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We present an analytical and experimental study of the scattering parameters in a one dimensional (1D)
symmetric photonic crystal and their relation to the density of states (DOS). The 1D photonic crystal is
constituted by N alternating wires and loops that are either inserted horizontally or attached vertically between
the source and load on a transmission line. The complete knowledge of the scattering matrix coefficients (Si j)
allows us to access the DOS and eigenvalues of the finite periodic structure as well as the DOS and dispersion
curves of an infinite periodic system. We show the usefulness of the transmission and reflection delay times
and highlight their similarities and differences with respect to the DOS, in particular as a function of the
absorption strength in the system. For both horizontal and vertical geometries, we show analytically that in a
lossless structure, the DOS is proportional to the Friedel phase, namely the derivative of the argument of the
determinant of the scattering matrix S. For a low loss system, this proportionality remains still valid with a good
approximation and can be used as a practical tool to derive the DOS and therefore the dispersion curves from
experimental data. Also, the absorption can be accurately extracted from the measurement of the modulus of
the determinant of S. However, for increasing strength of dissipation, we show how and why these relationships
cease to be valid. Still, the transmission delay time can remain an efficient tool to derive DOS even at relatively
high dissipation strength. Additionally, we show that in the vertical geometry the transmission and reflection
delay times exhibit negative delta peaks which are related directly to the eigenmodes of the finite system with
different boundary conditions on its extremities. Our theoretical results are obtained by means of the Green’s
function approach, whereas the experimental demonstrations are performed using standard coaxial cables in the
radio-frequency domain.

DOI: 10.1103/PhysRevB.102.165310

I. INTRODUCTION

The concept of density of states (DOS) is of great impor-
tance in the calculation of a number of physical quantities
such as thermal properties [1] and electron transport in meso-
scopic systems [2]. One of the well known methods to
calculate the DOS is the Green’s function [3–5]. In addition
to the DOS, the presence of scatters in a given system is
characterized by a scattering matrix which relates the ampli-
tudes of the incoming waves to those of the outgoing waves.
The scattering matrix is the main tool used in microwave
electrical engineering to understand the response of a sys-
tem to an incident electromagnetic wave [6]. This quantity
is also used in other domains such as transport phenomena
in dynamical mesoscopic systems [7], optical switches, and
devices [8] as well as quantum mechanics [9]. In the case of
one-dimensional (1D) mesoscopic scattering problems, there
has been a large number of theoretical studies devoted to
understanding the relationship between local and total DOS
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and different scattering parameters such as the derivative of
the phase of the determinant of the scattering matrix S [det(S)]
[10–16], the so called Friedel phase [17], and the transmission
and reflection delay times [18,19]. The latter studies [18,19]
have been performed in order to understand the experiments
of Yacoby et al. [20] and Schuster et al. [21] on quantum dots
in the so-called Aharonov-Bohm interferometers [2,22].

In analogy with electron tunneling through a barrier in
quantum mechanics [23], several theoretical and experimental
works have treated the problem of optical tunneling time,
optical clock, Hartmann effect, group delay, and superluminal
phenomena [24] in (i) a single layer sandwiched between
two media under total internal reflection [25,26], (ii) 1D pho-
tonic Bragg reflector (superlattice) made of isotropic and/or
anisotropic layers [27–31], (iii) microwave waveguide under
cutoff frequency or with a birefringent Fabry-Perot cavity
[32–34], (iv) optical fiber at the cutoff wavelength [35], (v)
metamaterials and microresonators [36,37], and (vi) coaxial
photonic crystals [38–42]. (vii) Also, a large amount of work
has been performed on electromagnetic periodic structures
called frequency selective surface (FSS)[43]. Diverse FSS
structures have been designed in different domains ranging
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FIG. 1. (a) Schematic representation of the finite periodic structure made of N = 4 cells with H = 0 boundary condition on both sides.
Each cell is composed of a wire of length d1 and a loop formed out by two wires, each of length d2. (b) The finite periodic structure inserted
between two semi infinite wires. (c) The finite structure with H = 0 boundary condition on one side and H = 0 or E = 0 on the other side.
(d) The finite periodic structure grafted vertically on a waveguide.

