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SQUID pattern disruption in transition metal dichalcogenide Josephson junctions
due to nonparabolic dispersion of the edge states
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We theoretically study Josephson junctions with a transition metal dichalcogenide zigzag ribbon as a weak
link. We demonstrate that the spatial profile of the supercurrent carried by the edge modes determines the critical
current dependence on the perpendicular magnetic field. We explore this finding and analyze the impact of
Zeeman interaction and the orbital effects of the magnetic field on the Andreev bound states energies. We show
that the unequal Fermi velocities of the spin-opposite edge modes lead to an anomalous shift of the Andreev
bound states in the presence of the magnetic field. This is manifested in a pronounced modification of the SQUID
critical current oscillations when two opposite edges of the ribbon are conducting and can be exploited in order
to reveal the anomalous phase shift of the Andreev bound states in a single Josephson junction device.
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I. INTRODUCTION

In a Josephson junction created by linking two supercon-
ductors with a piece of normal (e.g., semiconducting) material
supercurrent can be carried over considerable distance by
Andreev bound states (ABS) [1]. Electrical tunability of the
transport properties of the normal part allows tailoring the
supercurrent [2] and its spatial distribution as demonstrated
by adjusting the Fraunhofer [3] or SQUID [4] interference
patterns in 2DEG or graphene-based [5–7] superconductor-
normal-superconductor (SNS) junctions.

Probing the maximal supercurrent carried through the
junction—the critical current—in an external magnetic field
enables determining the supercurrent density profile and con-
sequently reveals the nature of the transport in the weak link
[8]. This is exploited in the search of a combination of super-
conductivity with quantum Hall [9–11] or spin Hall phases
[12,13] as well as for distinguishing [14] the topologically
protected [15,16] from trivial edge states as present in 2DEG
SNS junctions [17]. The study of the critical current in SNS
junctions realized on atom-thick, layered materials becomes
of particular importance for unveiling the conducting edge
modes present due to specific atomic edge termination, as
demonstrated recently for Bi2O2Se [18].

In this paper we investigate properties of Josephson
junctions realized on a newly emerging class of two-
dimensional (2D) semiconductors—transition metal dichalco-
genides (TMDCs)—serving as a weak link between two
superconductors. TMDCs can be tailored into narrow single-
layer ribbons[19–21] and already have been used to create
gated structures as field-effect transistors [22] and quantum
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point contacts [23,24]. As predicted by density functional
theory calculations [25–28], tight-binding [29], and contin-
uum [30] modeling, zigzag ribbons conduct through the edge
states in the energy gap of the bulk material. The presence
of the edge modes can be visualized by spatial current map-
ping [31,32] or scanning tunneling microscopy measurements
[33,34].

Here we show that in a TMDC SNS junction the critical
current dependence on the external magnetic field reflects
the number of occupied edges. Most importantly, the critical
current patterns reveal unusual dispersion at the edges, which
induces an anomalous shift of the ABS in the presence of the
magnetic field.

The anomalous ABS structure with Ei(φ) �= Ei(−φ)
(where Ei are the ABS energies and φ is the superconduct-
ing phase difference between the leads), is obtained when
both time-reversal and chiral symmetries are broken [35].
The first one is violated due to the presence of the magnetic
field. Breaking of the second one—the symmetry of leftward
and rightward transport process in each spin band—has been
predicted as due to the combined effects of band mixing
and strong Rashba spin-orbit (SO) coupling in multimode
nanowires [36–38] or in quantum dots [39–41]. Here we show
that this effect appears inherently in TMDC nanoribbons as a
result of strongly nonparabolic edge bands and intrinsic SO
coupling.

Experimentally the measurement of the anomalous ABS
spectrum is realized by combining two Josephson junctions:
anomalous and normal one, into a SQUID loop [42,43]. We
show that the anomalous shift can be detected by probing the
perturbation of the SQUID pattern in a single TMDC SNS
junction thanks to the simultaneous population of the two
edges of the ribbon. Furthermore, we show that in TMDCs
the anomalous shift of the ABS is driven not only by Zeeman
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FIG. 1. Illustration of the considered SNS junction. A TMDC
zigzag nanowire connected with two superconducting electrodes
(gray-pink) is threaded by the magnetic flux � = BW L. Edge current
density is denoted by orange colors.

splitting but also by orbital effects of the perpendicular mag-
netic field.

This paper is organized as follows. In Sec. II we outline the
numerical model. In Sec. III A we explain the magnetic field
effects on the ABS spectrum and the resulting critical current
pattern, focusing on the region where the edge states have an
almost parabolic dispersion. In Sec. III B we show how the
presence of the nonparabolic bands reveals itself in critical
current maps. The conclusions are given in Sec. IV.

II. NUMERICAL MODEL

A. Normal scattering region

The normal part of the considered SNS junction (Fig. 1) is
a TMDC MX2 monolayer shaped into a zigzag nanoribbon.
To describe the ribbon we exploit the tight-binding model
that contains contributions from d and p orbitals of the metal
M and chalcogen X atoms, respectively [44,45]. Owing to
the system symmetry in the z direction, we perform transfor-
mation of the basis that casts the p orbitals of the X layers
into symmetric and antisymmetric combinations [46,47]. The
Hilbert space of the final model is spanned by the vector
(d3z2−r2 , dx2−y2 , dxy, pS

x, pS
y, pA

z ), where S and A indices of p
orbitals correspond to symmetric and antisymmetric combi-
nations with respect to the z axis, i.e., pS

i = 1/
√

2(pt
i + pb

i ),
pA

i = 1/
√

2(pt
i − pb

i ). The index i refers to the spatial direc-
tions: x, y, z and superscripts t and b indicate the top or bottom
chalcogen plane. The monolayer is spanned by a hexagonal
lattice (see Fig. 1) with the spacing a = 0.319 nm.

