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The transport spectral function of electron-phonon (e-ph) interaction in the double δ-function approximation
(DDFA) is extensively employed to calculate the intrinsic resistivity (arising from e-ph scattering) of metallic
materials in recent works of first-principles calculations. In contrast, a more fundamental transport spectral
function with the Fermi smearing effect due to finite temperature (T ) and nonzero phonon frequency is less
involved. In this work, we perform first-principles calculations of the intrinsic resistivity of Ti2N monolayer, a
potential MXene material, by employing the two kinds of spectral function. We find that the spectral function
with the DDFA fails to describe correctly the temperature dependence of the intrinsic resistivity of Ti2N
monolayer at T > 250 K, much lower than the Debye temperature. The underlying reason is that Ti2N monolayer
has a multisheet Fermi surface formed by several bands, and some band edges are very close to the Fermi surface.
Our results suggest that the transport spectral function with the Fermi smearing effect, instead of the one with the
DDFA, is always adequate for studying the intrinsic resistivity of realistic materials on the level of first-principles
calculations. In addition, we give a brief remark on the intrinsic resistivity of Ti2N monolayer, in contrast with
other typical two-dimensional materials, which is significant from the viewpoint of application of such an MXene
material.
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I. INTRODUCTION

Electron-phonon (e-ph) interaction is an inevitable scat-
tering mechanism to impede electronic transport in solids.
In general, at and beyond room temperature, the resistiv-
ity or carrier mobility of solids is mainly limited by e-ph
scattering [1,2]. The resistivity of a metal due to e-ph scat-
tering is called the intrinsic resistivity (ρ). As an important
electric transport property, the temperature dependence of in-
trinsic resistivity of metals is studied intensively from both
experimental and theoretical standpoints [3–8]. According
to conventional transport theory, when the temperature (T )
exceeds the Debye temperature (TD), the intrinsic resistiv-
ity of most metals exhibits a linear temperature dependence.
For some metals with a very small Fermi surface, the lin-
ear temperature dependence of intrinsic resistivity comes
about from a much lower temperature than TD, called the
Bloch-Grüneisen temperature (TBG). It corresponds just to
the thermal excitation temperature of the phonons, with the
wave vector equal to the linear size of the Fermi surface.
In the low-temperature limit, the intrinsic resistivity follows
a power law of T 5 for three-dimensional (3D) and T 4 for
two-dimensional (2D) systems, respectively [9]. However, for
a realistic material, the ρ-T relation may deviate from these
general rules largely due to the complicated Fermi surface
or umklapp scattering processes, which are excluded from
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the conventional transport theory. In such a context, a first-
principles calculation on the intrinsic resistivity of realistic
metallic materials is highly desirable, which indicates a more
detailed ρ-T relation than the above qualitative predictions.

Thus far, the electronic energy of a realistic material can
be obtained numerically based on the density functional the-
ory (DFT). In addition, the phonon frequency and the e-ph
interaction matrix elements can be obtained by means of
the density functional perturbation theory (DFPT) [10]. This
progress involving first-principles calculations paves the way
to study the intrinsic resistivity of a realistic metallic material,
free from any empirical model. To calculate the intrinsic re-
sistivity of a metal, the generalized Ziman resistivity formula
is an adequate theoretical approach in which the resistivity
is expressed in terms of a transport spectral function due to
e-ph scattering [2], which is simply called a spectral function
hereafter. An extensively used version of the spectral func-
tion in the literature is in the form of the so-called double
δ-function approximation (DDFA) [3–5]. By means of such
an approximation, the initial and final electronic states of e-ph
scattering are both strictly restricted on the Fermi surface.
In fact, without employing the DDFA, one can work out a
more fundamental expression of the spectral function that
becomes temperature-dependent, arising from the Fermi dis-
tribution of electrons around the Fermi level. However, such
a temperature-dependent spectral function is employed less
often to study the intrinsic resistivity of metals than its DDFA
counterpart, though it means fewer restrictions to the electron
and phonon states involved in the e-ph scattering. To obtain
the intrinsic resistivity of realistic metallic materials with high
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precision from first-principles calculations, one must compare
the intrinsic resistivity of metal calculated by the two kinds of
spectral functions, with the aim of checking the validity of the
spectral function within the DDFA as is used for studying the
intrinsic resistivity of realistic metallic materials.