from microwave to optical regime with a variety of applica-
tions such as: antenna filter, microwave absorbing, sensors,
textile... In addition, the theoretical analysis of the DOS has
been performed in dielectric [44,45], plasma [46], and meta-
material layered media [47]. From the experimental point of
view, the DOS is generally extracted from measurable quanti-
ties related to DOS such as: the differential conductance in
scanning tunneling spectroscopy to deduce electron charge
density [48], the conductivity correction due to electron-
electron interaction in semiconductors to derive the Fermi’s
energy [49] and the nuclear resonant scattering to obtain the
phonon DOS [50]. To our knowledge, little works have been
performed to compare both analytically and experimentally
the calculated DOS and different experimental scattering pa-
rameters in photonic crystals [51,52]. Also, in most of the
theoretical demonstrations, the systems are supposed lossless
[44,45] which hidden interesting information related to the
existence of transmission and reflection zeros. Some years ago
[51,52], we have given a comparative study of the DOS and
the derivative of the phase of the scattering matrix as well as
the transmission delay time in a double stub lossy structure
inserted along a waveguide and supporting Fano and induced
transparency resonances. Such a study requires simple analyt-
ical calculation and experimental equipment, but enables deep
understanding of all these phenomena.

In this paper, we present an analytical and experimen-
tal comparative study of DOS and scattering parameters in
a finite 1D coaxial photonic crystal made of N cells at-
tached either horizontally or vertically along a waveguide (see
Fig. 1). In particular, (i) we demonstrate analytically that in
a lossless system, the DOS is proportional to the derivative
of the argument of det(S), the so-called Friedel phase [17].
Then we show that this proportionality remains valid with a
good approximation for relatively low loss systems, which
enables to determine experimentally the DOS and therefore
the dispersion curves. (ii) We show that the absorption can be
extracted from the modulus of the determinant of S. However,
for high loss systems, we show that contrary to the theoretical
demonstrations established before for lossless or low loss

mesoscopic systems, all these relations are no longer valid and
the DOS can be derived only from the transmission delay time
in the horizontal structure. (iii) We highlight that the DOS
may exhibit a different behavior in comparison with reflection
delay time. In a lossless structure, this difference only comes
from negative delta peaks in the delay times which actually
contain useful information about the eigenvalues of our finite
scattering system. In a lossy structure, the latter delta peaks
become broadened (anti-resonances) and hence observable in
the experimental measurements. Using the Green’s function
method [5,53], we derive exact analytical expressions relating
the DOS and different scattering parameters for a symmetric
photonic crystal made of periodic repetition of wires and
loops. This structure can be grafted either horizontally or
vertically between two semi-infinite waveguides. Also, in the
case of the vertical structure, we demonstrate that the negative
delta peaks associated to the transmission delay time give the
eigenmodes of the system with H = 0 boundary condition on
one side and E = 0 on the other side. However, the negative
delta peaks associated to the reflection delay time give the
eigenmodes of the finite structure with H = 0 boundary con-
dition on both sides, H and E being the magnetic and electric
fields respectively. Finally, we show that both (horizontal and
vertical) structures give almost similar results as concerns the
DOS of the system, however, the vertical structure is rich
of information as it enables to extract also the confined and
surface modes of the photonic crystal with different boundary
conditions on its extremities. The experiments are carried out
using coaxial cables in the radio-frequency regime. It is worth
mentioning that 1D system like coaxial cables have been
shown to be good candidates for highlighting general rules
about confined and surface electromagnetic modes in finite
size 1D structures [54]. Also, it was shown that coaxial ca-
bles present an easily realizable experimental approach to the
study of wave interference phenomena such as band gap struc-
tures with or without defect modes [42,55,56], superluminal
and subluminal effects [51,52], and quasicrystals [57,58].

The rest of the paper is organized as follows. In Sec. II, we
give the calculation method used in this work which is based
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on the interface response theory of continuous media [5,53].
We derive the Green’s function of the finite structure and the
dispersion relation of the infinite photonic crystal (Fig. 1).
Also, we describe briefly the experimental setup used in this
study. In Sec. III, we present an analytical and experimental
comparative study of DOS and scattering matrix S parameters,
namely its argument and modulus, for the finite size photonic
structure attached horizontally along a waveguide [Fig. 1(b)].
Also, we discuss both theoretically and experimentally the ex-
pressions relating the DOS and the reflection and transmission
delay times. In Sec. IV, we give the same study as in Sec. III
but for the vertical structure [Fig. 1(d)]. The conclusion is
presented in Sec. V.

