these frequencies. Moreover, the
nonreciprocity near 0.028 and 0.088 eV at θ = 89.3◦ is small
(ε − α < 10−2), suggesting that at grazing incidence, incident
waves no longer excite these modes. Physically, the longitudi-
nal component of the electric field (the x component) vanishes
at grazing incidence, meaning incident waves cannot excite
the longitudinal SPs supported in the Voigt configuration
such as those near the reflectivity falling edges in Fig. 3(a).
However, they can still excite transverse SPs. The transverse
component of the electric field of SPs (the z component, Ez)
becomes much larger than the longitudinal component (the x
component, Ex) in between the buckled parts of the damped
SP dispersions, as shown in Fig. 5(c). In fact, |Ez|/|Ex| peaks
(or approaches +∞ for undamped SPs) near the frequencies
where ε − α is the largest. Here, the nonreciprocity can be
even larger than that of longitudinal SPs because vAHE is
parallel to q, meaning longitudinal retardation or acceleration
due to the AHE is maximized [cf. Fig. 3(c)].

IV. CONCLUSION

This work demonstrated the violation of Kirchhoff’s law
on a flat WSM surface without an external magnetic field or
grating structures. We showed that this violation of Kirch-
hoff’s law is linked to nonreciprocal SPs supported by the
WSM and that their nonreciprocity is caused by the Berry
curvature-induced anomalous Hall effect. We believe that our
results suggest a simple way to experimentally demonstrate
the violation of Kirchhoff’s law without an external magnetic
field and could lead to the development of highly efficient
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FIG. 5. (a) Polar plots of the reflectivity of unpolarized light ρ at polar angle of incidence θ = 60◦ and the frequencies ω = 0.028 and 0.088
eV. (b) Difference between the emissivity and absorptivity, ε − α, as a function of ω and θ at φ = 0◦. (c) (Left axis) Ratio of the magnitude
of the z component to the magnitude of the x component of the electric field of damped surface polaritons (SPs) |Ez|/|Ex| at φ = 0◦ and 180◦.
(Right axis) Real part of the damped surface polariton dispersion at φ = 0◦ and 180◦, reproduced from Fig. 3(d). The light red and light blue
dotted lines indicate the frequencies at which the damped SP dispersions cross the light line, ω = ck, in between the buckled parts of the
curves. The SPs are transverse waves at these frequencies, as indicated.

photovoltaic and thermophotovoltaic cells as well as smaller,
simpler nonreciprocal optical instruments.
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APPENDIX A: DETAILS OF THE
REFLECTIVITY CALCULATION

1. General equations

In this work, we used the exact 2 × 2 reflection matrix
method developed by Abdulhalim [33] to compute the reflec-
tivity. Here, we outline the method and provide the analytical
expressions for the dispersion relation and the eigenvectors
from which the electric and magnetic field matrices Ei jl and
Hi jl used in Eq. (4) were computed.
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By decomposing Maxwell’s equations in an arbitrary, non-
magnetic medium and assuming plane-wave solutions, it is

possible to show that the x- and y components of the electric
field vector are governed by the homogeneous system

[ −sxsy − εyx − bx(sysz + εyz ) s2
x + s2

z − εyy − by(sysz + εyz )
−s2

y − s2
z + εxx + bx(sxsz + εxz ) sxsy + εxy + by(sxsy + εzz )

]
�e = 0, (A1)

where εi j are the components of the dielectric tensor
(i, j = x, y, z), bx = (εzx + sxsz )/(s2

x + s2
y − εzz ),

by = (εzy + sysz )/(s2
x + s2

y − εzz ), and �e = √
ε0ei(ω/c) szz

[Ex Ey]T . Likewise, it can be shown that �h =√
μ0ei(ω/c) szz[Hx Hy]T is related to �e by

�h =
[

bxsy bysy − sz

−bxsx + sz −bysx

]
�e. (A2)

It is easy to see that in the coordinate system defined in
Fig. 1, �e and �h are essentially the tangential components of
the electric and magnetic fields, respectively.