In this work, we perform first-principles calculation on
the intrinsic resistivity of Ti2N monolayer, a potential
member of the MXene family from recent theoretical pre-
dictions [11–19]. Our numerical results indicate that with
the increase in temperature, the intrinsic resistivity of Ti2N
monolayer exhibits two separate regions of linear temperature
dependence. The first one occurs within 70–250 K, which is
much lower than the Debye temperature (TD = 781 K), while
the onset temperature of the second linear temperature depen-
dence region is about 1400 K, far larger than TD. From these
results, it seems that the linear temperature dependence of the
intrinsic resistivity of Ti2N monolayer is irrelevant to Debye
temperature. This is at odds with the conventional transport
theory. We find that these features of intrinsic resistivity of
Ti2N monolayer are closely associated with the temperature-
dependent spectral function. In contrast, the spectral function
of DDFA cannot correctly describe the temperature depen-
dence of the intrinsic resistivity of Ti2N monolayer. Beyond
room temperature (300 K), it gives a numerical result that is
remarkably different from that calculated by the temperature-
dependent spectral function. The discrepancy of the intrinsic
resistivity calculated by the two kinds of spectral functions
implies that the DDFA fails to apply to the spectral function
of Ti2N monolayer. And the underlying reason is due to the
appearance of some band edges within an energy shell around
the Fermi level on the scale of kB(TD + T ). Such a case is
expected to occur often in realistic materials with a multisheet
Fermi surface, not limited only to Ti2N monolayer. Therefore,
much attention should be paid to such an issue when employ-
ing the DDFA to calculate the spectral function and further
the intrinsic resistivity of realistic materials on the level of
first-principles calculations.

The rest of this work is organized as follows. In Sec. II,
we give a brief description of the theoretical methods, includ-
ing the Ziman resistivity formula for calculating the intrinsic
resistivity and the technical details of the first-principles cal-
culations. In Sec. III, the numerical results of the intrinsic
resistivity of Ti2N monolayer are shown and discussed. Fi-
nally, in Sec. IV the main results are summarized.

II. THEORETICAL APPROACH AND COMPUTATIONAL
METHODS

A. Ziman resistivity formula

In this work, we employ the Ziman formula [2] to calculate
the intrinsic resistivity of Ti2N monolayer. It was first derived
by Ziman from the variational solution of the Boltzmann
transport equation in the presence of e-ph scattering. Then,
it was generalized by Allen to more realistic cases such as
the complicated Fermi surface formed by multiple bands [20].
Thus, the Ziman resistivity formula becomes an appropriate
approach for calculating the intrinsic resistivity of realistic
metallic materials on the level of first-principles calculations.
According to Allen’s original work [21], the Ziman formula

expresses the intrinsic resistivity along a given direction, say
the x direction, in terms of the spectral function. It takes the
form

ρx = π

e2h̄N (E f )
〈
v2

x

〉
∫

d�α2FT (�)F (kBT/�), (1)

with

F (kBT/�) = �

kBT
sinh−2

( �

2kBT

)
. (2)

And the spectral function is defined as

α2FT (�) = 1

NkNqN (E f )

∑
mnk
νq

δ(� − ωνq)

ωνq

∣∣Gν
mn(k, q)

∣∣2

× δ(Emk+q − Enk − h̄ωνq)

× ( fnk − fmk+q)

[
1 − vnk · vmk+q

|vnk||vmk+q|
]
. (3)

In the above expressions, Nk and Nq are the numbers of k and
q points of the Brillouin zone (BZ) sampling, respectively;
N (E f ) stands for the electronic density of states at the Fermi
energy E f . Gν

mn(k, q) is the e-ph interaction matrix element be-
tween an electronic initial state |nk〉 and a final state |mk + q〉
that is caused by emitting or absorbing a phonon of state |νq〉.
Note that n, m, and ν denote the indexes of electron bands and
the phonon mode, respectively. ωνq is the phonon frequency
of the phononic state |νq〉; Enk and Emk+q are the electronic
energy of the electronic states |nk〉 and |mk + q〉, respectively.
fnk and fmk+q denote the Fermi distributions at these elec-
tronic states. vnk and vmk+q are the band velocities [2,22]. 〈v2

x 〉
denotes a squared average of the x-component of electronic
velocity on the Fermi surface,

〈
v2

x

〉 =
∑

nk(vnk · ex)2δ(Enk − E f )∑
nk δ(Enk − E f )

. (4)

We have to point out that in Allen’s original work, the spectral
function is defined in an alternative form, i.e.,

α2F̃T (�)

= 1

NkNqN (E f )

∑
mnk
νq

δ(� − ωqν )
∣∣Gν

mn(k, q)
∣∣2

δ(Enk − E f )

× δ(Emk+q − E f )