II. GREEN’S FUNCTION APPROACH AND
EXPERIMENTAL SETUP

The theoretical method is performed using the interface
response theory of continuous media [5,53], which enables
the calculation of the Green’s function of any heterogeneous
material with different interfaces and then densities of states
as well as transmission and reflection coefficients. In what
follows, we shall avoid the details of this calculation which
are given in Appendices A and B and give only the necessary
Green’s function elements of the structure studied here that
enables to deduce the DOS and the scattering matrix elements,
namely the transmission and reflection coefficients. We con-
sider a finite 1D coaxial photonic crystal made of N cells with
H = 0 boundary conditions on both sides [Fig. 1(a)]. Each
cell is composed of a wire of length d1 and impedance Z
and a loop formed out by two wires, each of length d2 and
impedance Z . The loop is equivalent to a wire of length d2

and impedance Z/2. Therefore the photonic crystal becomes
equivalent to a Bragg reflector made of two wires charac-
terized by two different lengths d1 and d2 and two different
impedances Z and Z/2 respectively and d = d1 + d2 is the
period of the structure.

The dispersion relations of the infinite and finite photonic
crystals made of a wire and a loop require first the knowledge
of the inverse of the Green’s functions of these elementary
constituents (see Appendix A). In all the expressions, will
appear the following basic parameters of the wires and the
loops, namely, the parameters a = − jF C1

S1
and b = jF 1

S1
of

the wire and A = − j2F C2
S2

and B = j2F 1
S2

of the loop where

Ci = cos(kdi ), Si = j sin(kdi ) (i = 1 and 2) and j = √−1.
k = ω

c

√
ε is the wave number, which is directed along the

direction of the wire and F = ω
Z . ε and Z are the permittivity

and the impedance of the waveguides, respectively.
From the above parameters, one can deduce the dispersion

relation of the infinite photonic crystal (see Appendix A),
namely,

cos(kBd ) = cos(kd1) cos(kd2) − 5
4 sin(kd1) sin(kd2). (1)

where kB is the Bloch wave number of the infinite photonic
crystal.

Using the Green’s function method [53], the inverse of the
Green’s function g−1

0 (M, M ) of the photonic crystal made of N
cells, in the space of interface M = {1, 2} at its two extremities
labeled 1 and 2 [Fig. 1(a)], can be obtained in a compact form

(see Appendix A for the details of calculation),

g−1
0 (M, M ) =

(AN BN

BN AN

)
(2)

where the expressions of AN and BN are given by

AN = Y1

�(A + a)

[
� − Bb

(
t − 1

t

)
Y1

]
(3a)

and

BN = Bb
(

t − 1

t

) Y1Y2

(A + a)�
t (N−1). (3b)

The expressions of Y1, Y2 and � are given by

Y1 = b2 − a2 − aA + Bbt, Y2 = aB − Abt, and

� = Y 2
1 − Y 2

2 t2(N−1), (4)

where the parameter t is defined as t = e jkBd .
The eigenmodes of the photonic crystal with H = 0 bound-

ary conditions on both sides [Fig. 1(a)] are given by (see
Appendix A)

det
[
g−1

0 (M, M )
] = A2

N − B2
N = 0. (5)

From Eqs. (3a) and (3b), one can write A2
N − B2

N in the fol-
lowing explicit form:

A2
N − B2

N =
( Y1

A + a

)2 1

�

[
Y1 − Y2tN−1 − Bb

(
t − 1

t

)]

×
[
Y1 + Y2tN−1 − Bb

(
t − 1

t

)]
, (6)

where the terms between brackets in Eq. (6) give the symmet-
ric and antisymmetric modes. In a similar way, one can show
that the eigenmodes of the finite photonic crystal with E = 0
boundary conditions on both sides are given by

� = [Y1 − Y2t (N−1)][Y1 + Y2t (N−1)] = 0. (7)

This quantity � appears in the denominators of AN [Eq. (3a)],
BN [Eq. (3b)], and A2

N − B2
N [Eq. (6)] and hence its zeros

correspond to the poles of all these functions. Here also, the
terms between brackets in Eq. (7) give the symmetric and
antisymmetric modes.

