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Electric-field-driven exciton vortices in transition metal dichalcogenide monolayers
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We predict electric-field-driven exciton vortices in transition metal dichalcogenide monolayers in the Bose-
Einstein condensation regime. The Rashba spin-orbit coupling created by perpendicular electric fields couples
the bright and dark excitons, behaves like an emerging SU(2) gauge field for excitons, and induces spatially
asymmetric distribution of exciton density. We find the interplay between the dipole-dipole interaction among
excitons and Rashba spin-orbit coupling leads to the phase transitions containing different vortices, from a single
pair of vortices to numerous satellite vortices appearing at the edge of the sample. The exciton condensation at
the K and K ′ valleys shows mirror-symmetric patterns composed of exciton vortices rotating oppositely, which
are protected topologically by the winding numbers.
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I. INTRODUCTION

The emerging layered two-dimensional (2D) transition
metal dichalcogenides (TMDs), such as MX 2 (M = Mo, W;
X = S, Se, Te, ...), display unique optical properties generat-
ing significant interests [1–3]. Since the Coulomb interaction
can not be fully screened in the 2D materials [4,5], the TMDs
monolayers (MLs) possess strong excitonic effect even at
room temperature and are expected to be an ideal platform
to explore exciton physics and devices [6–8]. These mate-
rials also exhibit strong light-matter interactions, due to the
enhanced excitonic effect. Understanding and manipulating
the excitons are key to potential applications of 2D TMDs for
future optoelectronic devices [9–14].

Excitons can be viewed as bosons when the paired
electrons and holes are tightly bounded by the Coulomb in-
teractions, therefore may collapse into a phase coherent state
known as Bose-Einstein condensation (BEC) at low tempera-
tures, and detected by the photoluminescence spectra [15–19].
The lifetime and binding energy of excitons are crucial for
observing exciton BEC experimentally in solids. Long exciton
radiative lifetime allows the excitons to build up a quasiequi-
librium before recombination. Excitons in the solids with an
indirect band gap are supposed to have long lifetimes. The ex-
citon lifetime could also be enhanced by the spatial separation
of electrons and holes, which can be induced by the type II
band alignment, as well as the external electric fields.
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Compared with the bulk semiconductor systems, the
unscreened Coulomb interaction in TMD MLs leads to
huge binding energies of excitons ranging from 0.4 to
1.1 eV [20–23], which show a linear scaling behavior as a
function of the band gap of 2D materials [22,24]. The huge
binding energy leads to small Bohr radius of excitons in TMD
MLs and high average exciton density, resulting in the consid-
erably high critical temperature of exciton BEC.

Recently, the condensation and the superfluidity of exci-
tons are reported experimentally in the TMD van der Waals
heterostructures [25–27], where the electrons and holes are
separated at different TMD MLs. The properties of these
condensates have also been investigated theoretically [28] at
high temperatures [29], in the presence of the unscreened
dipolar interactions between excitons [30]. Although the ex-
citon BECs in the TMDs have been studied both theoretically
and experimentally, the 2D exciton vortices in these materials
remain unexplored.

Potential traps are required for BECs in a strict 2D sys-
tem [31]. A conventional way to create in-plane potential
traps has been employed using the band-gap engineering,
e.g., the quantum confined Stark effect [32] and interface
fluctuations [33] in coupled quantum wells [15,33–35]. In
2D semiconductor systems, excitons can also be confined in
potential traps created by lateral confinements, i.e., the edges
of the nanoflakes.

In this work we consider a flake of TMD ML, e.g.,
WSe2, sandwiched by electrode gates shown schematically
in Fig. 1(a). The electric field created by the electrode gates
enhances lifetimes of excitons, and meanwhile leads to the
Rashba spin-orbit coupling (RSOC), inducing a mixing of
bright and dark exciton states [36], and leading to the for-
mation of exciton vortices. Compared with exciton BEC
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FIG. 1. Bright and dark excitons in TMD MLs. (a) Excitons
trapped in a circular flake (R0 = 0.3 μm) of WSe2 ML between the
electrodes. (b) Optical transitions and the bright/dark A/B exciton
states at the K and K ′ valleys. (c) Spatial separation of bright (left)
and dark (right) excitons caused by RSOC, where a pair of bright and
dark exciton vortices is also observed. (d) Dispersion of excitons at
the L state (down) and H state (up). (e) Valley-selective density (color
map) and velocity distributions (green arrows) of bright excitons
pumped with σ+, σ−, and linearly polarized laser, with fixed number
of bright and dark excitons. The orange solid lines show the density
profile along the x axis, while the dashed lines indicate the vortex
cores. |λBR| = 18 meV Å and nb,d = 1010 cm−2 in (d) and (e).

in coupled quantum wells, the TMD MLs possess unique
features such as valley-spin locking and intrinsic spin-orbit
coupling, which makes it possible to excite excitons at K/K ′
valley with opposite spins via the right (σ+) or left (σ−)
circularly polarized laser [see Fig. 1(b)]. We find the inter-
play between the valley-selective exciton BEC and RSOC can
induce a variety of BEC patterns as well as paired bright and
dark vortices, which have not been observed in earlier systems
like semiconductor quantum wells.

Our paper is organized as follows. In Sec. II, we derive
the exciton Hamiltonian in TMD MLs under perpendicular
electric field, and the coupled Gross-Pitaevskii (GP) equations
including the dipole-dipole interaction (DDI) between exci-
tons. The SU(2) gauge field induced by the RSOC created by
the electric field, and hence the formation mechanism of exci-
ton vortices are also given. In Sec. III, we give the numerical
results and discussion. First, we solve the coupled GP equa-
tions by using the imaginary-time-propagation method, to
study the ground-state exciton vortices and the phase (charac-
terized by the winding number) transitions between different
vortex states varying with RSOC. Second, we discuss the
impact of DDI and various impurities on the BEC patterns and
vortices. Third, we estimate the critical temperature of BEC
in the TMD MLs, and discuss the experimental realization of

exciton vortices in different TMD MLs. In Sec. IV, we give
the summary.

II. THEORY AND MODEL

To describe the motions of excitons, we first derive the
Hamiltonian of noninteracting excitons in TMD MLs under
the perpendicular electric fields. The low-energy k · p Hamil-
tonians of TMD MLs at the K/K ′ point can be written as in
the 4 × 4 matrix form H constructed from the spinful orbital
basis (dz2 for conduction bands and dx2−y2 + dxy for valence
bands) [37],

H =
[

H̃c H̃cv

H̃vc H̃v

]
, (1)

where the 2 × 2 matrices H̃c = [ h̄2|k|2
4m0

(α + β ) + �
2 ]I + λcτ sz

and H̃v = [ h̄2|k|2
4m0

(α − β ) − �
2 ]I + λvτ sz describe the lowest

conduction band and the topmost valence band, while H̃cv =
(H̃vc)† = [a0t0(τkx − iky)]I + H̃R represent the coupling be-
tween them. Here sx,y,z are the Pauli matrices denoting
electron spin, m0 is the free-electron mass, α, β are dimen-
sionless parameters, a0 is the lattice constant, t0 is the effective
hopping constant, and � is the energy gap. λc(v)τ sz indicates
the intrinsic spin-orbit splitting in the conduction (valence)
band, with valley index τ = ±1. H̃R = αR(τ sy + isx ) is the
RSOC induced by the perpendicular electric field, due to the
breakdown of the σh symmetry [38]. αR is the RSOC parame-
ter depending on the electric fields.