[
1 − vnk · vmk+q

|vnk||vmk+q|
]
. (5)

Due to the appearance of two δ-functions on the right-hand
side of the above expression, it is often referred to as the
spectral function in the DDFA [23]. In comparison with the
expression of the spectral function given by Eq. (3), the spec-
tral function in the DDFA is used more extensively in studying
the intrinsic resistivity of metallic materials on the level of
first-principles calculations in recent relevant works [3–5].
However, it should be emphasized that Eq. (3) is the fun-
damental definition of the spectral function. In contrast, the
DDFA introduces the excessive restriction that the electronic
initial and final electronic states in the e-ph scattering process
are completely confined on the Fermi surface. Consequently,
the so-called Fermi smearing effect due to the nonzero phonon
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energy and finite temperature is fully omitted, which must
influence the calculated intrinsic resistivity to some extent. In
fact, if we insert the identity

∫
dε δ(ε − Enk ) = 1 into Eq. (3),

we then get

α2FT (�) =
∫ ∞

−∞
dε

f (ε) − f (ε + �)

�
I (ε,�)

≈
∫ ∞

−∞
dε

(
−∂ f

∂ε

)
I (ε,�)

≈ α2F̃T (�) + π2

6
(kBT )2 ∂2I (ε,�)

∂2ε

∣∣∣∣
ε=E f

(6)

with

I (ε,�) = 1

NkNqN (E f )

∑
mnk
νq

δ(� − ωνq)
∣∣Gν

mn(k, q)
∣∣2

× δ(Emk+q − Enk − h̄ωνq)

× δ(ε − Enk)

[
1 − vnk · vmk+q

|vnk||vmk+q|
]
. (7)

It is not difficult to infer that the prerequisites from the second
step to the third step of Eq. (6) are E f � kBTD and E f � kBT .
It must be emphasized that E f herein just refers to the dif-
ference between the Fermi energy and the proximate band
edge. Besides, to reach the last result from the third step of
Eq. (6), use has been made of the Sommerfeld expansion. To
sum up, from the above analysis we can conclude that the
validity of the DDFA applied to the spectral function consists
of the following aspects: the Fermi energy is much larger
than the thermal excitation energy and phonon Debye energy.
Meanwhile, the function I (ε,�) versus ε is slowly varying in
the vicinity of the Fermi energy. Usually, I (ε,�) is deemed
to be mainly determined by the electronic density of states
around the Fermi energy, whereas the e-ph interaction matrix
element and the term for the large-angle scattering weight do
not change very much, although this is never demonstrated
formally. However, for realistic metallic materials, it is often
difficult to identify whether these preconditions hold true. For
example, in the case of a complicated Fermi surface formed
by multiple bands, the Fermi energy is very close to the edges
of one or several bands; however, far away from the edges of
other bands, the Fermi level spans all of these bands. Conse-
quently, it is not straightforward to estimate whether the Fermi
energy is much larger than the thermal excitation energy and
phonon Debye energy. It will be seen that such a situation
occurs in Ti2N monolayer, a potential MXene material under
our consideration for calculating the intrinsic resistivity on the
level of first-principles calculations. Therefore, the applicabil-
ity of the DDFA to the spectral function is doubtful, although
it is used extensively in relevant works.

If the transport spectral function is decomposed into mode-
resolved ingredients as α2FT (�) = ∑

ν α2F ν
T (�), then the

resistivity can be written as the summation of the contribu-
tions of each phonon mode to the intrinsic resistivity, i.e.,

ρx =
∑

ν

ρν
x . (8)

If the summation over ν on the right side of the above equa-
tion is restricted within the acoustic phonon (AP) and optical
phonon (OP) modes, respectively, we can obtain the individ-
ual contributions of acoustic and optical modes to the intrinsic
resistivity, denoted as ρAP

x and ρOP
x , respectively. Then, we

define κAP = ρAP
x /ρx and κOP = ρOP

x /ρx, which stand for the
respective percentages of the contributions of acoustic and
optical modes to the intrinsic resistivity. By the same token,
we can divide the spectral function into two parts of the
acoustic and optical phonon modes, denoted as α2F AP

T (�)
and α2F OP

T (�), respectively. These quantities will be used
to analyze the numerical results of the intrinsic resistivity of
Ti2N monolayer.