Similarly, the eigenmodes of the finite structure with E = 0
boundary condition on its bottom side and H = 0 on its top
side [Fig. 1(c)] are given by (see Appendix A)

AN = 0. (8)

The experimental results are performed using standard
coaxial cables RG-58/U connected by standard BNC-T
connectors. The cables are characterized by the complex per-
mittivity ε = 2.3 + jε′′ and the impedance Z = 50�. The
lengths of the cables are d1 = d2 = 1m and the period d =
d1 + d2 = 2m. The dissipation in the cables is considered
through the imaginary part of ε which is frequency depen-
dent [42,51]. The scattering matrix S of the 1D photonic
crystal was measured in the frequency range 1-200 MHz by
means of a broadband vector network analyzer Agilent PNA-
X N5242A. The details of the experimental setup is given in
Appendix B.
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III. HORIZONTAL STRUCTURE: ANALYTICAL AND
EXPERIMENTAL RESULTS

In this section, we give an analytical and experimental
comparative study of DOS and scattering parameters, namely
the phase and modulus of the scattering matrix and of trans-
mission and reflection coefficients, for a finite size photonic
crystal attached horizontally along a waveguide [Fig. 1(b)].
First, we show analytically that for lossless structure (i.e.,
ε′′ = 0), the DOS is proportional to the derivative of the phase
of det(Sh), the so-called Friedel phase [17] (the subscript h
refers to the horizontal structure). Then we show that this
proportionality remains valid with a very good approximation
for relatively low loss systems, which enables to extract exper-
imentally the DOS from the scattering matrix Sh and therefore
the dispersion curves. Also, the absorption coefficient can be
extracted from the modulus of det(Sh). However, for high loss
systems, these relations are no longer valid. In addition, we
discuss the relation between the DOS and the reflection and
transmission delay times. Contrary to the derivative of the
phase of det(Sh), we show that the transmission delay time
represent very well the DOS even in presence of loss and
remains robust for high loss systems. However, the reflection
delay time is different from the DOS because of the negative
delta peaks due to the reflection zeros. The finite 1D photonic
crystal is made of N cells [Fig. 1(a)]. Each cell is composed of
a wire of length d1 = 1m and a loop formed out by two wires,
each of length d2 = 1m, d = d1 + d2 = 2m is the period of
the photonic crystal. The symmetric loop is simply two lines
in parallel, each has a length d2 = d1 and an impedance Z .
The loop circuit can be considered equivalent to a wire of
length d2 and impedance Z/2. Therefore the periodic structure
in Fig. 1 is equivalent to alternating two cables with differ-
ent impedances Z and Z/2. This choice enables to create a
large impedance mismatch between the two elements, which
enables to get large band gaps [42,54].

A. Density of states and scattering phase

The inverse of the Green’s function of the whole structure
depicted in Fig. 1(b) in the space of interface M = {1, 2} at its
both extremities, is given by

g−1
h (M, M ) =

(AN − jF BN

BN AN − jF

)
(9)

where − jF is the inverse Green’s function of the semi-infinite
wires surrounding the finite system with F = ω

Z .
The expressions of transmission and reflection coefficients

for the horizontal structure depicted in Fig. 1(b) are given,
respectively, by Ref. [53] (see Appendix C for the details of
calculation)

th = 2 jFBN det[gh(M, M )] (10a)

and

rh = −CN det[gh(M, M )], (10b)

where det[gh(M, M )] and CN are given respectively by

det[gh(M, M )] = 1

A2
N − B2

N − F 2 − 2 jFAN
(11)

and

CN = A2
N − B2

N + F 2

= j2
(
A2

1 − B2
1 + F 2

)(
Y 2

1 − Y 2
2

)
tN−2 sin(NkBd ). (12)

Another interesting quantity that enables to deduce the
distribution and the weight of the different modes in the
system is the DOS of the whole structure. However, as the
system is composed of a finite-size photonic crystal inserted
between two semi-infinite waveguides, we need to calculate
the variation of the DOS (�nT (ω)) between the system in
Fig. 1(b) and a reference system to avoid any divergency
in DOS due to the semi-infinite wires. This quantity can be
calculated by integrating the local DOS over the whole system
and to subtract the density of states of the infinite waveguide
such as [59]

�nT (ω2) = n1(ω2) + 2n2(ω2) + 2�ns(ω
2), (13)

where n1(ω2) and n2(ω2) are the contributions of wires 1 and
2 of the photonic crystal, respectively, and �ns(ω2) comes
from the two semi-infinite waveguides surrounding the pho-
tonic crystal. These three quantities are given explicitly in
Appendix F.