The single-band Hamiltonian can be obtained by applying
Löwdin’s perturbation theory [39] in the wide-band-gap limit

Hc =
[

h̄2|k|2
2mc,+

+ τλc + V0
2 λ∗

BRk−
λBRk+ h̄2|k|2

2mc,−
− τλc + V0

2

]

Hv =
[

h̄2|k|2
2mv,+

+ τλv − V0
2 −λ∗

BRk−
−λBRk+ h̄2|k|2

2mv,−
− τλv − V0

2

]
, (2)

where k± = kx ± iky, the effective mass of the conduc-
tion band mτ s

c = [(α + β )/2m0 + 2a2
0t2

0 /�′
τ s]

−1, and of the
valence band mτ s

v = −[(−α + β )/2m0 + 2a2
0t2

0 /�′
τ s]

−1. The
band gap �′

τ s = � + (λc − λv )τ s is valley and spin depen-
dent, as shown in Fig. 1(b). C3 symmetry at the K point
gives rise to the RSOC Hamiltonian as H̃ τ

BR = λi
BR(kxsy −

kysx ) + λr
BR(kxsx + kysy) [40]. Here the complex RSOC pa-

rameter λBR = λr
BR + iλi

BR, and |λBR| = 2αRa0t0/�′
τ s. V0 =

� + 4α2
R(1 − τ s)/�′

τ s ≈ �, when α2
R � �′

τ s.
Neglecting the valley coupling at low temperatures [41],

the Hamiltonian of the intravalley excitons can be represented
as H τ

ex = H τ
e (ke) + H τ

h (kh) + V (re − rh), where V (re − rh)
is the Coulomb interaction between the electrons and holes.
With ke = kc (kh = −kv), the electron (hole) Hamiltonian
H τ

e = Hc (H τ
h = −Hv) can be given by Eq. (2). Excitons

composed of holes at the upper (lower) branch of the spin-
splitted valence bands are named as A (B) excitons. In the
wide-band-gap limit, the RSOC between the conduction and
valence bands can be safely neglected, therefore, H̃ τ

BR(ke) in
H τ

e acts like the RSOC between bright and dark excitons,
while H̃ τ

BR(kh) in H τ
h which behaves like the RSOC between

A and B excitons. Since the Zeeman-type intrinsic spin-orbit
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splitting in the valence band |λv| is giant, separating A and
B excitons about 0.1 ∼ 0.2 eV [3,42,43], H̃ τ

BR(kh) (several
meVs [40]) can be neglected. Therefore, A and B excitons can
be decoupled.

We focus on the lowest A exciton at the K valley in this
paper [Fig. 1(b)]. The Hamiltonian for A excitons at the K
point in basis of the bright (with exciton spin S = 0) and dark
states (S = −1) can be expressed as the 2 × 2 matrix

Hex,K =
(

Hb0 H∗
BR

HBR Hd0

)
, (3)

where the Hamiltonian of the bright excitons Hb0 =
Hk,b + �′

b + V (re − rh), the dark excitons Hd0 =
Hk,d + �′

d + V (re − rh). Here �′
b = � + λc − λv and

�′
d = � − λc − λv . The kinetic energy of bright

(dark) excitons Hk,b = h̄2k2
e /2me1 + h̄2k2

h/2mh1 (Hk,d =
h̄2k2

e /2me2 + h̄2k2
h/2mh1), where the masses me1 = m+

c ,
me2 = m−

c , mh1 = −m+
v , and the RSOC between bright and

dark excitons HBR = λBRke+.
Since the effective masses of two spin-split conduction

band branches are generally different, me1 �= me2. The aver-
age electron mass is me = (me1 + me2)/2, the mass difference
is δm = (me2 − me1)/2, and the hole mass is mh = mh1.
In the center-of-mass (c.m.) coordinates, the displacement
of c.m. motions R = (mere + mhrh)/(me + mh), and of rel-
ative motions r = re − rh. The exciton c.m. wave vector
and relative wave vector are denoted as Q and q, respec-
tively. We define the exciton mass M = me + mh, and the
reduced mass μ = memh/M. The exciton relative motion and
c.m. motion are decoupled since δm � M. The Hamiltonian
for the bright (dark) excitons Hb(d )0 ≈ h̄2Q2/2Mb(d ) + Hr,b(d ),
in which the Hamiltonian of the relative motions is given
by Hr,b(d ) = h̄2q2/2μb(d ) + V (r) + �′

b(d ). Here the effective
mass of bright (dark) excitons is Mb = M(1 − δm/me) [Md =
M(1 + δm/me)], and the effective reduced mass of bright
(dark) excitons μb = μ(1 − δm/me) [μd = μ(1 + δm/me)].
The off-diagonal Rashba term can be rewritten as HBR =
λBR[(me/M )Q± + q±]. Due to the large exciton binding en-
ergy, the c.m. part of the RSOC (the first term in HBR) can be
decoupled from the relative part (the second term). Therefore,
we have

Hr,b(d )	(r) = Eb(d )	(r), (4)

where Eb(d ) = �′
b(d ) + εb,b(d ) is the ground-state energy of

the bright (dark) excitons, and εb,b(d ) is the exciton bind-
ing of bright (dark) excitons in the presence of RSOC (see
Appendix A).

The exciton Hamiltonian becomes

Hex,K

=
[

h̄2|Q|2/2Mb − �bd/2 λ∗
exQ−

λexQ+ h̄2|Q|2/2Md + �bd/2

]
+ E0,

(5)

where the energy difference between bright and dark exciton
states is

�bd ≡ Ed − Eb = −2λc + εb,d − εb,b. (6)

We set the zero point of exciton energy E0 ≡ (Eb + Ed )/2 =
� − λv + (εb,d + εb,b)/2, and the RSOC parameters for exci-

tons λex = λeiφ , with λ = (me/M )|λBR|, and φ is denoted as
the gauge phase of RSOC [φ = arg (λBR)]. Similarly, for the
K ′ valley, we have Hex,K ′ = H∗

ex,K .
The TMD ML with the finite size could provide a lateral

confinement for both the electrons and holes. Without loss
of the generality, we consider a circular flake with radius
of R0. In this case, the lateral confinement creates an in-
finite circular quantum well for exciton c.m. motions, i.e.,
HV = V0�(R0 − |re(h)|) = V0�(R0 − |R+mh

M r|). At the lat-
eral boundary R0, since R 	 r, the hard wall potential for
excitons simplifies to

HV = V0�(R − R0), V0 → ∞, (7)

which traps the excitons to form the 2D exciton BEC.
Next, we study the dipole-dipole interaction (DDI) be-

tween excitons. Under strong external electric field, the
electrons and holes are localized on the top and bottom sur-
faces of the TMD ML, respectively. The DDI can be written
as (see Appendix C)

Vdd (Q) = e2d

ε0ε

1 + xQ
(
(coth η1 + coth η2) + 1

2

)
1 + xQ[coth(η1 + η2) + 1]

, (8)

where η1,2 = ln[(ε + ε1,2)/(ε − ε1,2)]/2, and we take the
thin-film limit |Q|d � 1. The scattering processes of excitons
mediated by DDI, without flipping the exciton spins, are de-
scribed by

Hdd ≡ Vdd (R) ∗ (|ψb|2(R) + |ψd |2(R)), (9)

where the asterisk (symbol ∗) is denoted as the convolution
operator.

In addition, we consider the dynamical processes of bright
and dark exciton states. The dark A excitons can exist in WSe2

MLs for having long lifetimes (τd = 59 ms [44]), and have
been experimentally detected [23,45,46]. The bright excitons
survive for a few picoseconds. Nonetheless, they can be main-
tained at a high density by laser pumping, and their lifetimes
can be enhanced in the perpendicular electric field. The laser
pumping and recombination processes of the bright and dark
excitons are included by the pumping and decaying term

Hpd,b = ih̄[R̂(R) − �b|ψb|2]

Hpd,d = −ih̄�d |ψd |2, (10)

where �b(d ) = 1/(2τb(d)). τb(d ) is the lifetime of bright (dark)
excitons.