Equation (A1) has nontrivial solutions if and only if the
determinant of the matrix on the left-hand side (called G) is
zero (i.e., |G| = 0). This can be used to solve for sz, which is
unknown, and equivalently, the dispersion relation, which has
the form

s4
z + as3

z + bs2
z + csz + d = 0 (A3)

in general. In air, Eq. (A3) takes on the more familiar form
sz =

√
1 − s2

x − s2
y , and in WSMs, it can be shown that a =

c = 0 (under any rotation in the xy plane), leading to the
explicit solution

sz = ±
√

−b ± √
b2 − 4d

2
. (A4)

For WSMs, this is also the bulk plasmon dispersion. Equa-
tions (A11) and (A12), to be presented later, give b and d .
Equation (A4) shows that there are four propagation modes
in WSMs: two forward (sz > 0), which we denote 1 and 2,
and two backward (sz < 0), 3 and 4. (Technically, there are
four propagation modes in air as well, but the wave vectors of
modes 1 and 2 and modes 3 and 4, respectively, are degener-
ate.) Once sz is known, so are the electric- and magnetic-field
vectors by Eqs. (A1) and (A2).

The reflection matrix in the (x, y) basis, Rxy, can be found
by applying the solutions to Eqs. (A1) and (A2) to the stan-
dard electromagnetic interface conditions: continuity of the
tangential component of the electric field,

�e|z=0+ = �e|z=0− , (A5)

and continuity of the tangential component of the magnetic
field,

�h|z=0+ = �h|z=0− . (A6)

Equations (A5) and (A6) do not account for the effects of
Fermi arc surface states, although their inclusion is relatively
straightforward following Ref. [21] and transform the homo-
geneous boundary conditions into inhomogeneous ones. From
Eqs. (A5) and (A6), it is possible to obtain

Rxy = (
E−1

12nE34m − H−1
12nH34m

)−1(
H−1

12nH12m − E−1
12nE12m

)
,

(A7)

where Ei jl = (VeiUe j )l and Hi jl = (VhiUh j )l; i, j = 1, 2, 3, 4
denote propagation modes, l = m, n denote the lower (m,

z < 0) or upper (n, z > 0) medium, and Ve and Ue are the
eigenvectors of Eq. (A1), with Vh and Uh found by substituting
Ve and Ue into Eq. (A2). If m is air, it can be shown that E12m =
E34m = I, where I is the identity matrix, and H12m = −H34m.

This simplifies Eq. (A7) to

Rxy = (
E−1

12n + H−1
12nH12m

)−1(
H−1

12nH12m − E−1
12n

)
. (A8)

Rxy can be transformed into the (p, s) basis (i.e., p- and s
polarizations) using the transformation matrix

T =
[ sz1,2msx

sxy
− sy

sxy
sz1,2msy

sxy

sx
sxy

]
, (A9)

where sz1,2m is the z component of the wave vector of the
forward-propagating modes in air and sxy =

√
s2

x + s2
y is the

in-plane wave vector. Then[
rp,p rp,s

rs,p rs,s

]
= T −1RxyT . (A10)

Thus, the reflectivity of p- and s-polarized waves are ρp =
|rp,p|2 + |rp,s|2 and ρs = |rs,s|2 + |rs,p|2, accounting for mode
conversion via the rp,s and rs,p (i.e., conversion of an incident
p-polarized wave to a reflected s-polarized wave and vice
versa). The coefficients of Eq. (A4) are

b = 1

ε zz

(
s2

x (εxx + εzz ) + s2
y (εyy + εzz )

+ (g2 − (εxx + εyy)εzz )
)
, (A11)

d = 1

ε zz

(
s4

xεxx + s2
x

(
g2 + s2

y (εxx + εyy) − εxx(εyy + εzz )
)

− εyy
(
g2 − (

s2
y − εxx

)(
s2

y − εzz
)))

. (A12)

The eigenvectors are

Ve j = 1√
1 + ξ jξ

∗
j

[
1
ξ j

]
, (A13)

