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Selection rules for the excitation of quantum dots by spatially structured light beams:
Application to the reconstruction of higher excited exciton wave functions
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Spatially structured light fields applied to semiconductor quantum dots yield fundamentally different absorp-
tion spectra than homogeneous beams. In this paper, we provide a detailed theoretical discussion of the resulting
spectra for different light beams using a cylindrical multipole expansion. For the description of the quantum
dots we employ a model based on the envelope function approximation including Coulomb interaction and
valence band mixing. The combination of a single spatially structured light beam and state mixing allows all
exciton states in the quantum dot to become optically addressable. Furthermore, we demonstrate that the beams
can be tailored such that single states are selectively excited, without the need of spectral separation. Using
this selectivity, we propose a method to measure the exciton wave function of the quantum dot eigenstate.
The measurement goes beyond electron density measurements by revealing the spatial phase information
of the exciton wave function. Such an extraction of phase information is known from polarization-sensitive
measurements; however, here the infinitely large spatial degree of freedom can be accessed by the beam profile
in addition to the two-dimensional polarization degree of freedom.
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I. INTRODUCTION

Spatially structured light (SSL) fields feature strong gra-
dients in the light intensity, in contrast to standard Gaussian
beams which can often be approximated by plane waves.
SSL appears in near-field setups [1], waveguides [2], photonic
crystals [3], or other cavities [4–6], as well as in the far field
of freely propagating beams [7–10], denoted, e.g., as Hermite-
Gaussian, Laguerre-Gaussian, or Bessel beams. The spatial
structure of such fields provides several interesting features:
First, it is possible to get around the diffraction limit [11,12].
Second, the infinite degree of freedom defined for instance
by the orbital angular momentum of the beam provides a
much more powerful approach to carry (quantum) information
than the two-dimensional polarization [8,13,14], thereby en-
abling hyperentanglement [13,15,16], state cloning [17], and
highly increased data transfer rates in optical communication
[18–20].

Here we study theoretically the interaction of SSL with a
single self-assembled semiconductor quantum dot (QD). QDs
provide a quantized and widely adjustable electronic level
structure and are established components in many modern
applications [21–26], especially in the context of quantum
information technology [27–30]. In addition to the energeti-
cally lowest four levels, i.e., the ground state bright and dark
excitons, which play a central role for many applications, also
higher excited states become interesting. The latter can be
used, e.g., to describe metastable states in charged QDs [31],
to create and describe multiexciton states [32–40], for state
preparation schemes [41,42], to study dephasing and relax-
ation processes [31,43,44], or for resonant absorption within

a QD [43,45–48]. To utilize higher excited electronic states,
they need to be addressable, selectively excitable, and identi-
fiable. In this paper, we will show that these three prerequisites
are highly improved when using SSL.

(1) Addressability. Plane wave selection rules enable
only specific electronic transitions. The number of ad-
dressable states is highly increased when using SSL with
their corresponding multipole transitions [49–51]. However,
several electronic states stay unaddressable within simpli-
fied QD models. We show within a realistic QD model
including Coulomb interactions and valence band mixing
that each eigenstate becomes accessible by an appropri-
ate SSL field. The oscillator strength of these previously
dark states varies from negligible to strong, depending on
the individual state mixtures. We discuss relevant coupling
mechanisms and the influence of symmetry breaking. The
oscillator strengths are visualized within calculated absorption
spectra.

(2) Selectivity. The QD’s eigenstates are often energet-
ically close and not individually addressable by short and
thus broadband laser pulses. This limits for instance the tem-
poral resolution in pump-probe experiments utilizing higher
excited states [31]. One known way around this limit is
a polarization-sensitive excitation, where even energetically
arbitrarily close states (like the horizontally and vertically
polarized exciton ground states) can be addressed selectively.
However, the polarization sensitive excitation is limited to the
two-dimensional spin degree of freedom. With our scheme
we show that using the infinite spatial degree of freedom of
SSL in addition to the polarization, one can highly increase
the possibilities of selective excitation.

2469-9950/2020/102(16)/165315(18) 165315-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4129-0174
https://orcid.org/0000-0002-3648-353X
https://orcid.org/0000-0001-7449-9287
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.165315&domain=pdf&date_stamp=2020-10-30
https://doi.org/10.1103/PhysRevB.102.165315


HOLTKEMPER, QUINTEIRO, REITER, AND KUHN PHYSICAL REVIEW B 102, 165315 (2020)

TABLE I. Definition of the basis functions used to describe the Bloch part of the wave function, corresponding parities in the x, y, and z
directions (e and o denoting even and odd parity, respectively), and corresponding dipole moments.

State εx εy εz ε0 εx̃ εỹ εz̃ ε0̃

Spin
configuration

1√
2

( �↓ − � ↑) −i√
2

( �↓ + � ↑) 1√
2

( �↑ + � ↓) i√
2

( �↑ − � ↓) 1√
2

(⇑↑ − ⇓↓) −i√
2

(⇑↑ + ⇓↓) 1√
2

(⇑↓ + ⇓↑) i√
2

(⇑↓ − ⇓↑)

Parity
(Px, Py, Pz )

(o,e,e) (e,o,e) (e,e,o) (o,o,o) (o,e,e) (e,o,e) (e,e,o) (o,o,o)

Dipole
moment μ

μ0

ex ey 0 0
√

1
3 ex

√
1
3 ey

√
4
3 ez 0

(3) Identification. To identify an electronic eigenstate
within a QD, one has to measure its wave function. The
measurement of electron densities in QDs is possible, e.g.,
by scanning tunneling [52] or magnetotunneling spectroscopy
[53]. We propose a method to reconstruct the wave function of
excitons from pure optical experiments. Our method goes be-
yond today’s measurements, since not just electronic densities
are measurable, but the wave function itself (of course except
for a global phase). Our proposed method is not restricted by
the diffraction limit.

The paper is structured as follows: The models for the QD
and the light-matter interaction are given in Sec. II. Analytical
selection rules and absorption spectra are first presented for a
simplified QD model in Sec. III and are then generalized to
our full model in Sec. IV. A proposal to measure the wave
functions of the QD’s eigenstates is given in Sec. V. Sec-
tion VI discusses the experimental viability of the considered
light modes. Concluding statements are given in Sec. VII. Fi-
nally, Appendices A–F provide some background information
and additional details.

II. MODEL

A. QD model

We model the electronic level structure of a QD based on
the envelope function approximation. In this approach, the
single-particle wave functions

�a,b(r) =
√

Vuc �a,b(r) ub(r) (1)

are separated into an envelope �a,b and a Bloch function ub,
with Vuc denoting the volume of the unit cell.

The Bloch part ub is described by the �-point states of
the underlying crystal numbered by the band index b. Here
we restrict our consideration to the heavy hole (HH), light
hole (LH), and lowest conduction (EL) bands, referred to

by their (pseudo)spins ± 3
2 (or � and

�

), ± 1
2 (⇑ and ⇓),

and ± 1
2 (↑ and ↓), respectively. We use the z axis (which

is the growth direction of the QD) as the quantization axis.
For excitons, we get eight possible combinations of the spin
states. Since we assume (as is realistic) a broken cylindrical
symmetry of the QD, the most convenient basis is defined
by the linearly polarized HH exciton states εx, εy, εz, and
ε0, as well as the LH exciton states εx̃, εỹ, εz̃, and ε0̃,
which are listed in Table I. We use a phase convention as in
Ref. [48].

The envelope functions are expanded in terms
of Cartesian Hermite-Gaussian functions �a,b(r) =

�̃ax,b(x)�̃ay,b(y)�̃az,b(z) with quantum numbers a =
(ax, ay, az ). States with ax + ay + az = 0, 1, 2, . . . will
be called s, p, d, . . . like states. LH states are labeled by
capital letters S, P, D, . . .. If necessary, indices provide a
distinction between ax, ay, and az, e.g., dxy for a = (1, 1, 0).
Since excitations in different in-plane directions are often
similar, we use “inpl” as a label for any in-plane direction;
thus for example dinpl is a shortcut for dxx, dxy, and dyy states.
Transitions as well as the associated exciton states are labeled
in the scheme hole → electron.