The bright exciton states can be coupled with the dark
states utilizing the magnetic field of the THz laser, known as
the electron-spin-resonance technique. The THz field couples
the bright and dark states by a Rabi-type term h̄� in the
rotating-wave approximation, accelerating the transition rate
between the bright and dark states.

Putting Eqs. (5), (9), (7), and (10) and the off-diagonal THz
term together, at low temperatures, the exciton BEC can be
well depicted by coupled GP equations

ih̄
∂

∂t

[
ψb

ψd

]
=

[
Hb − �bd

2 + Hpd,b −iλe−iφ∇− + h̄�

−iλeiφ∇+ + h̄� Hd + �bd
2 + Hpd,d

][
ψb

ψd

]
,

(11)
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where the Hamiltonian of the bright (dark) excitons Hb(d ) =
HT,b(d ) + HV + Hdd . Here the kinetic energy HT,b(d ) =
−h̄2∇2

R/2Mb(d ).
The exciton BEC at the ground state can be obtained by

solving Eq. (11) in the stationary condition. The rate equations
for bright and dark states can be constructed from Eq. (11),
i.e., dnb/dt = R− �bnb + Ibd and dnd/dt = −Ibd − �d nd ,
respectively. Here we denote the average density of bright
(dark) exciton states as nb(d ) = Nb(d )/S [Nb(d ) is the number
of bright (dark) excitons], the power density of the laser as
R = 〈R̂〉/S (in natural unit), and the hopping integral as Ibd =
(−i/h̄S)Im[

∫
ψ∗

b Hbdψd dS] [Hbd is the off-diagonal term in
Eq. (11)]. For the stationary state dnb(d )/dt = 0, hence, R−
�bnb = �d nd . Due to �b 	 �d , we have nb � R/�b. There-
fore, the average density of bright exciton states can be tuned
by the laser pumping independently. For simplicity, we con-
sider an equal occupation of bright and dark exciton states,
i.e., nb � nd . The more general unequally occupied cases are
given in the discussions of the influence of the DDIs. With
fixed average density of bright and dark excitons, Eqs. (11)
can be reduced to the static coupled GP equations

μ
[
ψb

ψd

]
=

[
− h̄2∇2

2Mb
− �bd

2 + Hdd −iλe−iφ∇− + h̄�

−iλeiφ∇++ h̄� − h̄2∇2

2Md
+ �bd

2 + Hdd

][
ψb

ψd

]
.

(12)
We solve Eqs. (12) with the boundary condition determined
by Eq. (7), i.e., (ψb, ψd )|R=R0

= 0, to obtain the ground state
of the exciton BEC.

We find that the ground-state excitons can be driven into
vortex states in the presence of the gauge field induced by
the RSOC. Here we discuss in detail. Equation (5) can be
written asHex,K = γ −1[h̄2(−i∇ − A)2/2M] − γ [h̄2κ2/M] −
σz[�bd/2] + I[E0] (see Appendix B), where

A =γ [−(κxσx + κyσy)ex + (κyσx − κxσy)ey], (13)

γ = I + σz[δm/me], and κx = κ cos φ, κy = κ sin φ with
κ = λM/h̄2. From this equation, one can see that the RSOC
behaves like a SU(2) gauge field acting on the c.m. motion of
excitons.

By diagonalizing the Hamiltonian Hex,K [Eq. (5)], we ob-
tain the gapped eigenstates at the K valley

(
ψ̃L

ψ̃H

)
=

⎛
⎝ −β+e−i(θQ+φ)√

4λ2Q2+β2+

2λQ√
4λ2Q2+β2+

−β−√
4λ2Q2+β2−

2λQei(θQ+φ)√
4λ2Q2+β2−

⎞
⎠(

ψb

ψd

)
, (14)

where ψb(d ) denotes the wave function of bright (dark)
excitons without RSOC, and L (H ) indicates the lower
(higher) exciton state. β±(Q) = αQ2 + V±(Q), V±(Q) =
�bd ± [(�bd + αQ2)2 + 4λ2Q2]1/2, where α ≡ h̄2(1/Md −
1/Mb)/2 � −h̄2δm/(meM ) arises from the mass difference
δm between the bright and dark excitons. While for the K ′
valley, one can easily obtain the wave function by taking the
complex conjugate. The eigenvalues

H̃L(H )(Q) � h̄2Q2/2M + V∓(Q)/2 + E0 (15)

at the K/K ′ valleys are splitted by both the intrinsic SOC and
RSOC [Fig. 1(d)].

From Eq. (14), the ground state (L) and the excited state
(H) are the hybridization of both the bright and dark exciton

states. Excitons are relaxed to the L state at low temperatures.
From Eq. (15), the L-state excitons are trapped in a Mexican-
hat-like potential when

|λBR(Ez )| > h̄

√
M

2m2
e

(
|�bd | + δm

me
�bd

)
, (16)

compared with the H-state excitons trapped in a steep
centrifugal potential in k space. This can be seen clearly
by taking the small gap limit |�bd | � 2λQ, H̃L(Q) �
h̄2(Q − κ )2/2M + E0. That is to say, the ground state of
excitons at the L branch is shifted to a finite momentum
h̄κ = λM/h̄ [Fig. 1(d)]. This ringlike momentum distribution
indicates that the ground-state excitons are no longer static,
but can move without dissipation in a superfluid phase. This
feature arises from the RSOC since κ is proportional to the
strength of RSOC λ.

The Mexican-hat-like dispersion of L-state excitons can
further induce the vortices in the BEC regime. The hard-wall
potential for bright and dark excitons created by the circu-
lar boundary results in the quantization of the wave vector,
i.e., Q|�b(d )| j = x|�b(d )| j/R0, where x|�b(d )| j is the jth zero of the
Bessel function J|�b(d )|(x), and �b(d ) is the azimuthal quantum
number of bright (dark) excitons. The eigenfunctions without
RSOC are found to be ψb(d )(R) ∝ J|�b(d )|(Q|�b(d )| jR)ei�b(d )ϑ . For
Q|�b(d )| jR � 1, the �b(d ) �= 0 solutions

ψb(d )(R) ∝ [cos ϑ + i sgn(�b(d ) ) sin ϑ]|�b(d )|R|�b(d )| (17)

appear to be vortex states [47]. From Eq. (15) with Q =
Q|�b(d )| j , the ground state of bright (dark) excitons can tran-
sit from �b(d ) = 0 to �b(d ) �= 0, by tuning the strength of
the RSOC κ , i.e., the electric fields. When κ exceeds a
critical value κ0, H̃L(Q11) has lower energy compared with
H̃L(Q01), indicating the rotating status of bright (dark) ex-
citons. For a single vortex �b(d ) = 1, the critical value κ0 =
(Q01 + Q11)/2 � 3.1183/R0. The corresponding critical elec-
tric field Ez0 is determined by

|λBR(Ez0)| = h̄2

√
2me

√√√√
κ2

0 +
√

κ4
0 + M2

h̄4 �2
bd + Mδm�bd

meh̄2 ,

(18)
which restores to Eq. (16) when κ0 � 0. As we increase the ra-
dius R0 of the sample (condensate region), the critical electric
field decreases due to Ez0 ∝ 1/R0. Equation (18) is a good in-
dicator for the realization of exciton vortices without pumping
and decaying. In the condition that bright excitons are tuned
by the laser pumping and the bright and dark excitons reach a
dynamical equilibrium, we find the electric field required for
the vortex creation is reduced, with the numerical results given
in the following section.