Ue j = 1√
1 + χ jχ

∗
j

[
χ j

1

]
. (A14)

The subscript j denotes the mode of propagation ( j =
1, 2, 3, 4). The expressions for the coefficients ξ j and χ j
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(also known as the polarization ratios [33]) are

ξ j = s4
y + s2

x

(
s2

y − εxx
) + s2

y

(
s2

z j − εxx − εzz
) − g2 − (

s2
z j − εxx

)
εzz

s3
xsy + sxs3

y + sxsy
(
s2

z j − εzz
) + sysz jεzz

, (A15)

χ j = s2
x + s2

z j

(
1 − s2

y/
(
s2

x + s2
y − εzz

)) − εyy

sxsy + sysz j (−ig + sxsz j )/
(
s2

x + s2
y − εzz

) . (A16)

Lastly, to compute the magnetic-field eigenvectors Vh j and
Uh j, we used Eq. (A2) (i.e., Vh j = QjVe j and Uh j = QjUe j),
where

Qj =
⎡
⎣ sy (−ig+sxsz j )

s2
x+s2

y−εzz
sz j

( s2
y

s2
x+s2

y−εzz
− 1

)
sz j − sx (−ig+sxsz j )

s2
x+s2

y−εzz
− sxsysz j

s2
x+s2

y−εzz

⎤
⎦. (A17)

2. Voigt configuration

In the Voigt configuration, it is possible to get simple
expressions for the bulk plasmon dispersion and the re-
flectivity. In Eq. (A4), assuming sz is positive, there are
two possible bulk plasmon modes: the ordinary mode O
with sz1 =

√
(−b + √

b2 − 4d )/2 and the extraordinary mode
X with sz2 =

√
(−b − √

b2 − 4d )/2, where 1 and 2 are
used to respect the notation in the previous section. Using
these, the ordinary and extraordinary effective indices of
refraction can be defined as nO =

√
s2

x + s2
y + s2

z1 and nX =√
s2

x + s2
y + s2

z2 . For propagation in the positive x direction,
φ = 0◦, sx = sin θ, and sy = 0. In this case, it can be shown
that

sz1 =
√

εyy − sin2θ, (A18)

sz2 =
√

−g2 − εxx(sin2θ − εzz )

εzz
. (A19)

Using Eqs. (A18) and (A19) and following the method
described in the previous section, it is possible to derive the
reflection coefficients in the Voigt configuration. It is impor-
tant to recognize that in this direction, sy = 0 and ξ, χ →
∞, meaning the electric-field eigenvectors are Ve1 = [0 1]T

and Ue2 = [1 0]T . Thus, it can be shown that in the +x
direction (φ = 0◦),

rs,s = cos θ − sz1

cos θ + sz1
, (A20)

rp,p = εzz(sec θ − sz2) + sin θ (ig − tan θ )

εzz(sec θ + sz2) − sin θ (ig + tan θ )
, (A21)

rs,p = rp,s = 0. (A22)

In the −x direction (φ = 180◦),

rs,s = cos θ − sz1

cos θ + sz1
, (A23)

rp,p = εzz(sec θ − sz2) − sin θ (ig + tan θ )

εzz(sec θ + sz2) + sin θ (ig − tan θ )
, (A24)

rs,p = rp,s = 0. (A25)

Equations (A20) and (A23) are identical, showing that
s-polarized waves are reciprocal in the Voigt configuration,
while Eqs. (A21) and (A24) show that p-polarized waves are
nonreciprocal.

APPENDIX B: DERIVATION OF THE SURFACE
POLARITON DISPERSION

1. Voigt configuration

In the main text, we argued that the nonreciprocal reflec-
tivity in the Voigt and Faraday configurations, respectively,
are due to coupling to SPs, which are nonreciprocal in the
former configuration but not in the latter. Here, we derive the
dispersion relations of SPs in each configuration following
Ref. [41] but in our notation for the sake of completeness.