A full configuration interaction (CI) approach is used to
account for correlation effects. The CI basis states are given
by electron-hole product states and the resulting exciton states
are given by

|�X 〉 =
∑

ae,be;ah,bh

cae,be;ah,bh

∣∣�ae,be

〉 ⊗ ∣∣�ah,bh

〉
. (2)

Indices e (h) indicate that the summation runs only over the
conduction (valence) bands. Our QD Hamiltonian reads

ĤQD = ĤEMA + ĤCDI + ĤSRE + ĤVBM

and includes the QD confinement within an effective mass
approximation (EMA), the Coulomb direct (CDI) and short-
range exchange (SRE) interactions, as well as valence band
mixing (VBM) via the off-diagonal elements of a four-band
Luttinger model. As an approximation to the QD confinement,
we use an anisotropic harmonic potential treated in Cartesian
coordinates. The frequencies of the potential ωb,α = 4h̄

mb,αβ2
b L2

α

(b denoting the band index, α the direction) are chosen such
that the probability density of the ground state is reduced to 1

e

at the distance ± 1
2 Lα from the QD center. The QD diameters

Lα are fixed to 5.8 × 5.0 × 2.0 nm3, representing the flat
geometry with slightly broken cylindrical symmetry of a typ-
ical self-assembled QD. The wave functions of the holes are
assumed to be broader than those of the electrons by a factor
βHH/LH = β = 1.15 (we set βEL = 1.0). We use the material
parameters of CdSe [54,55], with a band gap of 1840 meV
and effective masses mb,α (in terms of the free-space elec-
tron mass m0): mEL = 0.13m0, mHH,x/y ≈ 0.38m0, mHH,z =
m0, mLH,x/y ≈ 0.65m0, and mLH,z ≈ 0.31m0, deduced from
the Luttinger parameters γ1 = 2.1, γ2 = γ3 = 0.55. For the
CDI, we use the static dielectric constant of bulk CdSe [55]
of εr = 9.2. The parameter for the coupling strength of the
SRE is set to MSRE = 1.47 meV by fitting experimental data
from Ref. [31]. Further details of the model are discussed in
Ref. [48].
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B. Light-matter interaction

The light-matter interaction can be described in differ-
ent gauges. The so-called twisted-light gauge [9] is highly
adapted to describe the interaction of higher multipole modes
with matter. However, the use of the twisted-light gauge
in conjunction with the envelope function approximation is
theoretically challenging and requires a reexamination of
the typical approximations involved in deriving the envelope
function approximation and its correspondence with the ap-
proximations made on the vector and scalar potential. Such
an analysis is out of the scope of the present article, and
thus we will here make use of the standard minimal-coupling
Hamiltonian in Coulomb gauge to calculate the transition
matrix elements. Accordingly, neglecting quadratic terms in
the fields, we consider

Ĥγ (t ) = e

m0
A(r, t ) · p̂ (3)

with the elementary charge e, the vector potential A, and
the canonical momentum operator p̂. Assuming a monochro-
matic light field A(r, t ) = Ã(r)e−iωt + c.c. with the complex
spatial light mode Ã(r) and the light frequency ω and using
Fermi’s golden rule the SSL-induced transition rate wX from
the empty QD |0〉 into an exciton state |�X 〉 with energy EX

is given by

wX (ω) = 2π

h̄
|〈�X | e

m0
Ã(r) · p̂|0〉|2δ(EX − h̄ω). (4)

Such excitation rates for single QDs are measured typi-
cally by photoluminescence excitation (PLE) spectroscopy
[31,47,56–58]. Since the generation of an exciton is associ-
ated with the absorption of a photon with the corresponding
energy h̄ω, these PLE spectra are usually referred to as ab-
sorption spectra. Here, we will follow this terminology and
use the term absorption spectra. In the plots each absorp-
tion line will be widened by a Lorentzian function with
a full width at half maximum of 0.1 meV to improve
visibility.

The matrix elements can be approximated by using the
typical steps of the envelope function approximation: After
the separation of the wave function into envelope and Bloch
parts [see Eq. (1)], the transformation r → r′ + R with the
position of the actual unit cell R and the relative position
within this unit cell r′ is applied. This is accompanied by
Vuc

∑
R

∫
d3r′ → ∫

d3R
∫

d3r′ and �a,b(r) = �a,b(R + r′) ≈
�a,b(R). Furthermore we use the approximation that the field
varies slowly over a single unit cell; thus we neglect in

Ã(R + r′) · p̂ = Ã(R) · p̂ +
∑

α∈{x,y,z}
∂Rα

Ã(R) · rα p̂ + · · · (5)

all but the zeroth-order term. Since p̂ results in dipole mo-
ments on the atomic length scale of the Bloch functions (see
Appendix A), higher order terms like rα p̂ would result in
higher multipole transitions on the atomic scale, which can
be neglected safely [59]. However, with the full dependency
of Ã(R) on R, all higher multipole transitions on the meso-
scopic scale of the envelopes are still included. In total we

FIG. 1. Beam profiles in the QD region as described in Eq. (7)
for θ = 0, α = x, and n ∈ {0, 1, 2, 3}. Red/blue areas symbolize
opposing orientations of the field.

get〈
�ae,be

∣∣Ĥγ

∣∣�ah,bh

〉
= Vuc

∫
d3r �∗

ae,be
(r) u∗

be
(r)

[ e

m0
Ã(r) · p̂

]
�ah,bh (r) ubh (r)

≈
∫

d3R �∗
ae,be

(R) Ã(R) �ah,bh (R)︸ ︷︷ ︸
Mae ,ah ;be ,bh (Ã)

·
∫

Vuc

d3r′ u∗
be

(r′)
[

ep̂′

m0

]
ubh (r′)︸ ︷︷ ︸

μbe,bh

. (6)

The microscopic dipole moments μbe,bh
for the eight basis

states are known [60] up to a constant factor μ0. They are
listed in Table I.

The focus of this work is on the evaluation of the meso-
scopic transition matrix elements Mae,ah;be,bh (Ã) for specific
light fields. They depend on the spatial structure of the light
field, which can be arbitrarily complicated. Typically, this
problem is fixed by a spherical multipole expansion of the
light fields, such that selection rules can be given in a compact
form. However, we are interested in the interaction with spa-
tially structured beams; their cylindrical geometry can be used
more directly within a cylindrical multipole expansion instead
of the spherical one. In the cylindrical multipole expansion the
radial dependency of an arbitrary beam profile is described by
Bessel functions Jn(qrr) and the angular dependency either
by the real functions cos(nϕ) and sin(nϕ) or by their complex
counterparts exp(±inϕ). We use the real representation, since
in particular in the case of a broken cylindrical symmetry of
the QD, it provides more specific selection rules. The index
n describes the order of the cylindrical multipole expansion,
which is basically the number of nodal lines crossing the beam
center (see Fig. 1). If we assume the QD to be on the beam
axis, we can use the approximation Jn(qrr) ∼ (qrr)n around
the QD, since the beam profile is typically much larger than
the QD, i.e., q−1

r � Lx/y (for details of this approximation
see Appendix F). For linear polarizations along eα (with α ∈
{x, y, z}), an arbitrary beam profile close to the QD can be
described in the basis

Ãn,θ,α (r) = A0

(
r

RQD

)n

cos(nϕ − θ ) eα (7)

with RQD = 1
4 (Lx + Ly). Here θ is introduced to describe the

orientation reflected by the cosine or sine function for the
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FIG. 2. The central box presents the absorption spectra for conventional homogeneous light fields (at the bottom) and the first few higher
cylindrical multipole modes. Spectra are given for a QD in the simplified model (β = 1 and without Coulomb interaction and VBM, but
with different confinement lengths Lx > Ly). In the box below, the energetic positions of all existing exciton states are marked by little bars
at the corresponding transition energy. Different blocks of bars are vertically separated to improve visibility. Absorption lines are marked
in the corresponding colors as a guide for the eye. At the sides we sketch the geometric profiles of the light field amplitudes around the
QD in the z = 0 plane as well as the selection rules in the form �a = (�ax, �ay, �az ). Blue/red mark oppositional phases of the field. A
linear polarization in the x direction is assumed (y-polarization equivalent). Between the spectra, we sketch the envelopes of the lowest few
single-particle states in the z = 0 plane.

angular dependency and can take the value 0 or π
2 . Typical

geometries of those fields are plotted in Fig. 1 for ex-polarized
light.

III. REDUCED QD MODEL

Before studying our full model, it is instructive to consider
a simple envelope function approach. For this we still consider
an elongated QD confinement, however with equal confine-
ment lengths for electron and hole (i.e., β = 1) and with
uncoupled electron-hole pairs (without Coulomb interactions
and VBM). A similar model was studied in Ref. [51] for
a cylindrically symmetric model. To understand the absorp-
tion within this model, we first introduce the electronic level
structure, then we discuss the selection rules, and finally we
guide the reader to several important features in the observed
spectra.

A. Electronic level structure

In the reduced QD model, products of the single-particle
basis states �a,bub already represent eigenstates of the system
with exciton energies given by the sum of electron and hole
energy. The energetic structure of these states is given by
labeled bars in the box below the spectra in Fig. 2. At low
energies, we find mainly those excitons composed of an in-
plane excited HH and an electron in the s-like conduction band
state, e.g., s → s, pinpl → s, dinpl → s, . . . (see first row of
bars). Thereby states excited in different in-plane directions,
like px → s and py → s, form clusters in energy, since the
diameter of the QD in the x and y directions is similar (but not
equal). Because in these excitons the electron is always in the
s-like state, the geometry of the exciton’s envelope is defined
by the geometry of the hole state (which is sketched for the
lowest few excitons between the spectra in Fig. 2). Besides
these HH excitons, at higher energies a similar level structure
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occurs for the LH excitons (second row of bars). In addition,
the electron can also be excited, resulting for example in s →
pinpl or pinpl → pinpl excitons (third row of bars). Because the
QD is not a purely two-dimensional structure but has a finite
height, we also get excitons excited in the z direction (fourth
row of bars). One should note that within this reduced model
each level (bar) has a fourfold spin degeneracy.

B. Symmetry considerations and selection rules

In the upper box of Fig. 2, we show absorption spectra
for different cylindrical multipole modes [see Eq. (7)] for
n = 0, 1, 2, 3. The spectra are displayed for x polarization;
they are identical for y polarization, while for z polarization
they can be deduced by setting the HH transitions to zero and
upscaling the LH transitions by a factor of 4 (see Table I). The
geometric profiles of the light field amplitudes in the z = 0
plane are sketched on the left (right) hand side of the spec-
tra for θ = 0 (θ = π

2 ). The spectrum at the bottom (n = 0)
represents the absorption of conventional light. There we see
the s → s, S → s, px → px, and py → py transitions. The
restriction to these few states is caused by the simplifications
in the reduced model, in particular the symmetric definition of
electron and hole envelope wave functions via β = 1.