The Hamiltonian for each spin component of the system
reads,

H =
∑
i,μν

εM
i,μνc†

i,μci,ν + εX
i,μνb†

i,μbi,ν

+
∑
i j,μν

(
tMM
i j,μνc†

i,μc j,ν + tXX
i j,μνb†

i,μb j,ν
)

+
∑
i j,μν

tMX
i j,μνc†

i,μb j,ν + H.c., (1)

where i, j iterate over lattice sites and μ, v, over atomic or-
bitals. The creation operators c† and b† are associated to M
and X orbitals, respectively. The first term of the Hamiltonian

corresponds to the onsite energies with matrix elements

εM =
(

ε0 0 0
0 ε2 −iλMsz

0 iλMsz ε2

)
+ 1(szEZ − μ), (2)

and

εX =

⎛
⎜⎝

εp + txx −i λX
2 sz 0

i λX
2 sz εp + tyy 0

0 0 εz − tzz

⎞
⎟⎠ + 1(szEZ − μ). (3)

where sz equals 1 (−1) for spin up (down) component.
The second and third sum in Eq. (1) correspond to the

hopping elements between intra- and interatomic orbitals, re-
spectively. They are given in Ref. [48]. In the following we
take parameters that correspond to MoS2 compound [45,49],
but the same model can be applied to other TMDCs as
MoSe2, WS2, WSe2. We adopt SO coupling constants λM =
−0.086 eV and λS = 0.013 eV, which produce a SO splitting
in the conduction band minimum of 3 meV and the crossing of
the conduction bands, as found in Ref. [50]. For the numerical
calculations we adopt the ribbon geometry (L,W ) = (200,
10.8) nm.

We consider a perpendicular magnetic field. The Zeeman
splitting is included as EZ = gμBB/2, (with Bohr magneton,
μB, and g factor g = 2). The orbital effects of the magnetic
field are incorporated using the Peierls substitution of the hop-
ping elements tnm → tnm exp [−ie

∫
Adl/h̄] with the vector

potential in the Lorentz gauge A = (−yB, 0, 0). The range of
the applied magnetic field is bounded by the critical magnetic
field of the superconductors, however, as already shown, high
magnetic fields are achievable in planar Josephson junctions
[51]. We calculate the scattering matrix of the normal region
using the KWANT package for quantum transport simulations
[52] at T = 0.

B. Andreev bound states and supercurrent calculation

In a SNS junction, the particles and holes in the normal
region are Andreev reflected from the superconducting leads
when their energy lies within the superconducting gap |E | <

�. In the semiclassical limit, the reflected electrons and holes
form periodic trajectories, giving rise to bound states within
the superconducting gap �, when [1]:

SA(E )SN (E )	in = 	in, (4)

where 	in = (	e
in, 	

h
in ) describes a wave incident in the junc-

tion with electron (e) and hole (h) components and SA (SN ) is
the scattering matrix describing Andreev reflections (scatter-
ing in the normal part of the junction).

The pairing potential � vanishes in the normal region and
therefore taking the hole modes as particle-hole counterparts
of the electron modes we can write the scattering matrix of the
normal part as

SN (E ) =
(

S(E ) 0
0 S∗(−E )

)
, (5)

which is block diagonal in the electron-hole space and where
S(E ) describes electronic scattering properties. At the leads,
Andreev reflection couples the electron and hole modes and
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hence the Andreev scattering matrix SA is off diagonal

SA(E ) = α(E )

(
0 r∗

A
rA 0

)
, (6)

where α(E ) =
√

1 − E2/�2 + iE/� is the phase factor
resulting from matching the wave functions at the normal-
superconductor interface.

The Andreev reflection matrix is written in the basis where
the outgoing modes are time-reversed partners of the incom-
ing modes,

rA =
(

i1 0
0 ie−iφ1

)
, (7)

and φ is the superconducting phase difference. The Andreev
reflection process does not mix the modes in the ribbon, which
is accounted by the presence of the identity matrix 1.

We assume the short-junction limit, when the supercon-
ducting coherence length is much larger than the normal
channel length ξ = h̄v/� � L, with v the Fermi velocity of
the modes. This allows us to approximate S(E ) � S(−E ) �
S(E = 0) ≡ s. Substituting Eqs. (5) and (6) into Eq. (4), we
obtain the eigenproblem for α:(

s† 0
0 sT

)( 0 r∗
A

rA 0

)
	in = α	in, (8)

whose solution yields the discrete set of Andreev levels with
energies Ei [53].

The complete set of the ABS energies determine the super-
current through the junction:

I = − e

h̄

∑
Ei>0

tanh
( Ei

2kBT

)dEi

dφ
. (9)

Note that we do not assume spin degeneracy for modes and
therefore there is no overall factor 2 in the current expression.

Numerically the supercurrent is efficiently calculated fol-
lowing the procedure developed in Ref. [54]. Equation (8) is
equivalently written as(

0 −iA†

iA 0

)
	in = E

�
	in, (10)

with

A ≡ 1
2 (rAs − sT rA). (11)

Squaring the above equation leads to an eigenproblem for the
ABS energies

A†A	e
in = E2

�2
	e

in. (12)

Therefore the ABS energy variation with the phase difference
φ in Eq. (9) follows readily,

dEi

dφ
= �2

2Ei

〈
	e

in

∣∣d (A†A)

dφ

∣∣	e
in

〉
, (13)

where d (A†A)/dφ is determined analytically from Eqs. (7)
and (11).

The critical current maps are obtained with the use of
ADAPTIVE package [55].

III. RESULTS

In Fig. 2(a) we plot the dispersion relation of a 10.8 nm nor-
mal ribbon with zigzag edges in the absence of the magnetic
field. In the top and bottom part of the plot we observe a dense
sets of bands that correspond to the states in the conduction
and valence bands, respectively. In between, there are six
bands of the modes located at Mo and S edges of the ribbon.
Each edge band comes in a pair of spin-opposite modes split
in momentum by strong intrinsic SO coupling that polarizes
the spins in a direction perpendicular to the ribbon.

In the map of Fig. 2(b) we plot the critical current of the
nanoribbon Josephson junction Ic = maxφ[I (φ)] as a function
of the chemical potential and the magnetic field piercing the
system area LW and inducing the flux � = BLW . Comparing
the critical current pattern with the band structure plotted in
Fig. 2(a) we see that the character of the supercurrent depen-
dence on the magnetic field is clearly related to the number
and type of bands. When the chemical potential is set such the
Fermi level is crossed only by the bands corresponding to the
electrons located on one edge, the critical current is almost
constant in B. In contrast, when the Fermi level is crossed
by two edge bands the supercurrent exhibits a SQUID-like
pattern. Finally, when the chemical potential sets the Fermi
level in the bulk spectrum of the conduction band, the current
exhibits Fraunhofer-like oscillations.