III. NUMERICAL RESULTS AND DISCUSSIONS

The stationary solution of the Eqs. (12) for fixed numbers
of bright and dark excitons, can be solved by the imaginary-
time propagation with a normalization step (see Appendix D),
which is widely used in ground-state calculations of BEC
systems [48–56]. Notice that the final state depends on the
choice of initial status. We first consider the states having
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FIG. 2. Motion of a bright exciton vortex at the K valley in a
WSe2 flake, varied with perpendicular electric fields. (a)–(c) Show
the normalized density η = ρ/N (color map) and the unit velocity
v̂ (white arrows) of the bright excitons at the K valley with fixed
average density nb,d = 1010 cm−2, at different strengths of the RSOC
|λBR|= (a) 6 meV Å, (b) 12 meV Å, (c) 36 meV Å. (d)–(f) Show the
phases ϕ and the wave vectors �k = ∇ϕ (green arrows) corresponding
to (a)–(c). The radius of WSe2 flake R0 = 0.3 μm.

zero total orbital angular momentum (� = �b + �d = 0). In
this consideration, although � is conserved, the angular mo-
mentum of bright excitons �b and dark excitons �d are no
longer good quantum numbers. Therefore, pairs of bright and
dark exciton vortices can exist.

We take exciton BEC in a circular WSe2 ML flake for
instance (other TMD MLs are discussed in the last of this
section). The strength of RSOC in the WSe2 ML is |λBR| =
0.18Ez (eV Å). The electron masses me1 = 0.29m0, me2 =
0.40m0, the hole mass mh1 = 0.36m0 (m0 is the electron rest
mass) [43], and the bright-dark splitting �bd = −37 meV. We
consider the simple free-standing case. The dielectric con-
stants of the substrates (the vacuum) are chosen as ε1,2 = 1.0,
and the WSe2 ML ε = 4πχ2D/d , with the 2D polarizability
χ2D = 7.18 Å [5]. We also set the gauge phase of RSOC
φ = π/2 to consist with the normal Rashba form. Hereafter,
we choose the average density of bright (dark) excitons nb,d =
1010 cm−2, and the radius of the flake R0 = 0.3 μm.

From the numerical calculations of Eqs. (12), we find that
the RSOC plays an important role in the ground-state BEC
pattern, as shown in Figs. 1(c), 1(e), 2, and 3. The Rashba-
induced SU(2) gauge field A in Eq. (13) arises a spin motive
force (SMF) F = h̄2κ2σz(Q × ẑ)/M, with its direction F̂ de-
termined by the gauge choice of the RSOC, i.e., the phase
φ. F would not break the rotational symmetry of the total
Hamiltonian [Eq. (12)], but would lead to the separation of
the density distribution of the bright and dark states, i.e.,
the asymmetric pattern of the density distributions shown in
Fig. 1(c). More importantly, the RSOC can drive the exciton
BEC into a vortex phase. Denoting Q± = Qe±iθQ , where Q =
|Q| with θQ = arctan(Qy/Qx ), the 2 × 2 RSOC Hamiltonian
composed of off-diagonal terms of Hex,K in Eq. (5) is

Hex,RSOC =
[

0 λe−iφQe−iθQ

λeiφQeiθQ 0

]
. (19)

FIG. 3. (a) The normalized density η (color map) and unit ve-
locity v̂ (white arrows) distributions of exciton BEC stripe pattern,
for the exciton density nb,d = 1.5 × 1011 cm−2, and the strength of
RSOC |λBR| = 300 meV Å. (b) The zoom-in of (a) at the edge of the
BEC pattern, which shows the satellite vortices at the edge and the
bulk vortices located at the radical directions. (c) Phase transitions
(indicated by different colors) of bright exciton BEC at the K valley
with � = 0, as a function of the RSOC. Nv is the number of vortices in
the sample. (d) The angular momentum distribution lz (color map) of
the ground-state bright vortices for different λBR in the condition of
� �= 0, with their positions and directions indicated by green dashed
lines and arrows. nb,d = 1 × 1010 cm−2 in (c) and (d).

From Eq. (19), the RSOC possesses a phase factor θQ in k
space, indicating an angular momentum transfer driven by
electric fields. The angular phase accumulation of wave func-
tions results in a multivalued solution of ψb and ψd at a
certain point and hence the dislocation of the wavefronts [57],
leading to the formation of paired bright-dark exciton vortices
[Figs. 1(c)]. Due to the time-reversal symmetry, one can see
the mirror-symmetric exciton BEC patterns, i.e., exciton vor-
tices rotating in opposite directions, at the K and K ′ valleys
[Fig. 1(e)]. For simplicity, we focus on the bright exciton
vortices at the K valley.

Figure 2 shows the motion of a bright exciton vortex driven
by the RSOC induced by perpendicular electric fields. We
can see the giant exciton vortex, whose core is indicated by
the zero of the wave function ψ = √

ρeiϕ , appears at the
boundary and moves to the center as the strength of the
RSOC increases [Figs. 2(a)–2(c)]. The diameter of the op-
tically bright vortex can be as large as 200 nm [Fig. 2(b)],
which makes it possible to observe experimentally [58,59].
Due to the SMFs F , the density distribution of bright (dark)
excitons appears to be a broken ring, containing a vortex. We
would like to emphasize that the rotating status of the ground
state is revealed by the nonuniform phases of the condensate
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wave function as shown in Figs. 2(d)–2(f). The existence of
the vortex can be verified by the nontrivial straight-shaped
phase jump of ϕ, along an arbitrary curve around the singular
point (the vortex core). The exciton motions in the vortex
are illustrated by the velocity distribution v = h̄k/M, where
k = ∇ϕ.

As RSOC grows stronger, clockwisely (right half region)
and counterclockwisely rotating (left half region) vortices
appear simultaneously. The vortices are aligned along the x
axis, driven by the increased SMF F and the DDI-induced
repulsion between excitons. The repulsion between the ring
fragments also squeezes the vortices into crescent shapes
[see Figs. 2(c) and 2(f)]. In Fig. 2(f), we see trivial phase
accumulations with cross-shaped phase jumps, which can be
eliminated by local phase shifts. Therefore, this type of phase
jumps is not related to the presence of the vortices.

Figure 3 shows a variety of exciton vortex states and
BEC patterns at the strong RSOC regime. As the RSOC
increases, excitons at the edge of the flake roll into rotating
satellite vortices [Figs. 3(a) and 3(b)]. The satellite vortices
are caused by the interplay of the boundary scattering and
the SMF-induced by RSOC. The broken fragments combine
together to form ringlike stripes. Compared with line arranged
vortices at the small RSOC regime, the vortices [the period-
ically distributed dark spots in Fig. 3(a)] within the ringlike
stripes show different vortex arrangements. This spontaneous
symmetry breaking at low temperatures is induced by the
Mexican-hat-like dispersion of ground-state excitons in the
presence of the RSOC, as we discussed in Sec. II.

The occurrence of the nontrivial phase accumulation could
be utilized to define the topology that a jth vortex is topolog-
ically protected by a winding numberN j around the vortex at
x j [60]:

N j ≡ lim
s j→0

1

2π

∮
�s j

k · dR, (20)

where �s j is a family of closed curves containing x j

parametrized by s j . In our calculations (see Appendix E), N j

are found to be Z = ±1, where + (−) corresponds to the
vortex rotating clockwisely (counterclockwisely). The total
number of vortices can be counted as Nv = ∑

j |N j |. Nv then
actually depicts topologically inequivalent phases.

The phase transitions conserving total angular momentum
(� = 0) can be revealed by the BEC energy [described by
Eq. (D5)], which is characterized by different Nv , as shown
in Fig. 3(c). The ground-state energies with the number of
vortices Nv rely parabolically on the strength of the RSOC
λBR [from Eq. (15), E0 ∝ −κ2]. The slope changes suddenly
when the system falls into another N ′

v state. Therefore, the
ground-state phase transitions occur as the RSOC increases.