To understand the absorption patterns, we need to consider
the transition matrix elements Ma1,a2;b1,b2 (Ã) [see Eq. (6)].
These are basically given by the overlap between the ampli-
tude of the light field (given on the side of the spectra) and
the envelope of the exciton. These overlaps and thereby the
selection rules are easily estimated for several lower excitons
by a visual comparison: As discussed above, the geometry of
excitons containing an s-shell electron are mainly described
by the geometry of the hole envelope, which is sketched for
the corresponding exciton states between the spectra. Only if
the parities of light field amplitude and envelope are equal in
each direction may an absorption occur. As an example, the
light field Ã1,0,x is odd in the x and even in the y direction.
This light field will just interact with excitons with the same
parity, like the px → s exciton. The exciton py → s, which
is even in the x and odd in the y direction, has no overlap
with Ã1,0,x and accordingly no absorption line is visible. It
turns out that the difference between the envelope quantum
number of the exciton’s hole and electron, namely �aα =
|aα

hole − aα
elec|, is a well-suited quantity to describe selection

rules. With our graphical approach, we can easily deduce
the selection rule that for an interaction with the field Ã1,0,x,
the exciton has to fulfill �ax odd and �ay even. In fact,
the selection rule can be further restricted to the explicit
values �a = (�ax,�ay,�az ) = (1, 0, 0). Accordingly just
absorption lines for px → s, s → px, Px → s, and dxx → px

are observed in the given energetic range. The corresponding
envelope selection rules are given below the field profiles.

An analytical derivation of the envelope selection rules for
arbitrary cylindrical multipole modes is given in Appendix B.
Summarized, we get a light-matter interaction if the following
hold:

(1) For θ = 0: The parity of �ax has to be the same as the
parity of n, while �ay has to be even.

For θ = π
2 : The parity of �ax has to be different from the

parity of n, while �ay has to be odd.

(2)
∑

ν∈{x,y} �aν � n; �az = 0.
(3)

∑
ν∈{x,y} (aν

elec + aν
hole) � n. This third rule holds ex-

actly only for Lx = Ly. However, one could stretch the light
field to match the same oval form as the QD to restore this
selection rule.

The first two “strong” envelope selection rules are consid-
ered for the rules given in Fig. 2.

C. Characteristic features of the absorption spectra

After this general introduction to the selection rules, we
highlight some characteristic features of the absorption spec-
tra in Fig. 2.

Selectivity. While the px → s/py → s transitions can be
accessed separately by different light modes, for higher
HHinpl → s envelope clusters no full selectivity between the
different states is achieved. Here the parity determines which
of the states are addressed by the same light field: For
even n, all envelope states following the symmetry �a =
(odd,odd,even) = (o,o,e) or �a = (e, e, e) are addressed to-
gether, and for odd n the states of the form (o,e,e) or (e,o,e).
The parity of some selected states is given in Table II. This
“reduced” selectivity is a side effect of the fact that the radial
variation of the light field is effectively restricted to a power-
law dependence over the size of the QD (see Appendix B,
subsection on Hermite-Gaussian beam profiles).

Addressability. In a cylindrically symmetric QD, the
HHinpl → s transitions would give the energetically lowest
possible transitions, caused by the third selection rule. This
rule is slightly broken in the case of a broken cylindrical sym-
metry, causing for n = 2 the small s → s and S → s peaks and
for n = 3 the small pinpl → s, s → pinpl, and Pinpl → s peaks
(in Fig. 2 hardly visible without zooming into the figure).

In addition to the HHinpl → s transitions, there are the cor-
responding LHinpl → s transitions visible at higher energies.
Furthermore, we find in the spectra the following:

(i) For n = 0 the px → px and py → py transitions.
(ii) For n = 1 the s → px/s → py and dxx → px/dxy →

px transitions.
(iii) For n = 2 in addition to the already with n = 0

accessible px → px/py → py also the py → px/px → py

transitions.
(iv) For n = 3 in addition to the already with n = 1 acces-

sible dxx → px/dxy → px also the dyy → px transition.
Not reachable at this level of approximation are excitons

with hole and electron in different excitation levels in the z di-
rection (�az �= 0, marked in red). To enable such transitions,
the light field needs to have a nodal plane perpendicular to the
z direction which can be created, e.g., by a standing wave or
an incidence of the beam from the side. Furthermore, at this
level of approximation, each exciton level still has a fourfold
spin degeneracy. Therefore, spin selection rules, even if they
exist, do not show up in the spectra. Spin selection rules will
become apparent in the next section.

The intensities of transitions excited in different directions
(e.g., px → s and py → s) are not equal. Because the inter-
action of higher modes with the QD results from the finite
light field in the outer regions of the QD, and the state excited
in the direction of the wider QD confinement (here px → s)
has larger contributions in these outer regions, the light-matter
coupling is stronger for these states.
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TABLE II. Parity (Px, Py, Pz ) of the envelope part of exemplary electron-hole pair states for reflections at a plane with normal in the x, y,
and z directions, respectively; o and e refer to odd and even parity, respectively.

Pair state s → s px → s py → s dxx → s dxy → s Dxy → s dyy → s pz → s s → px px → px px → py

(Px, Py, Pz ) (e,e,e) (o,e,e) (e,o,e) (e,e,e) (o,o,e) (o,o,e) (e,e,e) (e,e,o) (o,e,e) (e,e,e) (o,o,e)

When we rotate the orientation of the nodal planes for a
fixed value of n, we get a continuous change between the
two plotted spectra. This implies that one can determine the
direction of elongation of the QD by an alignment of the light
field to the case where the spectra are most selective.

IV. FULL QD MODEL

To get a more realistic idea of the absorption spectra,
we now consider the full QD model by including Coulomb
interactions and VBM. Furthermore we set β = 1.15 leading
to hole basis states which are slightly more extended than the
electron basis states. The resulting spectra are displayed in
Fig. 3.

A. Electronic level structure

The level structure obtained from the full QD model is
again shown by bars in the lower part of Fig. 3. In addition
to a strong redshift (reflecting the exciton binding energy,
mainly caused by CDI), the previously fourfold spin degener-
acy is completely lifted. HH excitons like s → s are typically

separated into two energetically close so-called dark excitons
(mainly consisting of εz and ε0) and two energetically close
bright excitons (mainly consisting of εx and εy) at higher
energy. LH excitons like S → s are typically separated into
one single exciton (mainly consisting of ε0̃), two energetically
close excitons (mainly consisting of εx̃ and εỹ), and a second
single exciton at higher energy (mainly consisting of εz̃).

In addition, the envelopes of the eigenstates lose their
simple geometrical character. In other words, the considered
interactions (CDI, SRE, and VBM) mix the different basis
states so that an exciton eigenstate is never a pure, e.g.,
(s → s)εx state, but rather a mixture between, for example,
(s → s)εx, (d → s)εx, (S → s)εx̃, . . . basis states. Typically,
one of the basis state contributions dominates and can be used
to describe the main character of the eigenstate. Here and in
the following we take this dominant contribution to label and
refer to the eigenstates.

B. Symmetry considerations and selection rules

Absorption spectra are plotted in the main part of Fig. 3
for different orders of the beams up to n = 3, different

FIG. 3. Absorption spectra for a QD in the full model for different linear polarizations α and different orientations θ . In the box below, all
existing exciton eigenstates are displayed in blocks labeled by the most appropriate envelope basis state.
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orientations θ , and different polarizations eα . In contrast to
the reduced model (Fig. 2), the absorption spectra for x, y,
and z polarization are now completely different; thus they are
plotted separately. The light fields are drawn exemplarily on
the left side of the spectra for the modes Ã1,0,x/y/z and on the
right side for the modes Ã1, π

2 ,y/x/z.
The spectra are typically dominated by the peaks already

observed in the reduced model. Especially the HHinpl → s
transitions can still be well identified. Some additional small
lines appear due to the coupling of different basis states (and
also because here β �= 1 has been taken). Although their os-
cillator strengths are typically small, in fact, within the full
model all previously optically inaccessible eigenstates, such
as envelope states with �az �= 0 or the dark HH and LH spin
states, become optically accessible for excitation with an ap-
propriate light field. To understand the characteristic features
of the spectra, a better understanding of the state mixtures
is necessary. Which states get mixed is best answered by
symmetry considerations. The following discussion is based
on the assumption of a threefold reflection symmetry. A dis-
cussion of the effects of a broken reflection symmetry can be
found in Appendix D.

With the reflections R̂α at a plane through the QD center
with a normal in direction α ∈ {x, y, z}, we can define the
parity Pα in the respective direction by

R̂α|�〉 = Pα|�〉.
Here we need to consider the symmetry of the full states, i.e.,
envelope and Bloch state combined. The parity of the Bloch
states is given in Table I, while the parity of the envelope states
is given for exemplary states in Table II. Our model preserves
a threefold reflection symmetry; accordingly, basis states with
different Px, Py, or Pz are not coupled and our problem can be
separated into eight subspaces. In the notation of group theory,
our model has D2h symmetry and the eigenstates are grouped
according to the eight irreducible representations, as listed in
Fig. 4.

Each of the eight subspaces contains basis states which can
be excited by appropriate light fields; these are the enframed
states in Fig. 4. Because in general all states in a subspace
are mixed, all eigenstates become at least slightly optically
active. However, selection rules with respect to the subspace
still hold: a light mode Ãn,θ,α with given values of n, θ , and
α just excites states within one subspace. In the following we
will discuss the influence of the mixing for different classes
of excitons. A detailed discussion of the question of which
selection rules of the simplified model are broken by which
interaction is given in Appendix C.