A. Theory of supercurrent carried by the edge modes

Let us first analyze the ABS energies and the critical cur-
rent for the chemical potential μ close to zero. In Fig. 3 we
present a zoom of the relevant part of the dispersion relation
where the bands of the modes located at Mo- (bottom) and
S-terminated (top) edges intersect.

1. Effective model for edge modes and the ABS spectrum

We construct an effective one-dimensional model to cap-
ture the physics of SO split edge modes under the external
magnetic field B. The effective Hamiltonian reads

H =
(Ht 0

0 Hb

)
− 1μ, (14)

which acts on the wave function 	 = (ψ↑
t , ψ

↓
t , ψ

↑
b , ψ

↓
b ) and

where Ht,b corresponds (t) top and (b) bottom edge modes,
respectively,

Ht,b = σ0

(
h̄2k2

x

2mt,b
− μt,b

)
+ σzαt,bkx + σzEZ, (15)

with spin Pauli matrices σ. The Hamiltonian parameters are
the Zeeman energy EZ, the effective masses mt,b, band offsets
μt,b, and the SO amplitudes αt,b. The canonical momentum
operator in the presence of the magnetic field B reads kx =
−i∂x + eAx/h̄, in a gauge where A = (−yB, 0, 0).

To find numerically the ABS and supercurrents, we dis-
cretize the Hamiltonian Eq. (14) on a lattice with spacing
δx. The effect of the vector potential is included through
the Peierls substitution as a phase on hopping amplitudes tnm

between adjacent sites n and m, t t,b
nm �→ t t,b

nm exp[ieδxWt (b)B/h̄]
and Wt (b) = +(−)W/2 for the mode located at the top (bot-
tom) of the ribbon. We fit the Hamiltonian parameters to
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FIG. 2. (a) Dispersion relation of a 10.8 nm wide zigzag MoS2 nanoribbon. (b) Critical current in the Josephson junction embedding the
nanoribbon as a function of the external magnetic field and the chemical potential.

reproduce the bands at μ = 0, obtaining mt = 0.49 m0, mb =
−0.3m0, αt = 10 meVnm, αb = 30 meVnm, μt = 348 meV,
μb = −27 meV, with m0, the electron rest mass. The dis-
persion relation of the full tight-binding and discretized
continuum model is shown with black and red curves in Fig. 3.

The continuum model admits analytical solutions for the
ABS in the short-junction limit. Following Ref. [56], the pos-
itive ABS energies of Eq. (14) are

Esσ = �

∣∣∣∣ cos

(
φ

2
− seBLW

2h̄
+ σEZL

h̄vsσ

)∣∣∣∣, (16)

where s = + or t (s = − or b) for top (bottom) edge, and the
spin index σ = + (σ = −) for spin ↑ (↓) of right-moving
modes. The positive Fermi velocities vsσ are evaluated at
zero magnetic field and are in general different for the top or
bottom right-moving edge modes

vsσ =
√

2(μs + μ)/ms + α2
s /h̄2. (17)

FIG. 3. The energy dispersion from the tight-binding model
Eq. (1) (black curves) and from the one-dimensional continuum
approximation of Eq. (14) (red curves).

The independence of Fermi velocities on the spin σ is a
peculiarity of the parabolic spectrum, therefore we denote in
this section vs ≡ vsσ . As we show in next sections, away from
the energy windows near μ = 0, where the edge states no
longer have a parabolic dispersion, the Fermi velocity of right-
moving modes depends on spin projection and is determined
numerically.

The ABS energies Eq. (16) depend on the superconducting
phase difference (φ), shifted by the magnetic field through
orbital and, respectively, Zeeman effects. Note that the orbital
effects produce shifts proportional to the normal system area
LW pierced by the magnetic field eBLW/h̄ = π�/�0, where
�0 is the magnetic flux quantum. In contrast, the Zeeman
effect produces shifts proportional to the length of the edge
channel and lifts the edge degeneracy of the ABS. To illustrate
the two different magnetic field effects, we show in Fig. 4
the ABS spectrum in the presence of either Zeeman, or or-
bital effects. The analytical solution Eq. (16) is also checked
against the numerical solutions obtained from the discretized
continuum model using the methods of Sec. II B.

2. Josephson and critical current

In this section we focus on the Josephson current through
the junction and its maximum value, the critical current. Un-
der the effect of the magnetic field, the critical current exhibits
multiperiodic oscillations due to the shifts in the ABS dis-
persion, induced by the both orbital and Zeeman effects in
the junction [56]. To understand separately the two effects,
we first calculate numerically the critical currents from the
effective model Eq. (14) for chemical potentials in its region
of validity (see Fig. 5).
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FIG. 4. ABS spectrum at μ = 0 for top (t) and bottom (b) edge
modes of spin projection up (↑) and down (↓). (a) shows only
Zeeman interaction effects, which spin-split the ABS. (b) shows the
effects due to orbital effects alone. Numerical results (dashed line,
“num”) from the discretized continuum model follow perfectly the
analytical dispersion. The magnetic flux is �/�0 = 2.1. The panels
share the legend.

In Fig. 5(a), under orbital effects alone, we see that the
critical current develops SQUID-like oscillations with period
�0 in the region of energetic overlap for the edge dispersion.
Outside that region, the supercurrent is carried by a single
edge, and since no magnetic flux is enclosed between the spin
up and down modes, the critical current shows no oscillations,
and Ic = e�/h̄.

In contrast, under the Zeeman interaction effect alone
Fig. 5(b), the current displays a slow decay from its maximum
value at zero magnetic field. At much higher magnetic fields
than shown, Ic displays a beating pattern with long periods in
flux. Noticeably, the critical current varies with the chemical
potential, since the ABS depend in this case on μ through
the edge mode Fermi velocities. Outside the overlap region,
when only one edge carries the current, one can still observe
a slight deviation of Ic from e�/h̄ due the Zeeman interaction
effect on the Fermi velocity. Finally, the total Ic versus B is
shown in Fig. 5(c) when both Zeeman and the orbital effects
are included.