We further consider the excitons initialized with rotations
(� �= 0) [61]. By varying �, the global minimum of the BEC
energy can be obtained. The excitons may collapse into the
ground states having different quantities of bright and dark
vortices. To better understand the distribution of vortices with
nonzero �, we evaluate the angular momentum lz = h̄∇ϑϕ,
as shown in Fig. 3(d). The vortices at R �= 0 can be found
at the interfaces between positive (red) and negative (blue) lz
branches, while the central vortex at R = 0 is indicated by two

FIG. 4. Impact of exciton densities on the BEC distributions.
(a) x-directional profile of exciton densities ρ = |ψ |2 at the K valley.
(b) Phase diagram (color map) of the ground state varied with Rashba
strength λBR and average density nb,d . (c) The normalized density
η = ρ/N (color map) and the unit velocity �eϕ (v̂) (white arrows)
distribution of the bright excitons at the K valley, with equal num-
ber of bright and dark excitons. (d) Shows the results of the dark
excitons in the same condition of (c). (e), (f) Show the distributions
of unequally populated bright and dark excitons, and the relocations
of the vortices. The radius of WSe2 flake R0 = 0.3 μm. The strength
of the Rashba SOC |λBR| = 18 meV Å.

lz branches of the same signs. With increasing the strength
of the RSOC, we find a variety of centrosymmetric BEC
patterns, and rearrangements of the bright and dark exciton
vortices in Fig. 3(d).

Figure 4 shows the influence of DDI, induced by different
densities of bright and dark excitons. Apart from the SMF
F induced by RSOC that separate bright and dark excitons,
the repulsive DDI tends to spread the excitons in the BEC
region. The strength of the DDI is proportional to the av-
erage density of excitons. When the DDI grows stronger,
the increasing repulsive interactions separate the excitons in
the sample, and push the ring fragments to the edge of the
BEC region gradually, as shown in Fig. 4(a). This behavior
promotes the formation of satellite vortices. Based on analysis
ofN [Eq. (20)], we obtain the relation between the number of
vortices Nv and RSOC as well as DDI strength in Fig. 4(b),
in the typical � = 0 condition. Interestingly, we find the Nv
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FIG. 5. The distribution of normalized density η (color map in the first row), velocity unit velocity v̂ (white arrows in the first row), and
angular momentum lz (color map in the second row) of bright excitons at the K valley. The influence of random antibonding type impurities
on the bulk exciton vortices, and on the satellite vortices, is shown in (a) and (b). While the influence of bonding type impurities are shown
(c) and (d), in the same conditions of (a) and (b), respectively. The results are performed at different strengths of the RSOC, |λBR|= (a) and
(c) 36 meV Å, and (b) and (d) 300 meV Å, in a circular flake of WSe2 ML with radius R0 = 0.3 μm. The locations (green circles in the second
row) and the total number of the impurities are generated randomly.

phases can be extended to high densities in the relatively weak
Rashba SOC regime. We also find the DDI merely affects the
vortices in the ring fragments, even if the exciton density is
up to several 1011 cm−2. We proceed to consider the more
general nb �= nd conditions, i.e., nd = 3nb. We find the exciton
vortices contained in the ring fragments almost maintain their
positions, while the exciton density distributions are greatly
tuned by the DDI, as indicated in Figs. 4(c)–4(f).

The effect of random defects is shown in Fig. 5. Since
the samples are relatively large, vacancies, ionic adatoms,
and grain boundaries are generally inevitable. Similar to the
widely studied pointlike defects created by phase-imprinting
techniques in BEC systems [62–64], these types of impurities
raise additional local potentials for the condensed excitons.
The impurities induced by ionic adatoms led to the local
coupling between the conduction and the valence bands,
which can be regarded as a term H̃ ′

cv = −λimp [65] added
to H̃cv in Eq. (1). The positive (negative) λimp defines the
bonding (antibonding) of the conduction and valence bands.
It is reasonable to assume the local impurities as Gaussian
trap potentials for both the bright and the dark excitons
Vimp(R) = Aimpexp[−(R − Rimp)2/2R2

c ], where Vimp(R) > 0
[Vimp(R) < 0] stands for the antibonding (bonding) type of
impurities. Here the radius Rc is comparable to the lattice vec-
tor of the TMD MLs. We find that the vortices induced by the
RSOC are robust against the antibonding type of impurities
[Figs. 5(a) and 5(b)]. In contrast, the bonding type of impuri-
ties can destroy the vortices induced by the RSOC, and at the
same time create local vortices pinned by the ionic adatoms
[Fig. 5(c)]. At the strong RSOC regime, these bound states
form new vortex stripes [Fig. 5(d)]. The vacancies (i.e., the
selenium monovacancies) introduce tightly localized midgap
states [66,67], and hence create deltalike potential traps at

the atomic sites Rimp, i.e., Vimp(R) = V0�(|R − Rimp| − Rc),
capturing the excitons at |R − Rimp| < Rc. Therefore, the va-
cancies behave like the bonding type of impurities.

The grain boundaries (also the polycrystalline boundaries)
act similarly as the lateral confinement (also the single-
crystalline edges) of the ML flake, leading to the significant
blueshift of the A-exciton fluorescence [68]. This blueshift
greatly increases the exciton energy E0 of Eq. (5) near the
grain boundaries, and hence create potential barriers for the
exciton c.m. motions. Compared with the small BEC en-
ergy, these potential barriers can be treated as the hard-wall
potential boundaries. Hence, the excitons are trapped in an
irregularly shaped region, which will lead to the contraction
of the BEC patterns and vortices.

We further estimate the critical temperature of the ex-
citon BEC in TMD MLs. The exciton BEC and vortices
can be observed even at high temperatures. Although the
effective exciton mass in the TMD ML (∼0.71m0) is larger
than that in semiconductor-coupled quantum wells (∼0.25m0)
proposed by Butov et al. [69], the average exciton density
nb(d ) in TMD MLs can be very high. The high exciton den-
sity is due to the small Bohr radius of excitons in TMD
MLs, which is caused by the enhanced Coulomb interac-
tion in the 2D thin films. This could lead to high critical
temperature Tc of the condensation. Tc can be estimated by
setting the condensate fraction of the L branch ξL = 1 −∑

|m| j {exp βc[H̃L(Q|m| j ) − μ] − 1}−1
/nS = 0 in the weak in-

teracting limit, where βc = 1/kBTc, μT →0 = min(H̃L ), and
S = πR2

0 is the area of the sample. For example, a WSe2

ML flake with radius of 0.1 μm has Tc ≈ 141 K, well beyond
the temperature zone of liquid nitrogen, when the exciton
density is nc = 8 × 1012 cm−2 (the ionization limit given in
Ref. [70]). Since the dilute limit of DDI could be applied for
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TABLE I. Estimated parameters for excitons in TMD MLs. The
exciton c.m. mass M, the reduced mass μ, and the mass difference
δm are derived from the band masses mc1,c2,v1[43]. m0 is the free-
electron mass. The monolayer thickness d0 is given by Ref. [43].
The screening length r0 = 2πχ2D is given by Ref. [5]. The bright-
dark splitting �bd is derived from the spin splitting in the conduction
bands −2λc = 2�CB [43]. The exciton binding energy is calculated
from Eq. (A1), and varies with the applied electric field Ez. The unit
of the perpendicular electric Ez is V/Å. The strength of Rashba SOC
|λBR| is from Ref. [40].

MoS2 MoSe2 WS2 WSe2

δm/m0 0.015 0.040 0.045 0.055
me/m0 0.455 0.540 0.315 0.345
M/m0 0.995 1.140 0.675 0.705
μ/m0 0.247 0.284 0.168 0.176
d0 (Å) 3.17 3.335 3.14 3.34
r0 (Å) 41.47 51.71 37.89 45.11
2�CB (meV) 3 20 −31 −37
�bd (meV) −2–3 10–20 −54– −31 −58– −37

λBR (eVÅ) 0.033Ez 0.055Ez 0.13Ez 0.18Ez

n < nc (see Appendix C), the exciton vortices may survive
from the dipolar deviations at finite temperatures.