In order to give an analytical comparison of the DOS with
the scattering parameters (see below), there exists another way
to get a compact expression of the variation of the DOS. This
method consists to consider the variation of the DOS �n′

h(ω)
for the structure in Fig. 1(b) and a reference system formed
out of the same volumes of the decoupled semi-infinite wires
and the finite structure [Fig. 1(a)]. In this case, �n′

h(ω) can be
obtained from the following equation [60]:

�n′
h(ω) = 1

π

d

dω
Arg

{
det

[
gh(M, M )

g0(M, M )F−2

]}
. (14)

Now, if we subtract the eigenmodes of the finite structure
with H = 0 boundary conditions on both sides [Eqs. (A27)
and (6)], Eq. (14) becomes simply

�nh(ω) = 1

π

d

dω
Arg{det[gh(M, M )]}. (15)

Equations (13) and (15) are similar, however Eq. (15)
should be handled carefully in order avoid the eigenmodes
of the finite structure which appear as delta functions in
det[gh(M, M )] [Eqs. (3a), (3b), (6), and (11)]. Whereas
Eq. (13) is more interesting as it does not contain such useless
delta functions associated with the reference system.

Another important quantity which gives us more informa-
tion about the scattering parameters of the system such as
reflection and transmission coefficients as well as the Friedel
phase [17], is the scattering matrix Sh. For the symmetric
horizontal system, Sh is defined by

Sh =
(rh th

th rh

)
, (16)

where rh and th are the reflection and transmission coefficients
given by Eqs. (10a) and (10b), respectively.

Now, we shall give first exact analytical relations between
the DOS and the scattering phase for lossless media and then
we shall see numerically and experimentally the effect of the
presence of loss on such relationship. Indeed, in the absence
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of loss (i.e., ε′′ = 0), AN and BN [Eqs. (3a) and (3b)] are
real quantities, therefore, we can check easily (see Appendix
C) that the transmission and reflection rates Th = |th|2 and
Rh = |rh|2 verify the conservation energy Th + Rh = 1. In ad-
dition, the phase of the determinant of the scattering matrix Sh

[Eq. (16)] can be deduced from the expressions of rh and th
[Eqs. (10a) and (10b)] (see Appendix D), namely,

d

dω
Arg[det(Sh)] = d

dω
Arg

[
r2

h − t2
h

]
= 2

d

dω
Arg{det[gh(M, M )]}. (17)

From Eqs. (15) and (17), one can deduce that the DOS is
related to the phase of the determinant of the scattering matrix
such as

1

2

d

dω
Arg[det(Sh)] = π�nh(ω). (18)

It is worth noticing that the Friedel phase is defined as the
cumulative phase of the eigenvalues of the scattering matrix
[17], this quantity is simply the phase of the determinant of
the scattering matrix (see Ref. [61] for the derivative of this
relation in 1D graphs). Equation (18) clearly shows that the
DOS can be extracted from the measurement of the phase
of det(Sh), the so-called Friedel phase [17,61]. Also, in ab-
sence of loss, we can check easily the well known relation
|det(Sh)| = Rh + Th = 1 (see Appendix E).

For low loss systems, we have checked numerically and
experimentally that Eqs. (17) and (18) still remain valid with
a good approximation (see below). In addition, the absorption
can be derived from |det(Sh)| through the relation [62]

Ah � 1 − |det(Sh)|. (19)

However, for high loss systems, all the above results
[Eqs. (17)–(19)] are no longer valid, nevertheless the DOS can
be extracted from the transmission delay time (see below).

Figure 2(a) gives the band gap structure for an infinite
photonic crystal (black curves) made of alternating segments
and loops made of standard coaxial cables (Z = 50 �) of
lengths d1 = d2 = 1m. In this case, the dispersion relation
[Eq. (1)] reduces to

cos(kBd ) = 1 − 9
4 sin2(kd1). (20)

The segments and loops play the role of quarter
wavelength layers at the dimensionless frequencies kd1 =
ωd1

√
ε/c = (2n + 1)π/2 (n is an integer). In absence of loss,

these frequencies correspond also to mid-gaps around f =
49 MHz, 147 MHz, . . . Also, the band-gap edges are given
by cos(kBd ) = ±1 [Eq. (20)]. The band edges at the center
of the Brillouin zone [i.e., cos(kBd ) = 1] are given by kd1 =
0, π, 2π, . . . (i.e., f = 0, 98 MHz, 196 MHz, . . . ). For these
frequencies, the gaps close [Fig. 2(a)], this is a characteristic
of quarter wavelength layers. However, the band edges at the
limit of the Brillouin zone [i.e., cos(kBd ) = −1] are given by
sin(kd1) = ±2

√
2/3 (i.e., f = 38 MHz, 60 MHz, 137 MHz,

158 MHz,...). These values are in accordance with the nu-
merical results in Fig. 2(a). Open circles in Fig. 2(a) give the
experimental dispersion curves obtained from the scattering
matrix as explained below.