To get analytic insight into the numerical results, we com-
pute the Josephson current Eq. (9) given by positive-energy
subgap states from Eq. (16),

I = − e

h̄

∑
sσ

tanh

(
Esσ

2kBT

)
dEsσ

dφ
. (18)

In the zero-temperature limit of the tight-binding simula-
tions, the current reduces to

I = e�

2h̄

∑
sσ

sgn[cos(xsσ )] sin(xsσ ), (19)

where

xsσ = φ

2
− sπ�

2�0
+ σEZL

h̄vs
. (20)

FIG. 5. Critical current obtained in the effective mass model of
the edge states in the presence of (a) only orbital effects, (b) only
Zeeman interaction, and (c) both effects.

Each of the four right-moving edge modes contributes to
carrying a maximum critical current of e�/2h̄ [57].

To get better insight into the numerical results, it is useful
to Fourier analyze the zero-temperature current,

I = e�

h̄

∞∑
n=1

(−1)n+1

π

8n

4n2 − 1

×
∑

s

sin
(

nφ − snπ�

�0

)
cos

(2nEZL

h̄vs

)
. (21)

The first harmonic n = 1 is dominant and gives the leading
behavior of the supercurrent. The analysis of the first har-
monic is also useful since it is directly proportional to the
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FIG. 6. Critical current in units of e�/2h̄ at μ = 0 as a function
of magnetic flux in units of �0. The blue line (th) that represents
Ic computed from the analytical solution to continuum model is
overlapped with the dashed red line (num) that depicts Ic computed
numerically from the discretized continuum model. The dotted green
line denotes the first harmonic (fh) of the zero-temperature Ic, and it
is proportional to the high-temperature Ic.

high-temperature current obtained in the limit kBT > �,

I = 2I0

∑
s

sin

(
φ − sπ�

�0

)
cos

(
2EZL

h̄vs

)
, (22)

with I0 = e�2/8h̄kBT , the maximal critical current carried by
a single spin-resolved edge mode.

In order to make further analytical progress, we will focus
in the following on the dominant harmonic of the zero-
temperature current, or equivalently, on the high-temperature
current. We investigate the effect of the magnetic field on
the critical supercurrent in two limit cases, when only orbital
effect is present, and when only the Zeeman effect is present.

When the Zeeman interaction is absent in the model, and
only the orbital effect are present, the Andreev energies are
degenerate in spin. The critical supercurrent determined from
Eq. (22) reads

Ic = 4I0

∣∣∣∣ cos

(
π�

�0

)∣∣∣∣. (23)

The critical current has a characteristic SQUID pattern seen in
numerics in Fig. 5(a), with a period �0.

If only Zeeman effect is present in the model (no or-
bital magnetic effects), then the critical current obtained from
Eq. (22) reads

Ic = 2I0

∣∣∣∣∣
∑

s

cos

(
2EZL

h̄vs

)∣∣∣∣∣,
= 4I0

∣∣∣∣ cos

(
EZL

h̄

(
1

vt
+ 1

vb

))
cos

(
EZL

h̄

(
1

vt
− 1

vb

))∣∣∣∣.
(24)

The critical current exhibits a beating pattern seen only for
very large magnetic fields. As expected from numerical solu-
tions shown in Fig. 5(b), the critical current depends on the
chemical potential in the region of overlap for the edge states
through the Fermi velocities vb,t .

When both Zeeman and orbital effects are present, we plot
in Fig. 6 a cross section at μ = 0 of the critical current map

FIG. 7. Black curves show the dispersion relation of MoS2 rib-
bon close to the conduction band. (a) with the red curves shows
the bands obtained in the presence of Zeeman interaction while
(b) shows bands in the presence of orbital effects of the magnetic
field.

from Fig. 5. The analytical result shown on the same plot
captures perfectly the behavior seen in numerics. Also we
plot the first harmonic of the current, which captures only
qualitatively the pattern of the full zero-temperature current.

B. Anomalous effects due to the presence of strongly
nonparabolic bands

Let us now focus on the energy regime close to the conduc-
tion band minimum, see Fig. 7, where the edge modes have
a dispersion deviating strongly from the parabolic character.
In this energy window there is again current carried on both
top edge, through orbitals localized on S atoms, and bottom
edge, through orbitals localized on Mo atoms. In contrast to
the case studied in the previous section, the Mo edge band has
electron character, and its modes can show a large difference
in velocities depending on spin projection.

1. Zeeman interaction

In Fig. 7(a) we plot zoom-ins on the band structure without
(black curves) and with the Zeeman interaction included (red
dashed curves). As the edge modes have well-defined spins
in z direction, the perpendicular magnetic field increases (de-
creases) energies of spin up (down) states by EZ.
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FIG. 8. Andreev bound states calculated in the tight-binding
model (black dots) overlapping the evaluation of Eq. (16) (blue
curves) and the supercurrent (red) in the presence of Zeeman inter-
action for B = 400 mT and μ = 0.66 eV.

In the dispersion relation we observe a set of bands cor-
responding to the states localized on the Mo edge that have
strongly nonparabolic character. When the chemical potential
is tuned such that the bands cross the Fermi level in the non-
parabolic regime, the two spin-opposite modes on one edge
will significantly differ in Fermi velocity for each direction
of propagation [see the dashed line in Fig. 7(a), vb↑ �= vb↓].
The different velocities for outer and inner branches of the
Mo edge modes will result in unequal phase shifts of the two
ABS corresponding to this edge as introduced by the Zeeman
term in Eq. (16).

The ABS energies follow from Eq. (16), which remains
valid near the Fermi level, since the edge modes have the
same geometrical localization, while details of the energy
dispersion enter through a modification of the mode Fermi
velocity. The Fermi velocities are extracted numerically from
the band structure of Fig. 7 at μ = 0.66 eV, and the resulting
ABS spectrum is plotted in Fig. 8 with blue curves. In Fig. 8
we also plot with black dots the ABS spectrum obtained
completely numerically using methods of Sec. II B, without
any of the above analytical approximations, and find perfect
agreement with the theoretical prediction. Note that due to
small g factor in TMDCs, for B = 400 mT there is only a
single ABS that is shifted in phase by a considerable amount.
The other three (the other ABS of Mo edge and two ABS
on S edge) remain to a good approximation insensitive to
the Zeeman interaction, which results in an anomalous ABS
structure, Ei(φ) �= Ei(−φ).