C. Characteristic features of the absorption spectra

Based on the listing of the possible state mixtures given
in Fig. 4, we now discuss the characteristic features of
the absorption spectra in Fig. 3 for different classes of
excitons.

1. Excitons ∼εx/x̃ and ∼εy/ỹ with even �az

Let us start the discussion with the class of excitons that
comprises the standard, optically active excitons. Excitons
∼εx/x̃ and ∼εy/ỹ with even �az (i.e., the encircled states in the

FIG. 4. Eight subspaces of exciton eigenstates defined by the
three reflection symmetries in the x, y, and z directions (correspond-
ing to the eight irreducible representations of the D2h-symmetry
group). For each subspace, the parity in the x, y, and z directions
is given in capital letters (or the corresponding Mulliken symbol),
followed by the eight corresponding combinations of the parities of
envelope basis states (parities labeled in small letters) and parities
of spin basis states (labeled by εz, εz̃, . . .). Optically accessible basis
states are encircled with the color referring to the coupling to specific
light modes as given at the bottom of the Figure. The required parity
of n is given for the upper and lower parts of the table. States
accessible by plane-wave-like light are encircled by broader lines.

subspaces B2u, B3u, Ag, B1g in Fig. 4) are directly accessible
by appropriate light fields and have been bright already in the
reduced model. In fact, for �ax = �ay = �az = 0 these are
the standard HH and LH excitons which can be excited by
plane waves. In our full model, the states are coupled to each
other and, thus, they are not anymore exclusively addressable
by the directly attributed light field, but (for n � 1) at least
weakly also by a perpendicularly polarized and by a π

2 rotated
light field. This is displayed in Fig. 4, where all subspaces,
and all corresponding eigenstates, on the left are addressable
by Ãn,0,x and Ãn, π

2 ,y or by Ãn, π
2 ,x and Ãn,0,y.

As an example, it is instructive to consider the four
(pinpl → s)εx/y transitions: They can be identified in Fig. 3 as
those four states with the strongest absorption peaks in the
spectra for Ã1,0,x, Ã1,0,y, Ã1, π

2 ,y, and Ã1, π
2 ,x. They are cou-

pled regarding (px → s)εx ↔ (py → s)εy and (px → s)εy ↔
(py → s)εx by an interplay between SRE and VBM. This
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leads to approximate eigenstates (from low to higher energy)

|ps1〉 = C1|(px → s)εx〉 + C̃1|(py → s)εy〉,
|ps2〉 = C2|(px → s)εy〉 − C̃2|(py → s)εx〉,

(8)
|ps3〉 = C3|(py → s)εy〉 − C̃3|(px → s)εx〉,
|ps4〉 = C4|(py → s)εx〉 + C̃4|(px → s)εy〉,

with real and positive coefficients Cj and C̃j . For a strongly
elongated QD we get Ci � C̃i, while for Lx = Ly we get
Ci = C̃i. In our case (VBM through Luttinger Hamiltonian
without strain), the coupling (px → s)εy ↔ (py → s)εx is
weaker than (px → s)εx ↔ (py → s)εy and the higher optical
activity of px → s compared to py → s leads to the situation
that just the admixture of (px → s)εx to (py → s)εy in state
|ps3〉 is strongly noticeable by an additional peak in the Ã1,0,x

spectrum. Other (HHinpl → s)εx/y couple in a similar way (for
dinpl → s see Appendix E).

2. Excitons ∼εz̃ with even �az

This class comprises the LH excitons with total spin zero
which already in the simplified model can be excited by a
field component ∼ez. With mixing, these excitons (subspaces
Au, B1u, B2g, B3g) couple via VBM to other states within the
same subspace. However, all the other states in the respective
subspace are dark. Therefore, they remain to be excitable
selectively by the light fields Ãn, π

2 ,z and Ãn,0,z.

3. Excitons ∼εz/0/0̃ with even �az

Without mixing, all excitons ∼εz/0/0̃ are dark because
of the vanishing dipole moments of the Bloch basis states
(see Table I). With mixing, all these excitons with even en-
velope parity in the z direction (subspaces Au, B1u, B2g, B3g)
become slightly optically accessible by a coupling via VBM
to the bright LH excitons ∼εz̃, which can be addressed by a
light field with a longitudinal component. For each envelope,
the spin states ∼ε0/0̃ and ∼εz/z̃ are separately accessible by
the light fields Ãn, π

2 ,z and Ãn,0,z. The concrete assignment can
be deduced from Fig. 4.

As an example, let us consider here the accessibility of
the initially dark (di j → s)εz/0 excitons. The (dxx → s)εz and
(dyy → s)εz belonging to B1u become bright via coupling to
other states within B1u, for instance to the bright states (S →
s)εz̃, (Dxx → s)εz̃, and (Dyy → s)εz̃. They are visible in both
spectra Ã0,0,z and Ã2,0,z. We note that the oscillator strengths
depend on the individual state and QD geometry [48]; thus
some excitons are not visible on a linear scale as used in
Fig. 3.

In particular, the (dyy → s)εz exciton exhibits an excep-
tionally strong mixture with the bright (S → s)εz̃ exciton.
Accordingly, these two eigenstates dominate the spectrum
for n = 0 and ez polarization (see blue spectrum for n = 0
in Fig. 3). This coupling can be utilized for example for an
efficient excitation scheme of the dark exciton ground state
[61].

The (dxx → s)ε0 and (dyy → s)ε0 excitons, which have the
symmetry (e, e, e)ε0 and are thereby belonging to Au, are
coupled to other states within Au, for instance to the bright

states with symmetry (o, o, e)εz̃, like (Dxy → s)εz̃. Accord-
ingly, they are visible in the spectrum for Ã2, π

2 ,z.
The (dxy → s)ε0 excitons have the symmetry (o, o, e)ε0

and are thereby belonging to B1u. They are coupled to other
states within B1u, for instance to the bright states with symme-
try (e, e, e)εz̃, like (S → s)εz̃, (Dxx → s)εz̃, and (Dyy → s)εz̃.
They are visible in both spectra Ã0,0,z and Ã2,0,z. Similarly,
the (dxy → s)εz with the symmetry (o, o, e)εz (belonging to
Au) couple to the bright states with symmetry (o, o, e)εz̃, like
(Dxy → s)εz̃. Accordingly, they are visible in the spectrum for
Ã2, π

2 ,z.
Although the different spin states of one envelope are se-

lectively addressable, different envelopes within one group
are in general not separately accessible; e.g., (dxx → s)εz,
(dxy → s)ε0, and (dyy → s)εz are all addressable by Ã2,0,z.

4. Excitons ∼εx/x̃ and ∼εy/ỹ with odd �az

As already mentioned, without mixing, excitons with odd
�az can only be excited by a light field which has a nodal
plane perpendicular to the z direction. Therefore, they are
dark for all the modes Ãn,θ,α propagating in the z direction,
as considered here. Including mixing, these excitons [in the
considered energetic range just the (pz → s)εx/y excitons]
belong to the subspaces Au, B1u, B2g, B3g. They get separately
accessible via couplings to bright LH excitons ∼εz̃ by the light
fields Ãn,0,z and Ãn, π

2 ,z, polarized in growth direction. Again,
the concrete assignment can be deduced from the above sym-
metry considerations, as given in Fig. 4.

In particular, in the case of n = 1 the (pz → s)εx and
(pz → s)εy excitons get bright by couplings to (Px → s)εz̃ and
(Py → s)εz̃, respectively, which is visible in the bunch of small
peaks for Ã1,0/ π

2 ,z.

5. Excitons ∼εz/z̃ and ∼ε0/0̃ with odd �az

Also these excitons are dark for all modes Ãn,θ,α con-
sidered here because of the their odd value of �az. These
excitons [in the considered energetic range just the (pz →
s)εz/0] belong to the subspaces B2u, B3u, Ag, B1g. They couple
via VBM to bright LH excitons ∼εx̃/ỹ and become optically
accessible by in-plane polarized light. For n = 1 this is visible
in the bunch of small peaks at the corresponding energies in
the spectra of Ã1,0/ π

2 ,x/y. For a selective excitation see Sec. V.

V. QUANTITATIVE MEASUREMENT OF THE
EXCITONIC EIGENSTATES

As we have seen in the previous sections, it is possible to
identify certain eigenstates, e.g., the HHinpl → s transitions,
from the absorption spectra of different cylindrical multipole
modes. In fact, this identification of the spatial character of
an eigenstate can be expanded to a quantitative measurement
of the wave functions of all eigenstates. Here we emphasize
that such a measurement will go beyond electron density
measurements by accessing the wave function itself, thus also
the spatial phase information of the state. It is clear that
the required experimental conditions are rather challenging.
However, before we discuss challenges in the experimental
realization (see Sec. VI), we focus in this section on the basic
theoretical idea behind the measurement.
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The basic idea is to find a light field Ã(r) = ∑M
m=1 amÃm(r)

with
∑M

m=1 |am|2 = 1 which maximizes the absorption inten-
sity of a considered eigenstate approximately described by
|�〉 ≈ ∑N

n=1 cn|n〉 with
∑N

n=1 |cn|2 = 1 and |n〉 being a suit-
able set of orthogonal basis states. The absorption intensity
[see Eq. (6)]

I ∼ |〈�| ˆ̃Hγ (Ã)|0〉|2 =

∣∣∣∣∣∣∣
M∑

m=1

N∑
n=1

am 〈n| ˆ̃Hγ (Ãm)|0〉︸ ︷︷ ︸
αm,n

c∗
n

∣∣∣∣∣∣∣
2

(9)

can be maximized with respect to the constraint∑M
m=1 |am|2 = 1 with the result [62]

am =
∑N

n=1 α∗
m,ncn√∑M

m=1

∣∣∑N
n=1 α∗

m,ncn

∣∣2
(10)

with αm,n defined in Eq. (9). Thus, without normalization, the
coefficients of the light field am with maximal absorption into
a state defined by the coefficients cn can be derived by a simple
matrix multiplication am = ∑N

n=1 α∗
m,ncn.