B. Computational methods

To investigate the intrinsic resistivity of Ti2N mono-
layer on the level of first-principles calculations, detailed
knowledge about the electronic and phononic states and
e-ph interaction matrix elements is required. The calcula-
tions for these quantities are performed in the theoretical
frameworks of DFT and DFPT, respectively, by using the
QUANTUM ESPRESSO package [24]. In addition, we adopt the
norm-conserving pseudopotential [25] to model the ionic po-
tential and the generalized gradient approximation (GGA)
of the Perdew-Burke-Ernzerhof (PBE) functional [26] for
the exchange-correlation interaction. A coarse Monkhorst-
Pack [27] 10 × 10 × 1 mesh is employed to sample both k
points and q points in the BZ.

The aforementioned numerical results do not suffice for
exploring the intrinsic resistivity of Ti2N monolayer quanti-
tatively because the k-mesh and q-mesh are both too coarse
to result in an accurate description of the e-ph scattering
processes in the vicinity of the Fermi surface. However, first-
principles calculations on a much finer k-mesh or q-mesh
imply a formidable computational burden. To circumvent such
a prohibitive task, we adopt a generalized Fourier interpola-
tion approach realized by the EPW code [28] in real space,
which enables affordable and accurate calculations of the elec-
tronic and phonon energy spectra as well as the e-ph coupling
on ultrafine k-mesh and q-mesh.

III. RESULTS AND DISCUSSIONS

A. Structure and electronic properties

Before performing the numerical calculations on the intrin-
sic resistivity, it is significant to outline the crystal structure
and the electronic and phononic dispersions of Ti2N mono-
layer. Such a potential MXene material has a hexagonal
crystal structure. Its lattice structure and BZ with the Fermi
surface embedded in it are illustrated in Fig. 1. After a full
relaxation calculation, we obtain that the lattice constant of
Ti2N is a1 = a2 = a = 3.03 Å, and the thickness of the Ti2N
triple atomic layers is 2.39 Å with a Ti-N bond length of
2.12 Å. The electronic band structures of Ti2N obtained by
DFT (blue solid line) and Wannier interpolation (black dashed
line) along the high-symmetry path are shown in Fig. 2(a).
Both of them give the same energy spectrum in the energy
range of 2 eV around the Fermi energy taken as zero energy.
From the electronic band structure, we can see that more
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FIG. 1. (a) Side view and (b) top view of the Ti2N monolayer. In
(b) a1 and a2 are the lattice vectors of Ti2N monolayer, and the unit
cell of Ti2N lattice is shown by a dashed line. (c) Brillouin zone of
Ti2N with the Fermi surface embedded in it, high-symmetry points
labeled; b1 and b2 are the inverse lattice vectors.

than one band spans the Fermi level, hence the Fermi sur-
face of Ti2N monolayer has a multibranch profile, as seen
in Fig. 1(c). It is noteworthy the some band edges are very
close to the Fermi level. For example, at the small electron
and hole pockets marked in Fig. 2(a), the differences between
the band edges and the Fermi level are 83 and 87 meV,
respectively. They are not much larger than the Debye energy
(67 meV) as given below. Such a band feature may prevent the
DDFA from applying to the Ti2N monolayer to calculate the
intrinsic resistivity. Phononic dispersion of Ti2N monolayer
along the high-symmetry path with no imaginary frequency
is presented in Fig. 2(b). There are nine phonon modes in
Ti2N monolayer, including three acoustic branches (ν = 1–3)
and six optical branches (ν = 4–9). The calculated maximal
phonon frequency on the q-mesh is about 550 cm−1, which
can be viewed as the Debye frequency ωD. And one can
get the Debye temperature by using kBTD = h̄ωD [29]. The
corresponding Debye temperature is TD = 781 K, and the
corresponding Debye energy is 67 meV. In addition, from
Fig. 2(b) it is obvious that the frequencies of acoustic modes
are globally lower than the optical modes. As shown below,
such a feature plays a critical role in determining the temper-
ature dependence of the intrinsic resistivity.

B. Intrinsic resistivity

With the theoretical approaches presented above, we are
now in the position to perform numerical calculations on
the intrinsic resistivity of Ti2N monolayer on the level
of first-principles calculations. To do this, we will em-
ploy the two kinds of spectral functions given by Eqs. (3)
and (5), respectively. The former (α2FT ) is fundamental and
temperature-dependent, while the latter (α2F̃T ) is the result
of the DDFA. Our main aim is to check the validity of the
DDFA adopted frequently in the literature to study the in-
trinsic resistivity of metallic materials. With the help of the
Wannier interpolation technique, we can take much fine BZ
samplings to treat the k and q integrations numerically in order
to calculate the intrinsic resistivity with high precision. To
perform numerical calculations, the Dirac δ-function in the
spectral function is approximated by the Gaussian smearing