The general expression for the high-temperature current in
the absence of the orbital effects, when all the Fermi velocities
are different, reads from Eqs. (16) and (18),

I = 2I0

∑
s

sin

[
φ + EZL

h̄

(
1

vs↑
− 1

vs↓

)]

× cos

[
EZL

h̄

(
1

vs↑
+ 1

vs↓

)]
, (25)

with I0 = e�2/8h̄kBT . In our case, a further approximation is
possible for velocities at μ = 0.66 eV, vb↓ � vt↑ � vt↓. We
find that as a result of the anomalous ABS structure, there
is finite supercurrent at zero phase difference carried by the
nonparabolic band. We plot the supercurrent obtained in the

FIG. 9. Supercurrent at φ = 0 carried by the nonparabolic band
in the presence of Zeeman interaction as a function of the chemical
potential and the magnetic field.

tight-binding calculation with red curves in Fig. 8. Note that
in the numerical calculations we assumed zero temperature. In
the experimental scenario, when the temperature is nonzero,
we expect that the thermal fluctuations can smooth up the dis-
continuous jumps in the current. This effect is visible in Fig. 6
where the high-temperature current, given by Eq. (25), cap-
tures only the highest harmonic of Ic and where the tempera-
ture smoothes out the jumps at large values of magnetic flux.

The dependence of the anomalous current carried by the
nonparabolic band on the magnetic field and the chemical
potential as calculated in the tight-binding model is shown
in Fig. 9. We observe that for the chemical potential values
for which the Fermi energy is crossed by nonparabolic bands
there is a considerable current for φ = 0 present already in a
small magnetic field.

Due to the phase shift of the ABS localized on the Mo
edge with respect to the remaining three states, the maximal
supercurrent in the junction will change when the magnetic
field is increased. This effect is demonstrated in Fig. 10 where
we plot the critical current map as a function of the magnetic
field and the chemical potential. We a observe a pronounced
variation of the critical current whenever the spin opposite
Mo bands differ in the Fermi velocity and the anomalous
phase shift occurs.

2. Orbital effects of the magnetic field

Let us now focus on the case where the magnetic field
is introduced solely through the orbital effects. In Fig. 7(b)
we observe that the bands corresponding to the opposite edge
modes are shifted apart towards opposite values of the wave
vector. This results in SQUID oscillations in the critical cur-
rent. Most importantly, we also find that the orbital effect leads
to the valley Zeeman effect that alters the energies of the bulk
bands polarized in K and K ′ [50,58]. For a bulk monolayer,
the valley splitting due to the orbital part of the magnetic
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FIG. 10. Critical current versus the magnetic field and the chem-
ical potential with only Zeeman interaction included.

field results from nonzero magnetic moment of the conduction
bands [47]. As the modes in the ribbon belonging to the bulk
conduction band are also valley polarized we observe band
splitting also for the considered wire. Surprisingly, despite the
lack of valley polarization of the edge modes [48], we also
observe Zeeman-like lifting of their energies induced by the
orbital effects. This happens whenever the edge mode wave
vector lies in the regime in the dispersion for which the bulk
magnetic moment is nonzero, i.e., kx � 2π/3a, 4π/3a.

Taking into account the above mentioned effect, the
Eq. (16) now reads

Esσ = �

∣∣∣∣ cos

(
φ

2
− seBLW

2h̄
+ φV + EV sσ L

h̄vsσ

)∣∣∣∣. (26)

The similarity of lifting of the energies of the edge modes by
the orbital effects to the ordinary Zeeman splitting is reflected
by inclusion of EV sσ . This term will act in the same manner
as the Zeeman term in Eq. (16) and introduce the anomalous
shift of nonparabolic bands, see Fig. 11.

FIG. 11. ABS spectrum (black) and the supercurrent (red) versus
the phase difference between the superconducting leads. The results
of are obtained for μ = 0.66 eV, B = 500 mT.

FIG. 12. Critical current as a function of external magnetic field
and chemical potential calculated in the TB model in the presence of
only orbital effects of the magnetic field.

It is important to note that the gauge choice for the vec-
tor potential A is arbitrary as long as the magnetic field
B = ∇ × A does not change. Let us then express the vector
potential in a more general form by shifting it with an arbitrary
y′:

A → A′ = [−(y − y′)B, 0, 0]. (27)

Inclusion of the general form of the vector potential into
canonical momentum operator results in a wave vector change
[59] of eBy′/h̄ and yields the phase factor for all the ABS
φV = eBLy′/h̄ in Eq. (26).

It becomes obvious that, in the presence of the orbital
effect, the specific choice of the vector potential leads to an ar-
bitrary phase shift of the whole ABS structure. This, however,
cannot change any of the observables. The anomalous cur-
rent measurements are performed by putting two Josephson
junctions in a loop [42,43] to create a SQUID interferometer,
where only the relative shift of the ABS is recorded, and the
common, arbitrary phase of the ABS φV due to the vector
potential is irrelevant.

We take advantage of the fact that a TMDC junction can
realize a SQUID interferometer in a single device due to the
occupation of the opposite edges of the sample. In the map of
Fig. 12 we plot the critical current versus the magnetic field
and the chemical potential. We find that the critical current
exhibits SQUID oscillations, which are strongly perturbed due
to presence of nonparabolic bands. Note that since there is no
Fermi-velocity-dependent term in the SQUID component of
Eq. (26), the deviation from the SQUID pattern results en-
tirely from the Zeeman-like effect that induces the anomalous
shift of the ABS due to the presence of nonparabolic edge
bands.
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FIG. 13. Critical current as a function of magnetic flux and
chemical potential calculated in the TB model in the presence of both
orbital effects and Zeeman interaction.

3. Critical current patterns disclosing the
anomalously shifted ABS

We turn our attention to a realistic case when both Zeeman
interaction and the orbital effects are present for the magnetic
field normal to the TMDC nanoribbon. In Fig. 13 we show
the critical current versus the field and chemical potential
in the junction. We clearly see that the strong deviation of
the SQUID pattern is a hallmark of the states with a strong
nonparabolic dispersion that results in anomalous ABS
structure under combined Zeeman and orbital effects of the
magnetic field.