It should be noted that in the absence of an external mag-
netic field, as studied here, all eigenstates can be taken to be
real. Furthermore, the basic light modes [Eq. (7)] are real,
hence αm,n and cn are real. Therefore it is sufficient to restrict
ourselves to real coefficients am.

To measure an eigenfunction, we propose to vary the light
field (i.e., am) until a maximum in the absorption is found.
From these am one can derive the eigenstate, i.e., the coeffi-
cients cn, if Eq. (10) can be inverted. Therefore we need to
include at least M = N multipole modes in the measurement.
A similar measurement is known for polarization-sensitive
absorption measurements, where the complex coefficients cx

and cy of a spin state cxεx + cyεy can be deduced from the
different orientations of linear polarization and the degree
between linear and circular polarization. In this sense, we
present a generalized polarization measurement, which ac-
cesses in addition to the spin degree of freedom also the spatial
degree of freedom.

A. Exemplary demonstration of the measurement
for the (pinpl → s)εx/y excitons

The measurement is here demonstrated with the (pinpl →
s)εx/y excitons, while a second example is provided for
dinpl → s excitons in Appendix E. To start with, we consider
state |ps3〉 [see Eq. (8)], which is mainly excitable by the light
fields Ã1,0,x and Ã1, π

2 ,y (see Fig. 3). Within our scheme, one
would measure the absorption intensity for all possible real-
valued superpositions a1Ã1,0,x + a2Ã1, π

2 ,y of these two fields.
These superpositions include, for example, radially polarized
fields and can be thought of as continuous transitions between
the fields plotted in the insets of Fig. 5(a). In Fig. 5, the
absorption intensity of state |ps3〉 is plotted in a polar plot
with tan(ξ ) = a2

a1
. As a result, the light field

0.52Ã1,0,x − 0.85Ã1, π
2 ,y

causes the strongest absorption of state |ps3〉.

(a) (b)

FIG. 5. Intensity of the (pinpl → s)εx/y eigenstates for different
superpositions of Ã1,0,x and Ã1, π

2 ,y [Ã1,0,y and Ã1, π
2 ,x] in (a) [(b)]. The

insets display the corresponding field profiles.

To obtain the related electronic state from this field, we
need to assume an electronic basis |n〉. Since we just mea-
sured the absorption of two light modes, we need to restrict
this basis to two states. Here we assume |1〉 = |(px → s)εx〉
and |2〉 = |(py → s)εy〉, which are strongly excitable by the
considered light fields. We could also assume higher basis
states like s → p, P → s, d → p, etc., which also couple
noticeably to the measured light fields (see Fig. 2). However,
these basis states are at higher energies and not supposed to be
strongly coupled to a state at the energy of |ps3〉. If stronger
contributions of these basis states are to be assumed within
the considered eigenstate, additional higher light modes need
to be considered.

The matrix elements αm,n can be calculated from the basis.
In our case, Ã1,0,x just excites (px → s)εx and Ã1, π

2 ,y just
(py → s)εy and we get [63] α1,1 = 1.0013, α2,2 = 0.7441,
and α1,2 = α2,1 = 0. From Eq. (10) we calculate c2

c1
= α1,1

α2,2

a2
a1

.
With this, the state deduced from the “measurement” would
read

|ps3〉meas = 0.42|(px → s)εx〉 − 0.91|(py → s)εy〉.
The “exact” state is

|ps3〉exact = 0.874[0.38|(px → s)εx〉 − 0.92|(py → s)εy〉]
+ 0.463|rest-bright〉 + 0.149|rest-dark〉. (11)

We find that the agreement between the “measured” and
“exact” state is reasonably good. In particular, the relative
phase between the two basis states, i.e., the minus sign, is
correctly reproduced. Also the weights between the two states
are well described by the measurement. The inaccuracy of
the measurement is caused by contributions of higher basis
states. 0.1492 ≈ 2% are higher basis states which are optically
not accessible (|rest-dark〉). Thus their coefficients cannot be
accessed in general. 0.4632 ≈ 21% are higher basis states
which are optically accessible (|rest-bright〉). When consid-
ering higher light modes, most of their coefficients can be
determined (however the coefficients of two basis states with
interchanged particle states, like px → s and s → px for β =
1, cannot be distinguished). Because some contributions of
|rest-bright〉 are also addressable by the measured light modes,
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the relative contribution of (px → s)εx and (py → s)εy is
slightly incorrect. The inaccuracy in terms of the angle ξ

between the “measured” eigenstate and the “exact” eigenstate
in Eq. (11) without higher terms is less than 4◦. This angle
should not be misunderstood as a spatial direction, like in
pure polarization measurements, but as a visualization of a
superposition like on a Bloch sphere (in the complex case).
This generalized Bloch sphere has 2M − 1 dimensions.

Similar measurements can be done for the other (pinpl →
s)εx/y states, as shown in Fig. 5. The measured state |ps1〉
would read

|ps1〉meas. = 0.96|(px → s)εx〉 + 0.28|(py → s)εy〉,
while the exact state reads

|ps1〉exact = 0.839[0.95|(px → s)εx〉 + 0.32|(py → s)εy〉]
+ 0.527|rest-bright〉 + 0.137|rest-dark〉. (12)

Compared to state |ps3〉, here we get a smaller and in-phase
mixture of the basis states (px → s)εx and (py → s)εy.

The states |ps2〉 and |ps4〉 are nearly pure (px → s)εy and
(py → s)εx basis states, respectively. From the measurement,
one would get the states

|ps2〉meas. = 1.00|(px → s)εy〉 − 0.09|(py → s)εx〉,
|ps4〉meas. = 0.07|(px → s)εy〉 − 1.00|(py → s)εx〉,

while the “exact” states read

|ps2〉exact = 0.886[1.00|(px → s)εy〉 − 0.01|(py → s)εx〉]
+ 0.447|rest-bright〉 + 0.125|rest-dark〉,

|ps4〉exact = 0.886[0.01|(px → s)εy〉 + 1.00|(py → s)εx〉]
+ 0.442|rest-bright〉 + 0.139|rest-dark〉. (13)

For all pinpl → s states we thus find that our proposal recon-
structs the exciton wave function between the participating
states within reasonable accuracy. We stress that our proposal
can retrieve the relative phases between the different spatial
contributions, i.e., the phase field or wave function of the
exciton. Thereby, we go beyond measurements of electron
densities.

B. Notes regarding the proposed measurement strategy

When using our proposal, one should keep the following
things in mind:

(1) A global phase is (of course) not accessible.
(2) We are measuring the excitonic wave function, but we

cannot determine whether the electron or the hole is in a
certain state. In other words, we cannot distinguish between
contributions of, e.g., px → s and s → px basis states for
β = 1. To understand this statement, we should recapitulate
that the envelope part of the light-matter interaction is defined
by

Ma1,a2;b1,b2 (Ã) =
∫

d3R �∗
a1,b1

(R) �a2,b2 (R) Ã(R)

[see Eq. (6)]. Thus, the light field does not “see” the electron-
hole-pair envelope basis state

�exciton
a1,a2;b1,b2

(rhole, relec) = �hole∗
a1,b1

(rhole)�elec
a2,b2

(relec),

but “just” the wave function �exciton
a1,a2;b1,b2

(rhole, relec) with rhole =
relec. For β = 1 and real-valued envelope functions, we
get �exciton

a1,a2;b1,b2
(r, r) = �exciton

a2,a1;b2,b1
(r, r). Thus, it is not deter-

minable whether the electron is in state a1 and the hole in
state a2, or vice versa. The requirement β = 1 defines just
a convenient basis, where it is obvious that αm,n is never
invertible for, e.g., px → s and s → px basis states and any
set of light fields. β �= 1 does not change this statement in
general, but just introduces nonorthonormal basis states for
electrons and holes which make it harder to see whether αm,n

can be inverted.
(3) The coefficients of dark basis states cannot be deter-

mined, also due to the required invertibility of αm,n.
(4) The measurement is not restricted by the diffraction

limit.
There are several possible applications closely related to

this measurement:
(1) One can tune the light field geometry to get a maximal

absorption into a certain state.
(2) The measurement of the exciton wave function allows

one to draw conclusions about the QD’s geometry.
(3) A standard polarization-sensitive absorption measure-

ment allows the readout of the spin degree of freedom of an
electronic state within a QD. Such a measurement is typically
the basis to use the spin as a storage for quantum information.
In the same sense, the proposed generalized polarization mea-
surement could pave the way to use the infinite spatial degree
of freedom to store quantum information within a QD. Here,
the problem of quickly decaying higher exciton states requires
further research. However, at least for n = 1 relatively long
lived metastable trion triplet states [31] are available.

(4) The selectivity of an optical excitation can be in-
creased by a suitable superposition of cylindrical multipole
modes. This is equivalent to polarization-selective excitation
when energetic selectivity is not possible, and might be simi-
larly powerful.