Consider a semi-infinite WSM in the half space z > 0 with
its b vector pointing in the y direction. The other half space
z < 0 is air (refractive index n = 1). We seek the dispersion
relation of SPs propagating normal to the b vector. In particu-
lar, we seek solutions of the electromagnetic wave equation in
the WSM of the form

E1 = [1 0 Ez1]
T
ηe−α1z, (B1)

where η = eiωt−iqx. We can seek solutions of this form be-
cause we know that the WSM supports s- and p-polarized
waves in this configuration, and only p-polarized waves are
longitudinal. The corresponding electric field in air is

E0 = [1 0 Ez0]T
ηeα0z. (B2)

We can find the decay constants α1 and α0 using the elec-
tromagnetic wave equation. In particular, we can write it in
the form M̂E = 0, where

M̂ =
⎡
⎣−k2

y − k2
z kxky kxkz

kxky −k2
x − k2

z kykz

kxkz kykz −k2
x − k2

y

⎤
⎦ + k2

0
¯̄ε(ω).

(B3)

Here, k0 = ω/c is the magnitude of the wave vector in
vacuum and ¯̄ε(ω) is the dielectric tensor. Equation (B3) has
nontrivial solutions if and only if |M̂| = 0, from which we
can derive the equations for the decay constants. In air, it can
be shown that

α0 =
√

q2 − k2
0 . (B4)

In the WSM, the decay constant is

α1 =
√

εxxq2

εzz
− (εxxεzz − g2)k2

0

εzz
. (B5)
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We can make a few observations about the electric and magnetic fields. First, using the electromagnetic wave equation, we
can determine Ez0 and Ez1 : ⎡

⎣k2
0 + α2

0 0 iα0q
0 k2

0 − q2 + α2
0 0

iα0q 0 k2
0 − q2

⎤
⎦

⎡
⎣ 1

0
Ez0

⎤
⎦ = 0 ⇒ Ez0 = iq/α0, (B6)

⎡
⎣ k2

0εxx + α2
1 0 −iα1q + igk2

0
0 k2

0εyy − q2 + α2
1 0

−iα1q − igk2
0 0 k2

0εzz − q2

⎤
⎦

⎡
⎣ 1

0
Ez1

⎤
⎦ = 0 ⇒ Ez1 = i

(
α1q + gk2

0

)
k2

0εzz − q2
. (B7)

We can also determine the magnetic-field vectors using
Faraday’s law:

∇ × E = −∂B
∂t

. (B8)

In air,

B0 = ω−1[0 −qEz0 + iα0 0]T
ηeα0z, (B9)

and in the WSM,

B1 = −ω−1[0 qEz1 + iα1 0]T
ηe−α1z. (B10)

To obtain the dispersion relation for the in-plane wave
vector q, we apply the standard electromagnetic boundary
conditions at z = 0. Namely, these are continuity of Dz,

Ez0 = −ig + εzzEz1, (B11)

and continuity of By,

−qEz0 + iα0 = −qEz1 − iα1. (B12)

In reality, only three equations out of Eqs. (B6) and
(B7) and Eqs. (B11) and (B12) are needed to solve for q.
For example, we can substitute Eq. (B6) into Eqs. (B11)
and (B12):

iq

α0
= −ig + εzzEz1 ⇒ Ez1 = i(q + gα0)

εzzα0
,

−q

(
iq

α0

)
+ iα0 = −qEz1 − iα1

⇒ Ez1 = i
(
q2 − α2

0 − α0α1
)

qα0
.