FIG. 2. (a) Electronic and (b) phononic dispersions of Ti2N
monolayer along the high-symmetry path �-M-K-�. The electronic
band structures of Ti2N monolayer obtained by DFT (blue solid
line) and Wannier interpolation (black dashed line) along the high-
symmetry path are exhibited in (a). Fermi energy is shifted to be
0 eV. The difference between the band edge of the small electron
(hole) pockets and the Fermi level is 83 meV (87 meV). The phonon
modes ordered by frequency are identified by magnitude from 1
(the lowest) to 9 (the highest). The three phonon modes with zero
frequency at the high-symmetry point � are acoustic branches (ν =
1–3), and the remaining six are optical branches (ν = 4–6).

function with a broadening σ . The convergence of the intrinsic
resistivity calculated by α2FT with respect to the density of BZ
sampling and the Gaussian broadening is shown in Fig. 3(a).
We find that at room temperature (300 K), 200 × 200 × 1
k-mesh and q-mesh with an appropriate Gaussian broadening
σ = 5 × 10−4 eV can yield the convergent result of intrinsic
resistivity. In comparison with the result obtained with much
finer k-mesh and q-mesh, the relative error of the obtained
intrinsic resistivity is less than 1%. In addition, even at very
low temperature, i.e., 20 K, our numerical calculations indi-
cate that such fine (200 × 200 × 1) k-mesh and q-mesh are
sufficient to result in a convergent intrinsic resistivity with a
relative error less than 1%. In contrast, the convergence of the
intrinsic resistivity calculated by α2F̃T is also checked, and the
numerical results are shown in Fig. 3(b). It can be seen that
if we adopt the Gaussian broadening σ = 5 × 10−4 eV, we
need at least 1600 × 1600 × 1 k- and q-mesh to guarantee the

165402-4



TEMPERATURE-DEPENDENT ELECTRON-PHONON … PHYSICAL REVIEW B 102, 165402 (2020)

FIG. 3. Intrinsic resistivity of Ti2N monolayer with varied Gaus-
sian broadening parameter σ and ns × ns × 1 k- and q-mesh
calculated by (a) α2FT and (b) α2F̃T . All results are calculated at
300 K.

convergence of the numerical results [the relative error of the
obtained intrinsic resistivity in Fig. 3(b) is less than 1%]. This
implies that the convergence of the numerical results becomes
more difficult when the DDFA is employed in the spectral
function. After the convergence test, we study the anisotropy
of the intrinsic resistivity of Ti2N monolayer at room tem-
perature (300 K). As shown in Fig. 4, the variation of ρθ/ρx

with angle θ is plotted. ρθ is the intrinsic resistivity driven by
the electric field in the direction with the angle θ with respect
to the x-axis. The result indicates that the anisotropy of Ti2N
monolayer is very small (ρθ/ρx is 0.957 at the minimum) and
can be ignored. Based on this result, below we will only focus
on the intrinsic resistivity along the x-direction.

First of all, we are interested in the temperature dependence
of the intrinsic resistivity of Ti2N monolayer. The numerical
results are shown in Fig. 5. As shown in Fig. 5(a), below
45 K, the intrinsic resistivities calculated by the two kinds
of spectral functions are quantitatively consistent. An im-
portant feature of the intrinsic resistivity spectrum in such a
low-temperature region is that ρ is proportional to T 4, which
is a universal result of the intrinsic resistivity of 2D metals
in the low-temperature limit predicted by the conventional

FIG. 4. The variation of ρθ/ρx with angle θ . ρθ is the intrinsic
resistivity driven by the electric field in the direction with the angle θ

with respect to the x-axis. This result is calculated by α2FT at 300 K.