In the above calculations, we choose WSe2 MLs to illus-
trate the 2D vortex states of condensed excitons. However,
other TMDs can also be used to realize the exciton vor-
tices. Here, we estimate the suitable TMD MLs to realize
the exciton vortices experimentally. Equation (16) indicates
that smaller bright-dark splitting �bd can reduce the RSOC
required for the transition into vortex states. Recalling Eq. (6),
the bright-dark splitting �bd is dependent on binding energy
of bright and dark excitons. In TMD MLs, since μb < μd ,
the binding energy of the dark excitons −εb,d is larger than
the bright excitons −εb,b, which leads to εb,d − εb,b < 0.
The intrinsic spin splitting in molybdenum dichalcogenides
(Mo-based) appears to be λc < 0, λv > 0, while in tung-
sten dichalcogenides (W-based) λc > 0, λv > 0. Hence, the
molybdenum dichalcogenides of the TMDs family are pre-
dicted to have small �bd , as we summarized in Table I. In
particular, the MoS2 MLs surrounded by hBN layers (with
the dielectric constants ε1,2 = 4.89 [25]) have vanishing �bd .
Therefore, the single vortex state can be achieved experimen-
tally in the flakes of MoS2 MLs, under a relatively weak
electric field (<1 MV/cm).

Meanwhile, the quantity of exciton vortices is mainly
dependent on the strength of the RSOC |λBR|, as revealed
in Eq. (18). With |λBR| obtained from the DFT calcaula-
tions [40], the tungsten dichalcogenides with heavy chalcogen
atoms are good candidates to host the multiple exciton vor-
tices, because of their strong RSOC. Due to the relatively large
bright-dark splitting �bd in these materials, the applied elec-
tric field should be as strong as tens of MV/cm (i.e., utilizing
ionically conducting electrolytes [71,72]). We expect WTe2

MLs have more significant vortex structures, but the related
data of Te- based TMDs are still lacking. Therefore, we just
take WSe2, for example. We believe that the calculations of
vortex states in WSe2 are applicable for the family of TMD
MLs.

IV. CONCLUSION

In summary, we study the exciton BEC in flakes of TMD
MLs in the presence of the RSOC, which couples bright and
dark A excitons, and induces ground-state exciton vortices
at K and K ′ valleys rotating oppositely. The clockwise- or
counterclockwise-rotating exciton vortex can be created by σ±
lasers, and protected by the winding numbers. The interplay
between the DDI and RSOC leads to the stripe pattern and the
phase transitions containing various vortices. The high exciton
densities in TMD MLs make it possible to observe the exciton
BEC and vortices at higher temperatures. Because of the long
lifetime of dark excitons, and the sharp boundary to suppress
angular noise raised by pumping, the giant ground-state vor-
tices could sustain long-time evolutions.
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APPENDIX A: EXCITON BINDING ENERGY
IN THE PRESENCE OF RSOC

Since the TMD MLs are atomically thin, the exciton mo-
tions along the z direction are strongly confined. The internal
motions of bright and dark excitons containing the RSOC
between them can be described by the equation[

− h̄2

2μb
∇2 + V (r) λ∗

BR(−i∇x − K ′∇y)

λBR(−i∇x + ∇y) − h̄2

2μd
∇2 + V (r)

][
	b(r)
	d (r)

]

=
[
εb,b

εb,d

][
	b(r)
	d (r)

]
. (A1)

We treat the off-diagonal RSOC as perturbation. With the base
functions 	b0(d0)(r), the unperturbed binding energy εb,b0(d0)

FIG. 6. The schematic dipole-dipole interactions in our system,
where Veie j represents the Coulomb interaction between electrons,
Vhih j between holes, and Veih j,Vhie j between electrons and holes. pi, j

are the dipole moments of exciton i and j, and ri, j are the locations
of excitons. d is the field-induced electron-hole separation.
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of the bright (dark) excitons is given by[
− h̄2

2μb
∇2 + V (r)

]
	b0(r) = εb,b0	b0(r),

[
− h̄2

2μd
∇2 + V (r)

]
	d0(r) = εb,d0	d0(r). (A2)

In polar coordinates, 	b0(d0)(r) = 1√
2π

eimϑ	nm(r). With∫ 2π

0 eim′ϑei(m+1)ϑdϑ = 2πδm′,−(m+1), 	b(d ) and εb,b(d ) in
Eq. (A1) can be obtained by the exact diagonalization of

Hr =
[
εb,b0 Ibd

Idb εb,d0

]
, (A3)

where

Idb ≡
∫

	∗
d0(r)λ BR(−i∇x + ∇y)	b0(r)dτ

= δm′
d ,mb+1

∫ ∞

0
α	n′

d m′
d
(r)

(
∂

∂r
− mbr

)
	nbmb (r)r dr dϑ,

Ibd ≡
∫

	∗
b0(r)λ∗

BR(−i∇x − ∇y)	d0(r)dτ

= δmd ,m′
b+1

∫ ∞

0
α	n′

bm′
b
(r)

(
− ∂

∂r
− md r

)
	nd md (r)r dr dϑ

= I†
db. (A4)

In order to calculate Eqs. (A2) and (A3), we use a modified
form of Keldysh potential, which takes the spatial separation
of electrons and holes |ze − zh| = d (d can be evaluated by the
thickness of monolayer d0) into account,

V (r) = − e2

4πε0ρ

∫ ∞

0

e−qd J0(t )

(ε1 + ε2)/2 + r0q
dt, (A5)

where ε1,2 are the dielectric constants of substrates, and r0

is the screening length of the TMD layer [4]. The energy
variation induced by the RSOC can also be evaluated by
applying Löwdin’s perturbation theory to Eq. (A1) in k space,
i.e., �εb,b = −�εb,d = (1/2μb − 1/2μd )−1λ2

BR/h̄2.

APPENDIX B: GAUGE FIELD INDUCED BY RASHBA SOC

Denoting κ = λM/h̄2, the exciton Hamiltonian (5) in the presence of the RSOC can be written as follows:

Hex,K = h̄2

2M

⎛
⎜⎝

Q2
x+Q2

y(
1− δm

me

) 2κe−iφ (Qx − iQy)

2eiφκ (Qx + iQy)
Q2

x+Q2
y(

1+ δm
me

)
⎞
⎟⎠ +

(−�bd
2

�bd
2

)
+

(
E0

E0

)

� h̄2

2M

[( (
1 + δm

me

)
Q2

x 2κxQx − 2iκyQx

2κxQx + 2iκyQx
(
1 − δm

me

)
Q2

x

)
+

( (
1 + δm

me

)
Q2

y −2κyQy − 2iκxQy

−2κyQy + 2iκxQy
(
1 − δm

me

)
Q2

y

)]
− sz

2
�bd + E0I

= h̄2

2M

[(
I + δm

me
sz

)(
Q2

x + κ2
) + 2(κxsx + κysy)Qx +

(
I + δm

me
sz

)(
Q2

y + κ2
) − 2(κysx − κxsy)Qy

]

− h̄2κ2

M
− sz

2
�bd + E0I.