Finally, in Fig. 14(a) we show cross sections of the map
Fig. 13 for two values of the chemical potential. For μ =
0.75 eV, when there is no anomalous shift, we observe the
regular SQUID pattern with the period �0, due to the flux
piercing the ribbon. When μ = 0.66 eV the Fermi energy is
crossed by nonparabolic Mo bands and we observe a disrup-
tion in the SQUID pattern—new maxima develop at �max =
±039�0 [see the black vertical lines in Fig. 14(a)].

In Fig. 14(b) we consider the case just before the criti-
cal current reaches the first maximum, i.e., � = 0.81�max.
We observe that the anomalous ABS corresponding to the
Mo modes with smaller velocity is shifted in phase by φa =
(EVb↑ + EZ)L/h̄vb↑ from the other Mo ABS which has φn =
eBLW/2h̄ shift due to the orbital effects. The two other ABS
shifted towards positive φ by φn correspond to the modes
located at the S edge. Note that for the estimation of the
above phase shifts we neglected the impact of the Zeeman
interaction on the normal ABS since its effect is minute [see
the two almost degenerate ABS in Fig. 14(b)]. When the
anomalously shifting ABS overlaps with the states located on
the opposite edge, i.e., when φa + φn = 2π − φn, the critical
current reaches the first maximum and accordingly the anoma-
lous phase shift can be evaluated as φa = 2π − eBLW/h̄.

FIG. 14. (a) Critical current cross section of the map of Fig. 13
for two values of the chemical potential. (b) ABS spectrum for
� = 0.81�max and supercurrent versus the superconducting phase
difference.

4. Impact of the spin-orbit coupling strength

As obtained from DFT calculations, the value of the spin-
orbit gap of a freestanding MoS2 sheet is 2�SO = 3 meV [50].
Recent experiments, however, suggest that the gap and under-
lying spin-orbit coupling strength might be sample dependent,
as, e.g., observed through Shubnikov-de Haas oscillations in
MoS2 where the gap value was found to be 15 meV [60].
Therefore, here we inspect the impact of spin-orbit coupling
strength on the disruption of the SQUID pattern.

In Fig. 15(a) we show dispersion relation of the edge modes
for three values of the spin-orbit coupling parameter λM that
controls coupling between the atomic orbitals of Mo atoms.
When we lower the absolute value of λM we observe that
the spin-opposite Mo-edge modes decrease their splitting in
energy and wave-vector (cf. black curves obtained for λM =
−0.086 eV with green ones obtained for λM = −0.043 eV).
As a result, the parts of the dispersion, where a significant
difference in Fermi velocities between opposite spin bands
occur, become narrower in energy, but the difference itself
increases. Consequently, for small |λM |, the anomalous effect
is amplified—in the narrow energy regime where one of the
bands becomes flat, while outside of this region the anomalous
effect becomes weaker. As a result of the latter, the second
SQUID maximum appears for a higher value of the magnetic
field, see Fig. 15(b).

Finally, we have checked the impact of the strength of spin-
orbit coupling of chalcogen orbitals (λX ) and found that it has
negligible effect on the critical current—cf. black and blue
dashed curves in Fig. 15(b)—due to small share of occupancy
of the S orbitals for the modes located on the Mo-terminated
edge.
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FIG. 15. (a) Dispersion relation obtained for λM = −0.086 eV,
black, λM = −0.0688 eV, red, and λM = −0.043 eV, green. Critical
current versus magnetic flux for three values of the spin-orbit cou-
pling parameters.

IV. SUMMARY AND CONCLUSIONS

We have studied Josephson junctions formed by a transi-
tion metal dichalcogenide nanoribbon placed between two su-
perconducting leads. Using tight-binding model calculations
and an analytical approach, we determined the ABS structure
and supercurrent in the presence of a perpendicular magnetic
field. We explained the separate effects of Zeeman interaction
and the magnetic orbital effects on the ABS structure and
supercurrent carried by the edge modes of the ribbon. We
found that the unusual dispersion relation of the edge modes,
with the regimes in which the chiral symmetry is broken,
results in the appearance of anomalously shifted ABS in the
presence of Zeeman interaction and the orbital effects of the
magnetic field. This phenomenon leads to a strong disruption
of the SQUID oscillations in the junction when the chemical
potential is set such two edges of the ribbon are populated. We
point out that this phenomenon can be used experimentally to
reveal the presence of nonparabolic edge bands in transition
metal dichalcogenide ribbons and to uncover the anomalous
phase shift of the ABS in a single SNS junction.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with A. R.
Akhmerov, M. Wimmer, T. Ö. Rosdahl, and M. Irfan. M.P.N.
was supported within POIR.04.04.00-00-3FD8/17 project
carried out within the HOMING programme of the Founda-
tion for Polish Science cofinanced by the European Union
under the European Regional Development Fund. D.S. was
supported by CNCS-UEFISCDI, with Project No. PN-III-
P1-1.1-TE-2019-0423. The calculations were performed on
PL-Grid Infrastructure.

[1] C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).
[2] Y.-J. Doh, J. A. v. Dam, A. L. Roest, E. P. A. M. Bakkers, L. P.

Kouwenhoven, and S. D. Franceschi, Science 309, 272 (2005).
[3] M. Amado, A. Fornieri, F. Carillo, G. Biasiol, L. Sorba, V.

Pellegrini, and F. Giazotto, Phys. Rev. B 87, 134506 (2013).
[4] S. Guiducci, M. Carrega, F. Taddei, G. Biasiol, H. Courtois, F.

Beltram, and S. Heun, Phys. Rev. B 99, 235419 (2019).
[5] V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov,

K. Watanabe, T. Taniguchi, T. M. Klapwijk, and L. M. K.
Vandersypen, Nat. Nanotechnol. 10, 761 (2015).

[6] M. Ben Shalom, M. J. Zhu, V. I. Fal’ko, A. Mishchenko, A. V.
Kretinin, K. S. Novoselov, C. R. Woods, K. Watanabe, T.
Taniguchi, A. K. Geim, and J. R. Prance, Nat. Phys. 12, 318
(2016).