(a)

(b)

(c)

FIG. 2. (a) Theoretical band gap structure of an infinite structure
made of segments and loops as shown in Fig. 1 (i.e., N = 4 cells).
Open circles give the experimental results extracted from the scatter-
ing matrix. (b) Variation of 1

2
d

dω
Arg[det(Sh )] (in units of μs) obtained

from the scattering matrix Sh (open circles), and the variation of DOS
(�nh(ω)) obtained from [Eq. (15)] (solid line). Dotted line shows the
variation of DOS derived from the theoretical dispersion curves of
the infinite system in (a). (c) Variation of the absorption coefficient
(open circles) derived from det(Sh ) [Eq. (19)] in comparison with the
theoretical results (solid lines).

Figure 2(b) shows half of the derivative of the experimental
phase of det(Sh) as function of frequency (open circles), and
the calculated variation of DOS (solid line) obtained from
Eq. (15) [or equivalently Eq. (13)]. One can notice a very
good agreement between π�nh(ω) and 1

2
d

dω
Arg[det(Sh)] in

accordance with Eq. (18). These results give an experimental
measurement of the DOS of the horizontal photonic crystal
[Fig. 1(b)]. Also, despite the small number of cells, the DOS
exhibits the same behavior that the DOS derived from the
dispersion curves (dotted line) of the infinite periodic structure
depicted in Fig. 2(b) and obtained from the relation [63]

�nh(ω) = Lh

π

dk

dω
, (21)

where Lh is the effective length of the finite structure (Lh �
7 m). As predicted, the DOS of the infinite system diverges
at the edges of the band gaps which is a well known property
of the 1D systems [63], whereas the DOS of the finite sys-
tem (solid line) exhibits small oscillations inside the allowed
bands. The number of oscillations is related to the number of
periods in the finite system. Conversely, from the integration
of the experimental DOS in Fig. 2(b), we can reproduce the
dispersion curves in Fig. 2(a) (open circles) using Eq. (21).
Despite the small number of loops (N = 4) for the finite
structure, the dispersion curves obtained from the scattering

165310-5



SOUFYANE KHATTOU et al. PHYSICAL REVIEW B 102, 165310 (2020)

(a)

(b)

(c)

FIG. 3. (Blue solid line) Theoretical variation of half of the
derivative of the argument of det(Sh ) ( 1

2
d

dω
Arg[det(Sh )]), and the

variation of DOS (�nh(ω)) obtained from [Eq. (15)] (green dashed
line) for different values of the number of cells N. Red open circles
give the experimental results of 1

2
d

dω
Arg[det(Sh )] obtained from the

scattering matrix Sh data.

matrix, describe very well the band structure for the infinite
structure (N → ∞) [red circles in Fig. 2(a)].

Figure 2(c) presents the absorption coefficient derived from
the modulus of det(Sh) [Eq. (19)]. This result shows that in
presence of low loss, one can easily derive the amplitude of
absorption from the measurements of complex reflection and
transmission coefficients and hence det(Sh). As predicted, the
absorption in the bands [Fig. 2(c)] increases almost linearly
with the frequency, whereas it presents dips in the gap re-
gions where the waves are mostly reflected. The experimental
results (open circles) are in very good agreement with the
theoretical ones (solid lines).