When −2κ2 δm
me

sz → 0, we have

Ĥex,K = h̄2

2M

(
I + δm

me
sz

)
(Q − A)2 + I − sz

2
�bd + EA − h̄2κ2

M
, (B1)

where the SU(2) gauge field is denoted as

A=
(
I − δm

me
sz

)
[−(κxsx + κysy)ex + (κysx − κxsy)ey]. (B2)

APPENDIX C: DERIVATION OF DIPOLE-DIPOLE INTERACTIONS

The DDI is composed of four pairs of two-body Coulomb interactions between the charged particles, including (1) two
electrons from excitons 1 and 2 [Ve1e2(Q)], (2) an electron from exciton 1 and a hole from exciton 2 [Ve1h2(Q)], (3) a hole from
exciton 1 and an electron from exciton 2 [Vh1e2(Q)], and (4) two holes from excitons 1 and 2 [Vh1h2(Q)]. We set the holes h1 at
R, h2 at R′, and the electrons e1 at R + p, e2 at R′ + p′, where p, p′ are denoted as the exciton dipoles. The electrons and holes
move in different planes separated by d, under the perpendicular electric field Ez, as sketched in Fig. 6.

By solving the layered Poisson’s equations [73,74], we have the Coulomb interactions in k space,

Ve1e2(Q) = e2

[(
1 + ε1

ε

)
eQd +

(
1 − ε1

ε

)
e−Qd

]/
ε0εQQ,

Ve1h2(Q) = −2e2/ε0εQQ = Vh1e2(Q),

Vh1h2(Q) = e2

[(
1 + ε2

ε

)
eQd +

(
1 − ε2

ε

)
e−Qd

]/
ε0εQQ. (C1)
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Here, the effective dielectric function of the TMD layer is

εQ = ε
[(

1 + ε1

ε

)(
1 + ε2

ε

)
eQd −

(
1 − ε1

ε

)(
1 − ε2

ε

)
e−Qd

]
, (C2)

and ε, ε1,2 are the dielectric constants of the TMD ML and substrates.
The DDI can be expressed as

Vdd (R, R′, p, p′) ≡
∫

d2Q eiQ·(R′−R)Vdd (Q, p, p′), (C3)

where

Vdd (Q, p, p′) = Ve1e2(Q) + eiQ·p′
Ve1h2(Q) + e−iQ·pVh1e2(Q) + eiQ·(p′−p)Vh1h2(Q). (C4)

Since Q is an in-plane wave vector, we denote p′ = d+δp′, p = d+δp. Here the in-plane displacements δp′(δp) stand for
the deviation of exciton dipoles from the direction of electric field at finite temperatures. As a consequence, the real part of
exp [iQ · δp(δp′)] reduces the two-body Coulomb interactions, while the imaginary part introduces the exponential decay of
the interactions varying with the distance between excitons. Both effects cause the decrease of repulsive Coulomb interactions
between the charges. Therefore, the strength of DDIs is generally reduced in the presence of the dipole fluctuations.

The dilute limit is applicable at low temperatures, due to the small exciton radius (less than 1 nm), and the average distance
between excitons |R′−R| = √

1/n 	 |δp′|, |δp| (n could be up to several 1012 cm−2). The DDI in the dilute limit can be further
represented as Vdd (R, R′) � ∫

d2Q eiQ·(R′−R)Vdd (Q), where Vdd (Q) ≡ Vdd (Q, d, d). We have Vdd in reciprocal space

Vdd (Q) = e2d

ε0ε

(
2 + ε1+ε2

ε

)
exQ + (

2 − ε1+ε2
ε

)
e−xQ − 4

xQ
[(

1 + ε1
ε

)(
1 + ε2

ε

)
exQ − (

1 − ε1
ε

)(
1 − ε2

ε

)
e−xQ

] , (C5)

with xQ = Qd . When ε > ε1,2, the Keldysh model is applicable [73], and we obtain Eq. (8).
Since limQ→0 Vdd (Q) = e2d

εε0
, Vdd (Q) is well defined in the momentum space. Therefore, the convolution theorem F (Hdd ) =

F (Vdd ) F (|ψb|2 + |ψd |2) can be safely applied in the DDI calculation of Eq. (9).

APPENDIX D: NUMERICAL ALGORITHM

Introducing length unit r0 and time unit t0, setting r = R/r0, q = Qr0, and E0 = h̄/t0, we have dimensionless parameters
like V0 = δV/E0, Cdd = N e2d

εε0r2
0 E0

, Cq = h̄2

Mr2
0 E0

, λ0 = λ
E0r0

, δ = �bd
E0

, and η1,2 = 1
2 ln ε+ε1,2

ε−ε1,2
. From Eqs. (12), the time-independent

cGPEs can be written in the dimensionless form as

μ� = F −1(HTF (�)) +HV �, (D1)

where the condensate wave function � = (ψb, ψd )T , the momentum-dependent term HT = {hi j}, h11(22) = (Cqηb(d )q2 ∓ δ)/2,
ηb(d ) = 1/(1 ∓ δm/me), h21 = h∗

12 = λ0eiφ (qx + iqy), and potential in real space HV = CddF −1[vddF (|ψb|2 + |ψd |2)]I, with
vdd being the dimensionless DDI potential in the paper. We set φ = π/2.

For ground-state calculations, we use imaginary-time propagation method, and introduce τ = it in cGPEs, the Eq. (D1) can
be discretized and rewritten as self-aligned iteration through Backward-Euler spectral method (BESP). From τn to τn+1, the
imaginary-time cGPEs are given by

F�∗
n+1 = A[F�n − �τF (HV �∗

n+1)] (D2)

followed by a projection step

�n+1 = �∗
n+1/ ‖ �∗

n+1 ‖ (D3)

to satisfy the normalization condition, where

A = [1 + �τ (HT + E )]−1

=
(1 + h22�τ + E�τ −h12

−h21 1 + h11�τ + E�τ

)
(1 + h11�τ + E�τ )(1 + h22�τ + E�τ ) − h12h21

(D4)

and E is introduced as a parameter to speed up the convergence, i.e., the energy per particle

E (�) =
∫

E0dr
[∑

j=b,d

(Cqη j

2 |∇ψ j (r)|2 + |ψ j (r)|2 ∑
j′=b,d

∫
Cddvdd (|r − r′|)|ψ j′ (r′)|2dr′)

−2λ0[Im(ψ∗
d (r)∇xψb(r)) + Re(ψ∗

d (r)∇yψb(r))] + δ
2 (|ψb(r)|2 − |ψd (r)|2)

]
. (D5)

Note that �τ = τn+1 − τn. The stopping criterion is for certain tolerance ∀ ε > 0, ∃ N ∈ N to make ‖ �n−�n+1

�τ
‖< ε for n � N .

When the convergence of the energy is more important than that of the wave function, we could also use stopping criterion as
‖ E (�n )−E (�n+1 )

�τ
‖< εE .
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Since the final state depends on the choice of the initial status, in the presence of local minimums of the BEC energy created
by different vortex configurations, we choose the vortex solution

ψ�
b(d ) = 1√

π
[x + i sgn(�)y]|�| exp

[−(x2 + y2)
/

a2
1

]
(D6)

as the initial wave function. Np = |�| is the total number of initial vortices and � = 0 stands for a Gaussian distribution. From
our extensive numerical experience, the global minimum of the overall BEC energy can be obtained within our proposal initial
data. We also find that the calculated ground-state energy E retains its value as a1 increases for a particular Np, while the energy
minimum can be reached by setting Np = 0, 1 in the relatively weak RSOC regime.