[7] R. Kraft, J. Mohrmann, R. Du, P. B. Selvasundaram, M. Irfan,
U. N. Kanilmaz, F. Wu, D. Beckmann, H. v. Löhneysen,
R. Krupke, A. Akhmerov, I. Gornyi, and R. Danneau, Nat.
Commun. 9, 1722 (2018).

[8] R. C. Dynes and T. A. Fulton, Phys. Rev. B 3, 3015 (1971).
[9] J. A. M. van Ostaay, A. R. Akhmerov, and C. W. J. Beenakker,

Phys. Rev. B 83, 195441 (2011).
[10] F. Amet, C. T. Ke, I. V. Borzenets, J. Wang, K. Watanabe, T.

Taniguchi, R. S. Deacon, M. Yamamoto, Y. Bomze, S. Tarucha,
and G. Finkelstein, Science 352, 966 (2016).

[11] G.-H. Lee, K.-F. Huang, D. K. Efetov, D. S. Wei, S. Hart, T.
Taniguchi, K. Watanabe, A. Yacoby, and P. Kim, Nat. Phys. 13,
693 (2017).

[12] S. Hart, H. Ren, T. Wagner, P. Leubner, M. Mühlbauer, C.
Brüne, H. Buhmann, L. W. Molenkamp, and A. Yacoby,
Nat. Phys. 10, 638 (2014).

[13] E. Bocquillon, R. S. Deacon, J. Wiedenmann, P. Leubner, T. M.
Klapwijk, C. Brüne, K. Ishibashi, H. Buhmann, and L. W.
Molenkamp, Nat. Nanotechnol. 12, 137 (2017).

[14] T. H. Galambos, S. Hoffman, P. Recher, J. Klinovaja, and D.
Loss, arXiv:2004.01733.

[15] V. S. Pribiag, A. J. A. Beukman, F. Qu, M. C. Cassidy,
C. Charpentier, W. Wegscheider, and L. P. Kouwenhoven,
Nat. Nanotechnol. 10, 593 (2015).

[16] G. Blasi, F. Taddei, V. Giovannetti, and A. Braggio, Phys. Rev.
B 99, 064514 (2019).

[17] F. K. de Vries, T. Timmerman, V. P. Ostroukh, J. van Veen,
A. J. A. Beukman, F. Qu, M. Wimmer, B.-M. Nguyen,
A. A. Kiselev, W. Yi, M. Sokolich, M. J. Manfra, C. M.
Marcus, and L. P. Kouwenhoven, Phys. Rev. Lett. 120, 047702
(2018).

[18] J. Ying, J. He, G. Yang, M. Liu, Z. Lyu, X. Zhang, H. Liu, K.
Zhao, R. Jiang, Z. Ji, J. Fan, C. Yang, X. Jing, G. Liu, X. Cao,
X. Wang, L. Lu, and F. Qu, Nano Lett. 20, 2569 (2020).

165407-10

https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1126/science.1113523
https://doi.org/10.1103/PhysRevB.87.134506
https://doi.org/10.1103/PhysRevB.99.235419
https://doi.org/10.1038/nnano.2015.156
https://doi.org/10.1038/nphys3592
https://doi.org/10.1038/s41467-018-04153-4
https://doi.org/10.1103/PhysRevB.3.3015
https://doi.org/10.1103/PhysRevB.83.195441
https://doi.org/10.1126/science.aad6203
https://doi.org/10.1038/nphys4084
https://doi.org/10.1038/nphys3036
https://doi.org/10.1038/nnano.2016.159
http://arxiv.org/abs/arXiv:2004.01733
https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1103/PhysRevB.99.064514
https://doi.org/10.1103/PhysRevLett.120.047702
https://doi.org/10.1021/acs.nanolett.0c00025


SQUID PATTERN DISRUPTION IN TRANSITION METAL … PHYSICAL REVIEW B 102, 165407 (2020)

[19] S. Li, Y.-C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen,
D.-M. Tang, J. Wang, Q. Zhang, H. Zhu, L. Chu, W. Zhao,
C. Liu, Z. Sun, T. Taniguchi, M. Osada, W. Chen, Q.-H. Xu,
A. T. S. Wee, K. Suenaga, F. Ding, and G. Eda, Nat. Mater. 17,
535 (2018).

[20] C. Yang, B. Wang, Y. Xie, Y. Zheng, and C. Jin,
Nanotechnology 30, 255602 (2019).

[21] D. Kotekar-Patil, J. Deng, S. L. Wong, and K. E. J. Goh, ACS
Appl. Electron. Mater. 1, 2202 (2019).

[22] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and
A. Kis, Nat. Nanotechnol. 6, 147 (2011).

[23] K. Marinov, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis,
Nat. Commun. 8, 1938 (2017).

[24] C. H. Sharma and M. Thalakulam, Sci. Rep. 7, 735
(2017).

[25] M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov,
S. Helveg, and F. Besenbacher, Phys. Rev. Lett. 87, 196803
(2001).

[26] M. V. Bollinger, K. W. Jacobsen, and J. K. Nørskov, Phys. Rev.
B 67, 085410 (2003).

[27] Y. Li, Z. Zhou, S. Zhang, and Z. Chen, J. Am. Chem. Soc. 130,
16739 (2008).

[28] E. Erdogan, I. H. Popov, A. N. Enyashin, and G. Seifert, Eur.
Phys. J. B 85, 33 (2012).

[29] H. Rostami, R. Asgari, and F. Guinea, J. Phys.: Condens. Matter
28, 495001 (2016).

[30] C. G. Péterfalvi, A. Kormányos, and G. Burkard, Phys. Rev. B
92, 245443 (2015).

[31] D. Wu, X. Li, L. Luan, X. Wu, W. Li, M. N. Yogeesh, R. Ghosh,
Z. Chu, D. Akinwande, Q. Niu, and K. Lai, Proc. Natl. Acad.
Sci. USA 113, 8583 (2016).

[32] M. Prokop, D. Gut, and M. P. Nowak, J. Phys.: Condens. Matter
32, 205302 (2020).

[33] C. Zhang, A. Johnson, C.-L. Hsu, L.-J. Li, and C.-K. Shih, Nano
Lett. 14, 2443 (2014).