transport theory [9]. Then, the numerical result of the intrin-
sic resistivity of Ti2N monolayer calculated by α2FT in the
subsequent wide temperature region (50–2000 K) is shown in
Fig. 5(b). This numerical result indicates that with the increase
of temperature, the intrinsic resistivity of Ti2N monolayer
calculated without the DDFA exhibits two separate regions of
a linear temperature dependence. The first one occurs within
70–250 K, which is much lower than the Debye temperature
(TD = 781 K), while the onset temperature of the second
linear temperature dependence region is about 1400 K, far
larger than TD. According to conventional transport theory,
when the temperature exceeds the Debye temperature, all of
the phonons are fully thermally excited, with the average
phonon number being about T/TD. Considering that the e-ph
scattering rate is proportional to the average phonon number,
a straightforward conclusion is that the linear ρ-T relation
holds at and beyond the Debye temperature. However, our
numerical result shown in Fig. 5(b) is at odds with such a
prediction of conventional transport theory. It seems that the
appearance of both linear ρ-T regions of Ti2N monolayer
is not directly associated with TD since they occur in either
much lower or higher temperature regions than TD. In contrast
to the result shown in Fig. 5(b), the temperature dependence
of the intrinsic resistivity of Ti2N monolayer calculated by
α2F̃T in the temperature range from 50 to 2000 K is shown in
Fig. 5(c). We can see that the DDFA brings about a distinct
result. Namely, the linear ρ-T relation always holds true in
the temperature range of 70–2000 K. Moreover, a detailed
comparison of the intrinsic resistivity calculated by the two
kinds of spectral functions within 50–2000 K is plotted in
Fig. 5(d). Below 250 K, the results obtained by the two
spectral functions are in good agreement. But the difference
between the two results becomes sizable as the temperature
increases gradually. Even at room temperature (300 K), the
relative difference between them amounts to 8.2%.

It is now necessary to give a reasonable explanation of
the temperature dependence of the intrinsic resistivity of Ti2N
monolayer as shown Fig. 5(b). To begin with, by means of the
Ziman formula we try to explain the untimely occurrence of
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FIG. 5. (a) Resistivity of Ti2N monolayer calculated by α2F̃T (black solid line) and α2FT (red dashed line) vs temperature T within
20–45 K, with the T 4 fitting curve plotted for comparison. Resistivity of Ti2N calculated by (b) α2FT and (c) α2F̃T (�) vs temperature T within
50–2000 K, with the linear fitting curve plotted for comparison. (d) Resistivity of Ti2N monolayer calculated by α2F̃T (black solid line) and
α2FT (red dashed line) vs temperature T within 50–2000 K.

the linear temperature dependence of the calculated intrinsic
resistivity from 70 to 250 K as shown in Fig. 5(b), which
is much lower than TD. According to the expressions given
by Eqs. (1)–(3), the temperature dependence of the intrinsic
resistivity comes from the spectral function α2FT (�) as well
as the function F (x). They are associated with the temperature
dependence of the electron and phonon distributions, respec-
tively. And their profiles are plotted in Figs. 6(a) and 6(b),
respectively. As shown in Fig. 6(a), the spectral function
α2FT (�) hardly changes with temperature within 50–250 K.
And they do not show a nontrivial difference from the result
of the DDFA. This implies that the temperature dependence
of intrinsic resistivity is solely determined by the function
F in such a low-temperature region. As shown in Fig. 6(b),
the function F (T/T0) starts to show the linear temperature
dependence from a critical temperature of about 0.22T0 with
T0 as a characteristic temperature. Let us now digress for
a moment to have a look at Fig. 6(c), which displays the
phonon distribution function N (T/T0) = 1/[exp(T0/T ) − 1].
The function N (T/T0) begins to exhibit a linear temperature
dependence for a critical temperature of about 0.5T0. Accord-
ing to conventional transport theory, the intrinsic resistivity is
simply proportional to the e-ph scattering rate. And the e-ph
scattering rate is proportional to the average phonon number.
Consequently, from the result shown in Fig. 6(c), we can
infer that even within the framework of conventional transport
theory, the linear temperature dependence of metallic intrinsic
resistivity occurs from a critical temperature lower than TD.

There is no need for such a critical temperature to be much
larger than TD.

The percentage contributions of each phonon mode to
the total intrinsic resistivity are shown in Table I, and the
percentage contributions of AP and OP modes to the total
intrinsic resistivity are shown in Fig. 6(d). We find that at low
temperatures (<250 K), the intrinsic resistivity contributed
by AP is much greater than that contributed by OP. This is
because OP modes have higher energy than AP modes and are
not easily thermally excited at low temperature. Therefore, in
the low-temperature region from 70 to 250 K, the contribution
of AP to intrinsic resistivity dominates. The spectral functions
of AP and OP modes are shown in Fig. 6(e). We can see that
the spectral functions of AP and OP are almost separated in
frequency with very small overlap. Such a result is consistent
with the phonon dispersion as shown in Fig. 2(b), where the
frequency of AP looks globally lower than that of OP along
the high-symmetry line. Based on these numerical results
shown in Figs. 6(d) and 6(e), we conclude that the intrinsic
resistivity in the range of 70–250 K is mainly contributed by
the AP modes. In other words, we can disregard the OP modes
in such a low-temperature region. And if we substitute α2F AP