Setting the resulting expressions equal to each other and
writing the equation in terms of q, we obtain the SP dispersion
in the Voigt configuration:

q2 + gα0q + εzz
(
α0α1 − k2

0

) = 0. (B13)

Using MATHEMATICA (version 12.0.0.0), we found the ex-
act solutions of Eq. (B13):

q = ±
√

g4 − g2 ± A + B

(g2 − 1)2 − 2(g2 + 1)εxxεzz + (εxxεzz )2
, (B14)

where

A = 2g
√

εzz(g2 + εxx + εzz − εxxεzz − 1), (B15)

B = εzz(g2 + 1 + εxx[εzz(εxx − 1) − 1 − 2g2]). (B16)

Near the resonance frequencies, the undamped SPs can
merge with the bulk plasmons, whose dispersion can be found
by letting α1 = 0 and solving for q in Eq. (B3):

q = k0

√
εzz − g2/εxx. (B17)

2. Faraday configuration

Continuing from the previous section, now we seek solu-
tions of the form

E = t1E1 + t2E2,

E1 = [Ex1 1 Ez1]T
ηe−α1z, (B18)

E2 = [Ex2 1 Ez2]T
ηe−α2z. (B19)

This is because the bulk WSM supports two elliptically
polarized waves. Thus, we cannot assume that the surface
waves are strictly s- and p polarized, and the total surface
wave is the superposition of the two surface waves supported
by the WSM. The electric field in air is

E0 = [Ex0 1 Ez0]T
ηeα0z. (B20)

Once again, we can find the decay constants using the
determinant of Eq. (B3). The decay constant in air is still
given by Eq. (B4). In the WSM, we have two decay
constants:

αm =
√
C ± √

D

2εzz
, (B21)

where m = 1, 2 and

C = q2(εyy + εzz ) + k2
0 (g2 − (εxx + εyy)εzz ), (B22)

D = (
g2k2

0 + εyyq2)2 + 2
(
g2k2

0 − εyyq2)(q2 + k2
0 (−εxx

+ εyy))εzz + (
q2 + k2

0 (−εxx + εyy
))2

ε2
zz. (B23)

Like before, we can determine the electric fields:⎡
⎣k2

0 − q2 + α2
0 0 0

0 k2
0 + α2

0 iα0q
0 iα0q k2

0 − q2

⎤
⎦

⎡
⎣Ex0

1
Ez0

⎤
⎦ = 0

⇒ Ez0 = iq/α0, (B24)⎡
⎣k2

0εxx − q2 + α2
m 0 igk2

0
0 k2

0εyy + α2
m −iαmq

−igk2
0 −iαmq k2

0εzz − q2

⎤
⎦

⎡
⎣Exm

1
Ezm

⎤
⎦ = 0

⇒ Ezm = − i
(
k2

0εyy + α2
m

)
αmq

, (B25)
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Exm = − igk2
0

k2
0εxx − q2 + α2

m

Ezm = − gk2
0

(
k2

0εyy + α2
m

)
αmq

(
k2

0εxx − q2 + α2
m

) .

(B26)

We can also determine the magnetic fields using Eq. (B8):

Bm = ω−1[iαm + qEzm −iαmExm −qExm]T
ηe−αmz,

(B27)

B0 = ω−1[−iα0 + qEz0 iα0Ex0 −qEx0]T
ηeα0z.

(B28)

Once again, we apply the standard electromagnetic bound-
ary conditions at z = 0 to determine q. In this case, we need
more boundary conditions because we have more unknowns
than before. First, we have continuity of Ex:

Ex0 = t1Ex1 + t2Ex2. (B29)

Second, we have continuity of By:

α0Ex0 = −t1α1Ex1 − t2α2Ex2. (B30)

Multiplying Eq. (B29) by α0 and subtracting it from
Eq. (B30) gives us

t2 = − (α0 + α1)Ex1

(α0 + α2)Ex2
t1. (B31)

Then, continuity of Ey gives us

1 = t1 + t2. (B32)

Rearranging Eq. (B32) and substituting it into Eq. (B31),
we find that

t1 = (α0 + α2)Ex2

(α0 + α2)Ex2 − (α0 + α1)Ex1
, (B33)

t2 = (α0 + α1)Ex1

(α0 + α1)Ex1 − (α0 + α2)Ex2
. (B34)

Lastly, we have continuity of Bx:

−iα0 + qEz0 = t1(iα1 + qEz1) + t2(iα2 + qEz2). (B35)

Everything in Eq. (B35) can be written in terms of q and
the known variables. This allows us to solve for the dispersion
relation in the Faraday configuration (although the algebra is
rather tedious):

0 = (α0εyy + α2)
(
q2 − k2

0εxx − α2
2

)
(α0 + α1)

(
k2

0εyy + α2
1

)
− (α0εyy + α1)

(
q2 − k2

0εxx − α2
1

)
(α0 + α2)

(
k2

0εyy + α2
2

)
.