It is instructive to consider this measurement from an
alternative perspective: We obtain the absorption intensity
(neglecting the spin)∣∣∣∫ d3R �exc(R, R)Ã(R)

∣∣∣2

(14)

for arbitrary light fields Ã(R). The maximal intensity is ex-
pected for Ã(R) = �∗

exc(R, R); thus, the full complex exciton
wave function �exc(R, R) can be measured by tuning the form
of the light field until the intensity is maximized.

VI. REALISTIC LIGHT FIELDS

A. Notes on the experimental feasibility

To estimate the experimental feasibility of our proposal, we
discuss the intensity of the absorption for higher n. Through-
out this paper, the amplitude of the light fields is ∼( r

RQD
)n

[Eq. (7)]. r leads to contributions to the light-matter coupling
strength on the order of RQD, resulting in a scaling of the
intensity ∼( RQD

RQD
)2n = 1, leading to the comparable intensi-

ties of the different orders. However, the natural scaling can
be deduced, for instance, from Bessel beams and is propor-
tional to (qr r)n

2nn! (see Appendix F). The expected intensity for
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a light field of order n is thus ∼( (qr RQD )n

2nn! )2, as in Eq. (15) of
Ref. [51].

qr is fixed via
√

q2
r + q2

z = nr E
h̄c0

with the excitation energy
E = 2.2 eV, a factor describing the beamwidth qr

qz
= 1 [64]

and the refractive index of CdSe of nr ≈ 2.8 [65] to qr ≈
1

45 nm . With an average QD radius of RQD = 2.7 nm and fixed
A0, the intensity of the peaks is reduced by a factor ∼10−3,
∼10−7, ∼10−11, . . . with order n = 1, 2, 3, . . . of the light
mode. We should highlight that optimizations are possible in
regard of qr

qz
, the QD radius RQD, the excitation energy E ,

the diffraction index nr , or by turning up A0 for higher n.
Instead of far-field beams, also near fields created, e.g., by
laser-illuminated metal tips [49] could be used.

The proposed measurements of the wave function in Sec. V
require in general a combination of light field modes of differ-
ent order. Since the oscillator strength of these light modes
differs by several orders of magnitude, the proposed mea-
surement requires in general a very accurate adjustment of
the light mode intensities over several orders of magnitude.
However, in the special case of the measurement presented in
Sec. V, just light modes of the same order (here n = 1) are
utilized; thus “just” a good suppression of the n = 0 modes is
required.

We assume to illuminate a single QD. If other QDs are
within the diameter of the beam, their absorption lines need
to be energetically well separated from those of the studied
QD to prevent parasitic effects. The alignment between QD
center and the center of the beam profile is important [66]. If
we shift the light field around Rmisfit away from the QD center,
we get the substitution ( r

RQD
)n → ( r−Rmisfit

RQD
)n, which causes for

example the additional plane-wave-like absorption peaks with
a relative intensity on the order of ( Rmisfit

RQD
)n. Therefore for pure

light modes of order n with a misalignment of Rmisfit = RQD,
we already expect similar absorption intensities of plane-
wave-like absorption patterns and the intended patterns for the
light field of order n.

B. Solenoidal fields

Up to now we considered just convenient components
of light fields. Realistic light fields need to be solenoidal
in free space, which is clearly not the case for modes like
Ã1,0,x(r, t ) ∼ xex. A well-defined theoretical basis to describe
light fields is given by Bessel beams, which constitute an exact
and complete solution of the vectorial Helmholtz equation.
Although Bessel beams have an infinite radial extension, there
are several experimentally realized approximations [67–69].
Around the beam axis, Bessel beams can be described by a
simple superposition of a few cylindrical multipole modes. In
the following, we will discuss these superpositions for several
different representations of Bessel beams, which are given
explicitly in Appendix F.

First, we consider propagating beams, i.e., propagating
light fields with a finite extension of their beam profile. For
an exact representation, one always has to combine a compo-
nent polarized perpendicular to the propagation direction, i.e.,
polarized in the x/y direction, and additionally a component
polarized along the propagation direction, i.e., the z direc-
tion. In our case, we need to combine the modes Ãn,θ,x with

qr

qz
Ãn±1,θ,z as well as the modes Ãn,0/ π

2 ,y with qr

qz
Ãn±1, π

2 /0,z [see

Eqs. (F4) in Appendix F]. While the modes Ãn,θ,x/y are scaled
on the order of (qrRQD)n, the leading mode with polarization
in the z direction ( qr

qz
Ãn−1,θ,z) is on the order of qr

qz
(qrRQD)n−1.

Accordingly Ãn,θ,x/y is about a factor qzRQD smaller than
qr

qz
Ãn±1,θ,z. Because qz has an upper limit of nr E

h̄c0
even for

the undesired case qr

qz
= 0, we get qzRQD < 0.08. Therefore

always the term polarized in the z direction dominates at the
beam axis (except for n = 0). For our standard case qr

qz
= 1

we get qzRQD ≈ 0.06. The absorption spectra of the com-
bined realistic modes can be deduced by a combination of
the spectra for Ãn,θ,x and Ãn±1,θ,z (Ãn,0/ π

2 ,y and Ãn±1, π
2 /0,z).

If a threefold reflection symmetry is present, we can simply
add the spectra, while with broken reflection symmetry in the
z direction, an eigenstate might be addressable by both, x/y-
and z-polarized modes, where constructive/destructive inter-
ference needs to be considered. This combination of spectra
reduces the possibility for selective excitation. States excitable
by Ãn,θ,x and Ãn±1,θ,z (Ãn,0/ π

2 ,y and Ãn±1, π
2 /0,z) cannot be ac-

cessed separately anymore; for example consider state |ps1〉
(addressable by Ã1,0,x) and the (S → s)εz̃-like eigenstate (ad-
dressable by Ã0,0,z). Furthermore, the states addressable by
the much stronger z-polarized fields will always dominate the
spectra. The measurement of the wave functions via Eq. (10)
is not affected if there is a reflection symmetry in the z direc-
tion. In that case, there is no coupling between eigenspaces
excitable by light polarized in the x/y direction and the z
direction (see Fig. 4). If the reflection symmetry in the z
direction is broken, such couplings are possible. For example,
a small admixture of (S → s)εz̃ (excitable by Ã0,0,z) occurs
within state ps1 (excitable by Ã1,0,x and Ã1, π

2 ,y). As we saw,
the mode Ã1,0,x is always superposed with a much stronger
mode Ã0,0,z; thus the small admixture of (S → s)εz̃ can have
a significant impact on the absorption intensity, which would
distort the measurement as presented in Sec. V. To restore a
correct measurement of the wave function, one could include
a third light field mode [e.g., the combined field of Ã3, π

2 ,y and
Ã2,0,z, which mainly excites (S → s)εz̃] into the measurement
and explicitly consider the (S → s)εz̃ basis state in the eval-
uation of Eq. (10). We conclude that the measurement is not
hindered in general, but requires more effort.

The omnipresent strong z-polarized component vanishes in
certain cases within another representation of Bessel beams.
To describe such a representation, we first define an alternative
multipole expansion via

Ãn,θ,xy(r, t ) = A0

(
r

RQD

)n

[cos(nϕ − θ ) ex − sin(nϕ − θ ) ey],

Ãn,θ,x̃y(r, t ) = A0

(
r

RQD

)n

[cos(nϕ − θ ) ex + sin(nϕ − θ ) ey].

(15)

These modes still have to be combined with z-polarized modes
to obtain realistic fields. We have to combine the modes Ãn,θ,xy

with Ãn+1,θ,z as well as the modes Ãn+1,θ,y with Ãn,θ,z [see
Eqs. (F2) in Appendix F]. Thus, in the first case the terms
with x/y polarization Ãn,θ,xy dominate and the z-polarized
component is negligible, while in the second case the
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z-polarized component still prevails (except for n = 0, θ =
π
2 ). The above-described problems with the undesired ad-
mixed modes are just banned for certain special cases.

To avoid the undesired mixture of different multipole
modes, one can consider standing waves. In fact, standing
waves are created standardly in various microcavities built
around QDs to increase the light-matter coupling [70,71].
Higher Hermite-Gaussian and Laguerre-Gaussian modes
were found in hemispherical microcavities [4]. For standing
waves we can position the QD into a nodal line of the field in
the z direction and get the fields [see Eq. (F5) in Appendix F]

˜̆A
x

n,θ (r, t ) = A0(t )
rn

Rn
QD

{
cos(nϕ − θ ) ex

− nz

r
cos[(n − 1)ϕ − θ ] ez

}
,

˜̆Ay
n,θ (r, t ) = A0(t )

rn

Rn
QD

{
cos(nϕ − θ ) ey

+ nz

r
sin[(n − 1)ϕ − θ ] ez

}
,

˜̆Az
n,θ (r, t ) = A0(t )

rn

Rn
QD

cos(nϕ − θ ) ez. (16)

The additional terms ∼zez are of the same order as the
x/y-polarized terms and induce transitions into LH excitons
excited in the z direction, like Pz → s, Dxz → s/Dyz → s,
Fxxz → s/Fxyz → s/Fyyz → s, etc. Those states are well
above the considered energetic range and weakly coupled to
the studied transitions. Thus, the absorption spectra of the
previous sections hold in good agreement also for the realistic
light fields of Eq. (16).