T
for α2FT to calculate the intrinsic resistivity, the numerical
result does not change very much, in comparison with that
shown in Fig. 5(b). As mentioned above, in the temperature
region of 70–250 K, the ρ-T relation is dominated by the
function F (T/T0). Now that the OP modes are frozen, kBT0

can be understood as the maximal frequency of AP. From
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FIG. 6. (a) The spectral function α2F̃T (�) and α2FT (�) at temperatures of 50–250 K. (b) The plot of the function F (T/T0). When the
argument x < 0.22, the function F (T/T0 ) begins to deviate from a linear function. (c) The plot of the function N (T/T0). When the argument
x < 0.5, the function F (T/T0 ) begins to deviate from a linear function. (d) The percentages of the intrinsic resistivity contributed by AP (black
line) and OP (red line) at different temperatures. The solid line represents the result calculated by α2F̃T (�), the dashed line represents the
result calculated by α2FT (�). (e) The contributions of AP (black line) and OP (red line) to α2FT (�) at T = 100 K. (f) The spectral function
α2FT (�) at temperatures of 800–2000 K. (g) The spectral function α2F̃T (�), α2FT (�), and α2F̃T (�) + π2

6 (kBT )2 ∂2I (ε,�)
∂2ε

|
ε=E f

at 300 K.

Fig. 6(e) we know that T0 is about 300 K. According to our
analysis about the function profile of F (T/T0), the linear
temperature dependence occurs from 0.22 × 300 = 66 K, in

agreement with the numerical results shown in Fig. 5(b). In
short, the first linear temperature dependence region from 70
to 250 K of Ti2N originates from the AP modes. According to

TABLE I. Percentage of the contributions of each phonon mode to the intrinsic resistivity of Ti2N at room temperature (300 K) calculated
by α2FT and α2F̃T , respectively. ρ1–ρ3 represent the contributions of the acoustic modes, and ρ4–ρ9 represent the contributions of the optical
modes.

ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9

(%) (%) (%) (%) (%) (%) (%) (%) (%)

α2FT 23.22 15.75 19.45 9.26 8.26 7.54 8.16 4.39 3.97
α2F̃T 22.79 15.09 18.96 10.12 7.78 7.41 8.66 4.82 4.37
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the Ziman formula, the linear temperature dependence starts
to occur from a critical temperature as low as one-fifth of the
maximal frequency of AP.

When T > 250 K, the OP modes start to play a role
that ends the linear temperature dependence established by
AP modes. Such a situation is demonstrated by the nu-
merical result shown in Fig. 5(b) in the temperature range
between 250 and 1400 K. However, if we employ the transport
spectral function α2F̃T , which is completely independent of
temperature due to the DDFA, the temperature dependence
of the intrinsic resistivity arises exclusively from the func-
tion F (T/T0). Just following the preceding analysis, we can
find that the intrinsic resistivity even with the OP scattering
incorporated has a linear temperature dependence from the
critical temperature 0.22TD = 172 K, which is lower than
the upper limit of the first linear ρ-T region established by
AP scattering as shown in Fig. 5(b). Therefore, the DDFA
always gives the linear ρ-T relation in the wide range from
70 to 2000 K as shown in Fig. 5(c). However, such a result
is incorrect. As seen in Fig. 5(b), the temperature depen-
dence of the spectral function α2FT (�) modifies the ρ-T
spectrum drastically. In particular, the nontrivial temperature
dependence of the spectral function in the temperature range
from 250 to 1400 K, as shown in Fig. 6(f), has the linear
temperature dependence of the intrinsic resistivity broken
down. This result indicates that the spectral function in the
DDFA is inappropriate for calculating the intrinsic resistivity
in a relatively high-temperature range. In addition, α2F̃T (�),
α2FT (�), and α2F̃T (�) + π2

6 (kBT )2 ∂2I (ε,�)
∂2ε

|
ε=E f

at 300 K are
plotted in Fig. 6(g). It can be seen that there is an obvious
difference between α2F̃T (�) and α2FT (�), while the differ-
ence between α2F̃T (�) and α2F̃T (�) + π2

6 (kBT )2 ∂2I (ε,�)
∂2ε

|
ε=E f

is not appreciable. This result indicates that the temperature
correction contributed by the term of the Sommerfeld ex-
pansion, i.e., from the third to the last step of Eq. (6), is
not the main reason for the difference between α2F̃T (�) and
α2FT (�). Instead of that, the approximation from the second
to the third step of Eq. (6) brings about the critical error of the
DDFA. Therefore, the conditions E f � kBT and E f � kBTD

for the applicability of the DDFA are suspicious in monolayer
Ti2N due to the small electron and hole pockets as shown
Fig. 2.