(B36)

The dispersion of the bulk plasmons with which the SPs
can merge is given by

q = k0√
2

√
εxx + εzz ±

√
(εxx − εzz )2 − 4g2. (B37)

APPENDIX C: DERIVATION OF THE REFLECTIVITY
OF UNPOLARIZED LIGHT

Consider a generally polarized incident wave reflecting
off of a general anisotropic medium (z > 0) in the xz plane
(without loss of generality). Letting s be the fraction of the
intensity s-polarized light in the incident wave and ϕ be the
phase difference between the s- and p-polarized components,
we can write the electric and magnetic fields of the incident
wave:

E i = Ei
[√

1 − s cos θ
√

seiϕ −√
1 − s sin θ

]T

× ei(ωt−ki·r), (C1)

H i = Z−1
0 Ei

[−√
seiϕ cos θ

√
1 − s

√
seiϕ sin θ

]T

× ei(ωt−ki·r), (C2)

where ki = (ω/c)[sin θ 0 cos θ ]T and Z0 = √
μ0/ε0 is

the impedance of free space. Similarly, for the reflected wave,
we can write:

Er = [Er,p cos θ Er,s Er,p sin θ ]T
ei(ωt−kr ·r), (C3)

Hr = Z−1
0 [Er,s cos θ −Er,p Er,s sin θ ]T

ei(ωt−kr ·r),

(C4)

where kr = (ω/c)[sin θ 0 − cos θ ]T . The reflectivity is
defined as

R = −〈Sz,r〉
〈Sz,i〉 , (C5)

where 〈Sz,i〉 and 〈Sz,r〉 are the z components of the time-
averaged Poynting vectors of the incident and reflected waves,
respectively:

〈Sz〉 = 1
2 Re(ẑ · E × H∗). (C6)

The negative sign in Eq. (C5) accounts for the direction of
〈Sz,r〉 (energy exiting the system). By carrying out the cross
product in Eq. (C6), it can be shown that

〈Sz,i〉 = cos θ

2Z0
|Ei|2, (C7)

〈Sz,r〉 = −cos θ

2Z0
(|Er,p|2 + |Er,s|2), (C8)

and hence

R = |Er,p|2 + |Er,s|2
|Ei|2

. (C9)

Now we use the fact that Er,p = rp,p
√

1 − sEi +
rs,p

√
sEieiϕ and Er,s = rs,s

√
sEieiϕ + rp,s

√
1 − sEi to write

Eq. (C9) in terms of the reflection coefficients. Substituting
these expressions into Eq. (C9) and simplifying, we find
that

R = (1 − s)ρp + sρs + 2
√

s
√

1 − s

× Re[(rp,pr∗
s,p + r∗

s,srp,s)e−iϕ], (C10)
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where ρp and ρs are defined as before. Equation (C10) is
the reflectivity of an incident wave with a general polariza-
tion defined as a composition of s- and p-polarized waves,
parametrized by 0 � s � 1 and 0 � ϕ < 2π. This equation
suggests that for light that is not purely s- or p polarized,
the reflectivity consists of a weighted average of the s- and
p-polarized reflectivities (the first two terms) and an interfer-

ence term. This interference term accounts for the interference
between reflected waves of the same polarization produced by
incident waves with different polarizations. The reflectivity
of unpolarized light is simply Eq. (C10) averaged over all
possible polarizations:

ρ = 1

2π

∫ 1

0

∫ 2π

0
R dϕ ds ⇒ ρ = ρs + ρp

2
. (C11)
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