APPENDIX E: DETECTION OF THE EXCITON VORTICES

For a 2D wave function ψ (r), vortex at r0 can be detected by the local phase change along an arbitrary close curve � around
r0,

κ (r0) =
∫

�

d arg(ψ ) =
∫

�

[∂x arg(ψ ) dx + ∂y arg(ψ ) dy] =
∫

�

d[−i ln(ψ/|ψ |)]. (E1)

It is easy to check that arg(ψ ) can be defined continuously, for the continuous wave function ψ locally around r0, where
ψ (r0) �= 0 [by picking up a proper branch of ln(z), z ∈ C]. For sufficiently smooth ψ (assuming finite number of zeros of ψ),
κ (r0) is a well-defined function for arbitrary r0 [independent of choices of branches for ln(z)]. For two curves �1, �2, if the area
� enclosed by �1 and �2 does not contain zeros of ψ , such that arg(ψ ) becomes smooth in �, then by Green’s formula∫

�2

d arg(ψ ) −
∫

�1

d arg(ψ ) =
∫

�

(∂x∂y arg(ψ ) − ∂y∂x arg(ψ ))dr = 0. (E2)

This shows that κ (r0) = 0 when ψ (r0) �= 0 (as one can shrink the curve �1 to point r0). When ψ (r0) = 0, this happens to be the
winding number of the possible vortex at r0, and arg(ψ ) may not be a continuous function locally around r0 if r0 is a vortex core.
Noticing that ∇ arg ψ = v is the velocity [well defined away from vortex or using the definition Im(∇ψψ̄ )/|ψ |2], right-hand
side integrand in (2) is the curl of v. Formally, we can calculate the vortex location and winding number by computing curl(v).
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[48] K. Góral, K. Rzążewski, and T. Pfau, Phys. Rev. A 61,

051601(R) (2000).
[49] D. H. J. O’Dell, S. Giovanazzi, and C. Eberlein, Phys. Rev. Lett.

92, 250401 (2004).
[50] H. Hu, B. Ramachandhran, H. Pu, and X. J. Liu, Phys. Rev. Lett.

108, 010402 (2012).
[51] Y. Zhang, L. Mao, and C. Zhang, Phys. Rev. Lett. 108, 035302

(2012).

[52] R. N. Bisset, D. Baillie, and P. B. Blakie, Phys. Rev. A 88,
043606 (2013).

[53] D. Baillie and P. B. Blakie, New J. Phys. 17, 033028 (2015).
[54] W. Bao and Y. Cai, SIAM J. Appl. Math. 75, 492 (2015).
[55] Y. Cai, Y. Yuan, M. Rosenkranz, H. Pu, and W. Bao, Phys. Rev.

A 98, 023610 (2018).
[56] C.-J. Wu, I. Mondragon-Shem, and X.-F. Zhou, Chin. Phys.

Lett. 28, 097102 (2011).
[57] J. F. Nye, M. V. Berry, and F. C. Frank, Proc. R. Soc. London A

336, 165 (1974).
[58] E. L. Bolda and D. F. Walls, Phys. Rev. Lett. 81, 5477

(1998).
[59] K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I.

Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, Nat.
Phys. 4, 706 (2008).

[60] M.-A. García-March, A. Ferrando, M. Zacarés, S. Sahu, and
D. E. Ceballos-Herrera, Phys. Rev. A 79, 053820 (2009).

[61] M. Van der Donck and F. M. Peeters, Phys. Rev. B 99, 115439
(2019).

[62] M. O. Borgh and J. Ruostekoski, Phys. Rev. Lett. 117, 275302
(2016).

[63] L. J. O’Riordan and T. Busch, Phys. Rev. A 94, 053603 (2016).
[64] S. G. Rosa, O. Hipólito, and R. Lobo, Phys. Rev. A 11, 1454

(1975).
[65] Y. Dubi and A. V. Balatsky, Phys. Rev. Lett. 104, 166802

(2010).
[66] K. Chen, R. Ghosh, X. Meng, A. Roy, J.-S. Kim, F. He, S. C.

Mason, X. Xu, J.-F. Lin, D. Akinwande, S. K. Banerjee, and Y.
Wang, npj 2D Mater. Appl. 1, 15 (2017).

[67] V. Carozo, Y. Wang, K. Fujisawa, B. R. Carvalho, A. McCreary,
S. Feng, Z. Lin, C. Zhou, N. Perea-López, A. L. Elías, B.
Kabius, V. H. Crespi, and M. Terrones, Sci. Adv. 3, e1602813
(2017).

[68] A. E. Yore, K. K. H. Smithe, W. Crumrine, A. Miller, J. A. Tuck,
B. Redd, E. Pop, B. Wang, and A. K. M. Newaz, J. Phys. Chem.
C 120, 24080 (2016).

[69] L. V. Butov, Solid State Commun. 127, 89 (2003).
[70] A. Chernikov, A. M. van der Zande, H. M. Hill, A. F. Rigosi, A.

Velauthapillai, J. Hone, and T. F. Heinz, Phys. Rev. Lett. 115,
126802 (2015).

[71] K. Prassides, Nat. Nanotechnol. 6, 400 (2011).
[72] H. Yuan, M. S. Bahramy, K. Morimoto, S. Wu, K. Nomura,

B.-J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, X. Xu,
R. Arita, N. Nagaosa, and Y. Iwasa, Nat. Phys. 9, 563 (2013).

[73] L. V. Keldysh, Sov. Phys. JETP 29, 658 (1979).
[74] M. Florian, M. Hartmann, A. Steinhoff, J. Klein, A. W.

Holleitner, J. J. Finley, T. O. Wehling, M. Kaniber, and C. Gies,
Nano Lett. 18, 2725 (2018).

165413-12

https://doi.org/10.1038/s41586-019-1591-7
https://doi.org/10.1038/s41467-020-16737-0
https://doi.org/10.1103/PhysRevB.92.165121
https://doi.org/10.1103/PhysRevB.93.245410
https://doi.org/10.1103/PhysRevB.96.094502
https://doi.org/10.1126/science.1078082
https://doi.org/10.1103/PhysRevLett.53.2173
https://doi.org/10.1038/nature00943
https://doi.org/10.1103/PhysRevLett.103.086404
https://doi.org/10.1103/PhysRevB.89.035302
https://doi.org/10.1103/PhysRevB.92.125431
https://doi.org/10.1103/PhysRevB.88.085440
https://doi.org/10.1103/PhysRevB.87.245421
https://doi.org/10.1063/1.1748067
https://doi.org/10.1103/PhysRevX.4.011034
https://doi.org/10.1021/acs.nanolett.7b03953
https://doi.org/10.1103/PhysRevB.84.153402
https://doi.org/10.1088/2053-1583/2/2/022001
https://doi.org/10.1021/nl503799t
https://doi.org/10.1038/s41565-017-0003-0
https://doi.org/10.1038/s41467-018-05558-x
https://doi.org/10.1103/PhysRevA.86.033824
https://doi.org/10.1103/PhysRevA.61.051601
https://doi.org/10.1103/PhysRevLett.92.250401
https://doi.org/10.1103/PhysRevLett.108.010402
https://doi.org/10.1103/PhysRevLett.108.035302
https://doi.org/10.1103/PhysRevA.88.043606
https://doi.org/10.1088/1367-2630/17/3/033028
https://doi.org/10.1137/140979241
https://doi.org/10.1103/PhysRevA.98.023610
https://doi.org/10.1088/0256-307X/28/9/097102
https://doi.org/10.1098/rspa.1974.0012
https://doi.org/10.1103/PhysRevLett.81.5477
https://doi.org/10.1038/nphys1051
https://doi.org/10.1103/PhysRevA.79.053820
https://doi.org/10.1103/PhysRevB.99.115439
https://doi.org/10.1103/PhysRevLett.117.275302
https://doi.org/10.1103/PhysRevA.94.053603
https://doi.org/10.1103/PhysRevA.11.1454
https://doi.org/10.1103/PhysRevLett.104.166802
https://doi.org/10.1038/s41699-017-0019-1
https://doi.org/10.1126/sciadv.1602813
https://doi.org/10.1021/acs.jpcc.6b06828
https://doi.org/10.1016/S0038-1098(03)00312-0
https://doi.org/10.1103/PhysRevLett.115.126802
https://doi.org/10.1038/nnano.2011.104
https://doi.org/10.1038/nphys2691
https://doi.org/10.1021/acs.nanolett.8b00840