Our main conclusion is that the temperature dependence
of the transport spectral function for e-ph scattering plays an
important role in the intrinsic resistivity of such materials with
the Fermi energy very close to the band edge. And we draw
such a conclusion from the theoretical analysis on the Ziman
formula and the transport spectral function presented in the
Sec. II. Ti2N monolayer is just a typical material to demon-
strate such a conclusion by numerical calculations. Our recent
theoretical investigations indicate that the DDFA also fails to
describe quantitatively the intrinsic resistivity of plumbene (a
kind of 2D plumbum material fabricated experimentally much
recently) and some heavily doped semiconductors because a
common feature of these materials is that they all have a Fermi
level very close to the band edge. More details will be reported
in our future work. What we would like to emphasize is that
these theoretical results verify further our main conclusion in
this work. In particular, our study indicates that when employ-

TABLE II. The values of the intrinsic resistivity of graphene,
Ti3C2, Ti2N, Nb4C3, and Ti2C at room temperature (300 K).

Material Resistivity (μ� cm)

graphene 2Ref. [5]

Ti3C2 154Ref. [30]

Ti2N 163
Nb4C3 460 000Ref. [31]

Ti2C 6 800 000Ref. [32]

ing the Ziman formula to study the carrier mobility of doped
semiconductors, one must take the temperature dependence of
the transport spectral function into account since the Fermi en-
ergy is often very close to the band edge for the case of heavy
doping. A systematical measure on the intrinsic resistivity of
plumbene as a function of temperature is expected to give an
experimental demonstration of our conclusion. Before ending
our work, we remark briefly on the intrinsic resistivity of Ti2N
monolayer in comparison with other typical two-dimensional
materials. As shown in Table II, the intrinsic resistivity of
Ti2N monolayer is higher than that of graphene by almost two
orders of magnitude. However, its intrinsic resistivity is much
lower than most other materials in the MXenes family. For
example, the experimental measure of the intrinsic resistivity
of Ti3C2 monolayer is about 154 μ� cm, which is perhaps the
lowest value among the MXenes materials available exper-
imentally thus far [11]. Our numerical calculation indicates
that the intrinsic resistivity of Ti2N at room temperature is
about 163 μ� cm, comparable to that of Ti3C2 monolayer.
This suggests that Ti2N is a potential material with high con-
ductivity.

IV. CONCLUSIONS

Within the theoretical framework of Ziman resistivity for-
mula, the transport spectral function of e-ph interaction is
the critical quantity for calculating the intrinsic resistivity of
metals. Such a spectral function in the DDFA is extensively
employed to calculate the intrinsic resistivity of metallic
materials in recent works of first-principles calculations. In
contrast, a more fundamental transport spectral function with
the Fermi smearing effect due to finite temperature and
nonzero phonon frequency is less involved. In this work, the
validity of the DDFA as is used to calculate the intrinsic
resistivity has been addressed. We find that the applicabil-
ity of the DDFA requires the following: The Fermi energy
must be far larger than the thermal excitation energy and the
phonon Debye energy. In addition, a function incorporating
the electronic density of states, the electron-phonon interac-
tion matrix element, and the large-angle scattering weight
must be slowly varying around the Fermi energy. However, it
is not straightforward to identify whether the DDFA is appli-
cable for realistic materials with a multisheet Fermi surface
formed by several bands. To exemplify such an issue, we
perform first-principles calculations of the intrinsic resistivity
of Ti2N monolayer, a kind of MXenes, by employing the two
kinds of spectral functions. By comparison, we find that the
spectral function with the DDFA fails to describe correctly
the temperature dependence of the intrinsic resistivity of Ti2N
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monolayer when T > 250 K, much lower than the Debye
temperature. The underlying physical reason is that some band
edges are very close to the Fermi surface. On the other hand,
the edges of other bands are far from the Fermi surface. But
all of these bands span the Fermi level. In such a context,
it is difficult to identify whether the Fermi energy is large
enough for the applicability of the DDFA. Our results suggest
that the spectral function with the Fermi smearing effect is
always adequate for studying the intrinsic resistivity of re-
alistic materials on the level of first-principles calculations.
In contrast, the validity of the DDFA for realistic materials,
particularly those materials with a complicated Fermi surface,
should be given a great deal of attention before it is employed

for numerical calculations. In addition, we remark briefly on
the intrinsic resistivity of Ti2N monolayer, in contrast to other
typical two-dimensional materials, which is significant from
the viewpoint of application of such an MXene material.
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