VII. CONCLUSION

We have analyzed the absorption of spatially structured
light beams by a QD. We focused on cylindrical multipole
transitions and derived analytical selection rules for a simpli-
fied QD model. We have studied the coupling mechanisms
via Coulomb interactions and valence band mixing, which
lead to the optical addressability of all electronic eigenstates
of the QD. Within this extended model, we analyzed the
possibility to tailor the optical activity of certain states by
varying the spatial shape of the exciting light field. Thereby
we explored a way to excite the QD’s eigenstates selectively,
without the need of spectral separation. This way is similar
to spin-selective excitation and could help to overcome the
limits in time resolution of pump-probe experiments required
by the desired energy selectivity. Furthermore, we proposed a
method to measure the excitonic wave function of arbitrary
eigenstates, including relative spatial phases, thereby going
beyond electron density measurements. Such a measurement
is the prerequisite to use the infinite spatial degree of freedom
for QD-based quantum information technology. We explored
the measurement of the wave function of the first excited
exciton states in detail and estimated the precision. The ex-
perimental feasibility of the proposed techniques as well as
different possibilities to realize cylindrical multipole modes

are discussed by a comparison with different representations
of Bessel beams.
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APPENDIX A: SIMILARITY BETWEEN THE MATRIX
ELEMENTS OF p̂ AND r̂

Using the identity p̂α = −i m0
h̄ [r̂α, Ĥ0] with Ĥ0 = p̂2

2m +
V (r̂) being the Hamiltonian within the bulk crystal as well
as the assumption that 〈r̂|b〉 = ub(r) are eigenfunctions of Ĥ0

(at the � point) and Eb the corresponding eigenenergies, we
deduce that

μα
b1,b2

= e〈b1| p̂α

m0
|b2〉 = −ie

1

h̄
〈b1|[r̂α, Ĥ0]|b2〉

= −ie
1

h̄
〈b1|r̂αĤ0 − Ĥ0r̂α|b2〉

= −ie
Eb2 − Eb1

h̄
〈b1|r̂α|b2〉

with −e〈b1|r̂α|b2〉 representing the dipole moments in the
typical form.

APPENDIX B: ANALYTICAL SELECTION RULES
AND LIMITS OF THE SELECTIVITY

The optical selection rules between envelopes described by
Hermite-Gaussian functions �a,b are requested. Therefore we
need to solve the integral [see Eq. (6)]

Ma1,a2;b1,b2 (Ã) =
∫

d3R �∗
a1,b1

(R) Ã(R) �a2,b2 (R).

Here we focus on the case β = 1, which allows us to neglect
the band index b. For certain expansions of the light field
Ã(R), compact analytical selection rules can be given.

Power functions. For an expansion into power functions
Ã

Power
nx,ny,nz

(R) = Ã0xnx yny znz , the integral can be decomposed
into three one-dimensional integrals, which can be solved by
ladder operator algebra. With �aα = |aα

hole − aα
elec|, the selec-

tion rules read as follows:
(1) The parity of �aα and nα has to be the same.
(2) �aα � nα .
It is possible to tailor selection rules within certain limits.

As an example, it is possible to deactivate an arbitrary tran-
sition aα → ãα by an adequate superposition of the power
functions α|a−ã| and α|a−ã|+2.

Hermite polynomials. The question arises as to whether it
might be possible to increase the selectivity by an optimized
set of light fields. To explore the theoretical limit of such a se-
lectivity, it is instructive to expand the light fields into Hermite
polynomials Hn via Ã

Hermite
nx,ny,nz

(R) = Ã0Hnx ( 2x
Lx

)Hny ( 2y
Ly

)Hnz (
2z
Lz

).
These functions are similar to the envelopes of the electronic
basis states in the QD. Again, we can decompose the integral
into one-dimensional problems. In addition to the above-
mentioned selection rules, we get

(3) aα
elec + aα

hole � nα .
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Therewith, for example the transitions between the en-
velopes aα

hole = nα and aα
elec = 0 are just accessible by the light

field ∼Hnα
( 2α

Lα
), respectively for each nα . Thus any superpo-

sition of Hermite polynomials would lead to less restrictive
selection rules regarding those states. In particular, it is not
possible to find light fields which just address one transition
or increase the selectivity to �aα = nα . However, Ã

Hermite

includes unrealistically small radial variations on the order
of the QD size. Thus it is just discussed in this theoretical
paragraph.

Cylindrical multipole modes. For the cylindrical multipole
modes discussed in the main part of the paper, the selection
rules can be deduced from the above findings via an expansion
into Hermite polynomials

rn cos(nϕ) =
n
2∑

m=0

(−1)m

(
n

2m

)
Hn−2m(x)H2m(y),

rn cos
(

nϕ − π

2

)
=

n+1
2∑

m=1

(−1)m−1

(
n

2m − 1

)

× Hn−2m+1(x)H2m−1(y). (B1)

The resulting selection rules (see Sec. III) are similar to those
of single Hermite polynomials, but lack the independent va-
lidity in each direction.

APPENDIX C: WHICH SELECTION RULES ARE BROKEN
BY WHICH INTERACTION?

It is instructive to understand, for each interaction, which
selection rule it breaks or preserves.

CDI. CDI has no effect on spins and thus no effect on
spin selection rules. However, it causes mixtures between
envelopes: The two electron-hole pair basis states described
by aα

elec and aα
hole as well as ãα

elec and ãα
hole get mixed, if

(aα
elec + aα

hole) − (ãα
elec + ãα

hole) ∈ {0, 2, 4, . . .}. This breaks the
third envelope selection rule and reduces the second envelope
selection rule to the statement that “the parity of �az has to
be even” (see Sec. III). In consequence, for example weak
dxx → s transitions become allowed already for plane-wave-
like light (n = 0).

β �= 1. Different confinement lengths (β �= 1) lead to
nonorthogonal sets of envelope basis functions for elec-
trons and holes. Therefore the optical transition integrals
Ma1,a2;b1,b2 (Ã) [Eq. (6)] result in more nonvanishing transi-
tions, effectively leading to the same reduction of the second
selection rule as CDI. The third envelope selection rule is not
touched by β �= 1.

SRE. SRE does not mix different envelopes; thus no enve-
lope selection rule is affected. The spin basis states are chosen
in a suitable basis for SRE; thus spin selection rules are also
not affected.

VBM. If we just treat the VBM-induced mixtures between
envelopes, which follow the symmetry

∑
α (aα

elec + aα
hole) −

(ãα
elec + ãα

hole) ∈ {0, 2, 4, . . .}, we see that the direction of
excitation is not important anymore and the pure envelope se-
lection rules are reduced to modulo(�ax + �ay + �az, 2) =
modulo(n, 2). Thus transitions with �az �= 0 become allowed

and transitions previously just allowed with high n become
allowed already with lower n, like dxy → s in n = 0. However,
with VBM the coupling between two envelopes is always
accompanied by a spin flip and the degree of freedom of
spin and envelope get intermixed. Thus we should look for
a combined spin and envelope selection rule. Such a rule can
be deduced from Fig. 4.

APPENDIX D: BREAKING OF REFLECTION SYMMETRY

Our QD model preserves a threefold reflection symme-
try (thus D2h symmetry), leading to eight subspaces (see
Fig. 4) which are separately addressable by light fields of
the corresponding parity (see Fig. 4). In realistic QDs, this
symmetry is broken, with the consequence that states of
different subspaces mix. For a broken reflection symmetry
in the z direction, those subspaces with different parity in
the z direction mix, here (∗, ∗, E) and (∗, ∗, O) (or B2u ↔
B3g/B3u ↔ B2g/Au ↔ B1g/B1u ↔ Ag), leading to a reduction
to 4 subspaces, i.e., C2v symmetry. This is similar for a broken
reflection symmetry in the x and y directions. If the reflection
symmetry is broken in all directions, all subspaces mix and all
selection rules are broken. A quantitative description of the ef-
fect of symmetry breaking on the absorption spectra goes be-
yond the scope of this paper. However, for a reasonably small
breaking of reflection symmetries, just small changes to the
considered spectra are expected, as discussed in the following.

One possibility for a breaking of the D2h symmetry is a
more complex shape of the QD confinement. A typical exam-
ple for a broken reflection symmetry in the z direction is a
pyramidal QD (C2v symmetry). This would mix the spectra
of light fields with even (odd) n and x/y polarization and
those with odd (even) n and z polarization. For a mixture of
the spectra of equally polarized light fields and just differ-
ent parities of n, we need a broken reflection symmetry in
in-plane direction. Therefore one would need for example a
QD with a pear shape in in-plane direction, which is a less
commonly supposed geometry. In fact there are both, QDs
with indications for a strongly broken [46] and well-preserved
[31] C2v symmetry. To estimate the influence of a broken
reflection symmetry of the QD confinement, we consider

a general potential
∑

α∈{x,y,z} h̄ωb,α
∑

n Cα
n (

√
mb,αωb,α

2h̄ α)
n

with

the coefficients Cα
n . We just study the first and second order

terms with Cα
2 = 1, Cα

1 = √
2Cα , and all other Cα

n = 0. This
results in a displaced quadratic potential. When shifting the
potential for electrons and holes in different directions, we
break the reflection symmetry in the respective direction. To
break the reflection symmetry noticeably within the absorp-
tion spectra we set Cx = Cy = Cz = 1

4 , corresponding to a
distance between the center of the electron and hole con-
finement of around 1

4 Lα [72] in the respective direction. The
resulting absorption spectra are displayed in Fig. 6 and fit well
to the theoretical discussion of a broken reflection symmetry
in Sec. IV. A typical effect is visible for the (pinpl → s)εx/y

transitions, which become slightly bright in the spectra of light
modes with n = 0 and n = 2.