[34] A. A. Koós, P. Vancsó, G. Z. Magda, Z. Osváth, K. Kertész, G.
Dobrik, C. Hwang, L. Tapasztó, and L. P. Biró, Carbon 105, 408
(2016).

[35] I. V. Krive, L. Y. Gorelik, R. I. Shekhter, and M. Jonson, Low
Temp. Phys. 30, 398 (2004).

[36] T. Yokoyama, M. Eto, and Y. V. Nazarov, J. Phys. Soc. Jpn. 82,
054703 (2013).

[37] T. Yokoyama, M. Eto, and Y. V. Nazarov, Phys. Rev. B 89,
195407 (2014).

[38] G. Campagnano, P. Lucignano, D. Giuliano, and A.
Tagliacozzo, J. Phys.: Condens. Matter 27, 205301
(2015).

[39] L. Dell’Anna, A. Zazunov, R. Egger, and T. Martin, Phys. Rev.
B 75, 085305 (2007).

[40] A. Zazunov, R. Egger, T. Jonckheere, and T. Martin, Phys. Rev.
Lett. 103, 147004 (2009).

[41] A. Brunetti, A. Zazunov, A. Kundu, and R. Egger, Phys. Rev. B
88, 144515 (2013).

[42] D. B. Szombati, S. Nadj-Perge, D. Car, S. R. Plissard,
E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nat. Phys. 12,
568 (2016).

[43] W. Mayer, M. C. Dartiailh, J. Yuan, K. S. Wickramasinghe, E.
Rossi, and J. Shabani, Nat. Commun. 11, 212 (2020).

[44] E. Cappelluti, R. Roldán, J. A. Silva-Guillén, P. Ordejón, and F.
Guinea, Phys. Rev. B 88, 075409 (2013).

[45] J. Á. Silva-Guillén, P. San-Jose, and R. Roldán, Appl. Sci. 6,
284 (2016).

[46] H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, and F. Guinea,
Phys. Rev. B 92, 195402 (2015).

[47] H. Rostami and R. Asgari, Phys. Rev. B 91, 075433 (2015).
[48] D. Gut, M. Prokop, D. Sticlet, and M. P. Nowak, Phys. Rev. B

101, 085425 (2020).
[49] The parameters of the tight-binding noninteracting model are

based on DFT simulations where electron-electron interactions
are considered at a mean-field level.

[50] A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard,
Phys. Rev. X 4, 011034 (2014).

[51] A. Seredinski, A. W. Draelos, E. G. Arnault, M.-T. Wei, H.
Li, T. Fleming, K. Watanabe, T. Taniguchi, F. Amet, and G.
Finkelstein, Sci. Adv. 5, eaaw8693 (2019).

[52] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,
New J. Phys. 16, 063065 (2014).

[53] B. van Heck, S. Mi, and A. R. Akhmerov, Phys. Rev. B 90,
155450 (2014).

[54] M. Irfan and A. R. Akhmerov, arXiv:1810.04588.
[55] B. Nijholt, J. Weston, J. Hoofwijk, and A. Akhmerov, Adap-

tive: parallel active learning of mathematical functions (2019),
doi:10.5281/zenodo.1182437.

[56] S. V. Mironov, A. S. Mel’nikov, and A. I. Buzdin, Phys. Rev.
Lett. 114, 227001 (2015).

[57] C. W. J. Beenakker, D. I. Pikulin, T. Hyart, H. Schomerus, and
J. P. Dahlhaus, Phys. Rev. Lett. 110, 017003 (2013).

[58] A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard,
Phys. Rev. X 4, 039901(E) (2014).

[59] P. Wójcik and M. P. Nowak, Phys. Rev. B 97, 235445 (2018).
[60] R. Pisoni, A. Kormányos, M. Brooks, Z. Lei, P. Back, M. Eich,

H. Overweg, Y. Lee, P. Rickhaus, K. Watanabe, T. Taniguchi,
A. Imamoglu, G. Burkard, T. Ihn, and K. Ensslin, Phys. Rev.
Lett. 121, 247701 (2018).

165407-11

https://doi.org/10.1038/s41563-018-0055-z
https://doi.org/10.1088/1361-6528/ab0a1d
https://doi.org/10.1021/acsaelm.9b00390
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1038/s41467-017-02047-5
https://doi.org/10.1038/s41598-017-00857-7
https://doi.org/10.1103/PhysRevLett.87.196803
https://doi.org/10.1103/PhysRevB.67.085410
https://doi.org/10.1021/ja805545x
https://doi.org/10.1140/epjb/e2011-20456-7
https://doi.org/10.1088/0953-8984/28/49/495001
https://doi.org/10.1103/PhysRevB.92.245443
https://doi.org/10.1073/pnas.1605982113
https://doi.org/10.1088/1361-648X/ab6f83
https://doi.org/10.1021/nl501133c
https://doi.org/10.1016/j.carbon.2016.04.069
https://doi.org/10.1063/1.1739160
https://doi.org/10.7566/JPSJ.82.054703
https://doi.org/10.1103/PhysRevB.89.195407
https://doi.org/10.1088/0953-8984/27/20/205301
https://doi.org/10.1103/PhysRevB.75.085305
https://doi.org/10.1103/PhysRevLett.103.147004
https://doi.org/10.1103/PhysRevB.88.144515
https://doi.org/10.1038/nphys3742
https://doi.org/10.1038/s41467-019-14094-1
https://doi.org/10.1103/PhysRevB.88.075409
https://doi.org/10.3390/app6100284
https://doi.org/10.1103/PhysRevB.92.195402
https://doi.org/10.1103/PhysRevB.91.075433
https://doi.org/10.1103/PhysRevB.101.085425
https://doi.org/10.1103/PhysRevX.4.011034
https://doi.org/10.1126/sciadv.aaw8693
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1103/PhysRevB.90.155450
http://arxiv.org/abs/arXiv:1810.04588
https://doi.org/10.5281/zenodo.1182437
https://doi.org/10.1103/PhysRevLett.114.227001
https://doi.org/10.1103/PhysRevLett.110.017003
https://doi.org/10.1103/PhysRevX.4.039901
https://doi.org/10.1103/PhysRevB.97.235445
https://doi.org/10.1103/PhysRevLett.121.247701