Also static electric fields E can break the reflection sym-
metry by the Hamiltonian Ĥelectr = −qE · r̂ with opposite
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FIG. 6. Absorption spectra for a QD in our full model with
broken reflection symmetry for different linear polarizations α and
different rotations θ . Below, all existing exciton eigenstates are dis-
played in blocks labeled by the most appropriate envelope basis state.
Absorption lines and states have an independent coloring.

charges q of the hole/electron. For plane-wave-like excitation
and our QD parameters, we would need field strengths of

(a) (b)

FIG. 7. Intensity of the (dinpl → s)εx/y eigenstates for different
superpositions of Ã2,0,x and Ã2, π

2 ,y [Ã2,0,y and Ã2, π
2 ,x] in (a) [(b)]. The

insets display the corresponding field profiles.

around 5 meV
nm to get intensities of px → s similar to those

of dinpl → s. This could enable another way to excite for
example p → s excitons by shortly activating an electric
field while exciting with plane-wave-like light. The selection
rules can also be broken by a reduced symmetry of the light
fields.

APPENDIX E: MEASUREMENT OF dinpl → s EIGENSTATES

From theoretical considerations we know that the approximate eigenstates mostly consisting of dinpl → s are given via (from
lower to higher energy)

|ds1〉 = 1√
2

[C1|(dxx → s)εy〉 + C̃1|(dyy → s)εy〉] + ˜̃C1|(dxy → s)εx〉,

|ds2〉 = 1√
2

[C2|(dxx → s)εx〉 + C̃2|(dyy → s)εx〉] − ˜̃C2|(dxy → s)εy〉,

|ds3〉 = C3|(dxy → s)εy〉 − 1√
2

[C̃3|(dxx → s)εx〉 − ˜̃C3|(dyy → s)εx〉],
(E1)

|ds4〉 = C4|(dxy → s)εx〉 + 1√
2

[C̃4|(dxx → s)εy〉 − ˜̃C4|(dyy → s)εy〉],

|ds5〉 = 1√
2

[C̃5|(dxx → s)εy〉 − C5|(dyy → s)εy〉] − ˜̃C5|(dxy → s)εx〉,

|ds6〉 = 1√
2

[C̃6|(dxx → s)εx〉 − C6|(dyy → s)εx〉] + ˜̃C6|(dxy → s)εy〉,

with typically Ci > ˜̃Ci > C̃i. The light modes Ã2,0,α ∼ (x2 − y2)eα and Ã2, π
2 ,α ∼ xyeα excite the states (dxx → s)εα − (dyy →

s)εα and (dxy → s)εα , respectively. The absorption for different real superpositions of these modes is given in Fig. 7.
With these two light modes, we can just reveal the coefficients of a 2-dimensional basis. A change from the basis states

(dxx → s)εα and (dyy → s)εα to (dxx → s)εα ± (dyy → s)εα , where (dxx → s)εα + (dyy → s)εα is dark so its coefficient cannot
be measured anyway, provides a well-defined 2-dimensional basis. The eigenstates obtained from the simulated measurement
in Fig. 7 fit well to the theoretically predicted form of Eqs. (E1). The angle mismatch between the “measured” eigenstate and
the “exact” eigenstate without higher terms is 3◦–14◦. The accuracy is reduced compared to the measurement of the pinpl → s
states, since the dinpl → s eigenstates have larger contributions of energetically higher basis states (more than 30%).
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APPENDIX F: DIFFERENT REPRESENTATIONS OF BESSEL BEAMS

An exact solution of the Helmholtz equation is given by Bessel beams [73,74]. We discuss three equivalent representations,
as listed below. For all cases, we give approximations up to a useful level. Therefore we consider qr

qz
≈ 1 and a region around

qrr = 0, thus Jn(qrr) = ∑∞
j=0

(−1) j ( qr r
2 )2 j+n

( j+n)! j! ≈ (qr r)n

2nn! and (qrr)n+1 � (qrr)n [75]. Please note that the neglected terms of higher
order in qrr have a safely negligible impact on the absorption spectra, since the absorption rate is even of quadratic order in the
field amplitudes. One can construct standing waves by a superposition of two waves propagating in opposite directions. Thereby
different local fields arise at different values of z. For small qzz we use cos(qzz) ≈ 1 and sin(qzz) ≈ qzz. We use the cylindrical
coordinates r, ϕ, and z.

(1) Twisted light beams. This representation is similar to a complex-valued cylindrical multipole expansion, Laguerre-
Gaussian beams, so-called vortex beams or twisted light. The fields can be described by nodal planes with a normal in in-plane
direction, which rotate in space and time, giving them the nickname “twisted light.” Within the paraxial limit, the indices l and
σ label the orbital angular momentum and circular polarization of the mode, respectively.

Traveling waves:

Al,σ (r, t ) = A0ei(qzz−ωt )

[
Jl (qrr)eilϕ 1√

2
(ex + iσey) − iσ√

2

qr

qz
Jl+σ (qrr)ei(l+σ )ϕez

]
+ c.c.

≈
{

A0ei(qzz−ωt )
[
Jl (qrr)eilϕ 1√

2
(ex + iσey)

] + c.c., for sgn(l ) = sgn(σ ),

A0ei(qzz−ωt )
[− iσ√

2
qr

qz
Jl+σ (qrr)ei(l+σ )ϕez

] + c.c., for sgn(l ) �= sgn(σ ).
(F1)

(2) Radially and azimuthally polarized beams. This representation is somewhere between the complex- and real-valued
cylindrical multipole expansions. Radially and azimuthally polarized beams are exemplary realizations. These modes become
interesting for QDs with cylindrical symmetry or fields with a strong component polarized in propagation direction (here the z
direction). Corresponding standing waves are given in Eqs. (F3).

Traveling waves:

Axy
n,θ (r, t ) =

{ 1√
2
[An,1(r, t ) + (−1)nA−n,−1(r, t )], for θ = 0,

−i√
2
[An,1(r, t ) − (−1)nA−n,−1(r, t )], for θ = π

2 ,

= A0ei(qzz−ωt )

{
Jn(qrr)[cos(nϕ − θ )ex − sin(nϕ − θ )ey] − i

qr

qz
Jn+1(qrr) cos[(n + 1)ϕ − θ ]ez

}
+ c.c.

≈ A02 cos(qzz − ωt )
qn

r rn

2nn!
[cos(nϕ − θ )ex − sin(nϕ − θ )ey],

Az
n,θ (r, t ) =

{ 1√
2
[An+1,−1(r, t ) + (−1)n+1A−(n+1),1(r, t )], for θ = 0,

−i√
2
[An+1,−1(r, t ) − (−1)n+1A−(n+1),1(r, t )], for θ = π

2 ,

= A0ei(qzz−ωt )

[
Jn+1(qrr){cos[(n + 1)ϕ − θ ]ex + sin[(n + 1)ϕ − θ ]ey} + i

qr

qz
Jn(qrr) cos(nϕ − θ )ez

]
+ c.c.

≈
{

A02 cos(qzz − ωt ) qr r
2 [cos(ϕ − θ )ex + sin(ϕ − θ )ey], for n = 0, θ = π

2 ,

A02 sin(qzz − ωt ) qr

qz

qn
r rn

2nn! cos(nϕ − θ )ez, else.
(F2)

Standing waves:

Ă
xy
n,θ (r, t ) = A02 cos(ωt )

{
cos(qzz)Jn(qrr)[cos(nϕ − θ )ex − sin(nϕ − θ )ey] + sin(qzz)

qr

qz
Jn+1(qrr) cos[(n + 1)ϕ − θ ]ez

}

≈ 2A0

2nn!
cos(ωt )

{
qn

r rn[cos(nϕ − θ )ex − sin(nϕ − θ )ey] + 1

2n(n + 1)

nz

r
qn+2

r rn+2 cos[(n + 1)ϕ − θ ]ez

}
,

Ă
z
n,θ (r, t )=A02 cos(ωt )

[
cos(qzz)Jn+1(qrr){cos[(n + 1)ϕ − θ ]ex + sin[(n + 1)ϕ − θ ]ey} − sin(qzz)

qr

qz
Jn(qrr) cos(nϕ − θ )ez

]
z≈0︷︸︸︷≈ 2A0

2n+1(n + 1)!
cos(ωt )

[
qn+1

r rn+1{cos[(n + 1)ϕ − θ ]ex + sin[(n + 1)ϕ − θ ]ey}

−2
(n + 1)z

r
qn+1

r rn+1 cos(nϕ − θ )ez

]
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or

z≈− π
2qz︷︸︸︷≈ qr

qz

2A0

2nn!
cos(ωt )

[
1

2(n + 1)

1( qr

qz

)2

z + π
2qz

r
(qrr)n+2{cos[(n + 1)ϕ − θ ]ex + sin[(n + 1)ϕ − θ ]ey}

+ (qrr)n cos(nϕ − θ )ez

]

≈ qr

qz
2A0 cos(ωt )

(qrr)n

2nn!
cos(nϕ − θ )ez. (F3)

(3) Real-valued cylindrical multipole modes. This representation is similar to a real-valued cylindrical multipole expansion,
as used throughout this paper. Compared to the complex-valued expansion, the nodal planes of the field have a fixed orientation
in space and time.

Traveling waves:

Ax
n,θ (r, t ) =

{
Axy

0,0(r, t ), for n = 0, θ = 0,

1
2 [Axy

n,θ (r, t ) + Az
n−1,θ (r, t )], for n � 1,
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Standing waves:
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