As mentioned above, the relation between the DOS and the
derivative of the argument of det(Sh) [Eq. (18)] as well as the
relation between the absorption and |det(Sh)| [Eq. (19)] are
exact for lossless media. However, the numerical and experi-
mental results in Fig. 2 show that these relations remain valid
with a good approximation in relatively low loss system. The
presence of loss can affect considerably the above relations,
this quantity which is responsible of the decreasing of the
amplitude of waves, occurs through the attenuation coeffi-
cient. The latter quantity arise either through the imaginary
part of the permittivity or the increase in the length of the
structure. In order to give a better insight about the effect of
high loss on these relations, we have plotted in Figs. 3(a)–
3(c) a comparison between DOS and 1

2
d

dω
Arg[(det(Sh)] for

different values of the number of cells N. We clearly see that

the DOS is approximately equivalent to the derivative of the
phase of det(Sh) for N = 4 [Fig. 3(a)]. We can see that the
DOS remains almost the same as the derivative of the phase
of det(Sh) inside the bands with a noticeable discrepancy
between the two spectra at the bulk band edges. Also, we
have checked numerically that the total number of modes
[obtained from the integral of DOS or the derivative of the
phase of det(Sh)] give almost the same results. However, for
N > 4 [Figs. 3(b) and 3(c)], the DOS and the derivative of the
phase of det(Sh) exhibit different behaviors especially at the
band edge frequencies where the latter changes sign. Indeed,
we have checked that det(Sh) vanishes at these frequencies
(i.e., r = ±t) and changes sign, giving rise to an abrupt phase
change of π in the argument of det(Sh) and therefore a nega-
tive delta peak in the derivative of the phase of det(Sh). These
results are displayed in Figs. 3(b) and 3(c). The theoretical
results of 1

2
d

dω
Arg[(det(Sh)] are confirmed experimentally by

red open circles in Figs. 3(a)–3(c). We can see that for N > 4,
the DOS displayed by green dashed curves show a different
behavior than 1

2
d

dω
Arg[(det(Sh)] especially at the band edges

where det(Sh) changes sign. Figure 4 gives a comparison
between the absorption Ah = 1 − Rh − Th (left panel) and
1 − |(det(Sh)| (right panel) for different values of the number
of cells N. We can see a discrepancy between the two latter
quantities as far as N increases [see Figs. 4(b), 4(e) and 4(c),
4(f)]. In particular, at the band edges when det(Sh) almost
vanishes, the absorption becomes simply Ah = 1 − 2Rh (as
Rh = Th) whereas 1 − |(det(Sh)| becomes almost unity (as
det(Sh) = 0). The theoretical results of Ah = 1 − Rh − Th and
1 − |(det(Sh)| are confirmed experimentally by red open cir-
cles in Figs. 4(a)–4(f). As mentioned above, the effect of loss
can be also analyzed through an analysis of the imaginary
part of the permittivity (i.e., ε′′) for a fixed number of cells
N. These results are displayed in Appendix G.

B. Density of states and delay times

In order to derive exact relations between DOS and delay
times, we shall first consider the case of lossless media. In-
deed, from Eq. (10a), one can obtain the transmission delay
time which is defined as the derivative of the corresponding
phase versus the pulsation ω, namely,

τ h
T = dθh

T

dω
= d

dω
Arg{det[gh(M, M )]}

+ π
∑

n

[
sgn

dBN

dω
|ω=ωn

]
δ(ω − ωn). (22)

By the same way, the reflection delay time τ h
R can also be

derived from Eq. (10b) as

τ h
R = dθh

R

dω
= d

dω
Arg{det[gh(M, M )]}

+ π
∑

n

[
sgn

dCN

dω
|ω=ωn

]
δ(ω − ωn) (23)

θh
T and θh

R are the phases of the transmission and reflection
coefficients respectively. sgn means the sign function and ωn

represents the frequencies where the expressions BN and CN
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Comparison between the absorption Ah = 1 − Rh − Th (left panel) and 1 − |(det(Sh )| (right panel) for different values of the
number of cells N. Blue lines (red open circles) give the theoretical (experimental) results.

change sign, and the corresponding phases exhibit a jump
of π .

The horizontal structure does not give any transmission
zero as BN �= 0 [Eq. (10a)], then Arg(BN ) = 0 or π and there-
fore from Eqs. (15) and (22) one can deduce that

τ h
T = π�nh(ω). (24)

However, Eqs. (15) and (23) show that τ h
R is different from

�nh(ω), as CN [Eq. (12)] can vanish for N − 1 frequencies in
each band given by the following Bloch wave number

kB = mπ/Nd, m = 1, 2, . . . , N − 1, (25)

and the corresponding phase of CN exhibits a jump of π .
Therefore the reflection delay time presents negative delta
peaks and one deduces that

τ h
R �= π�nh(ω). (26)

Equations (15) and (23) show that for lossless media,
apart from the existence of delta peaks in τ h

R , this latter
quantity is equivalent to DOS. However, in presence of loss,
the above Eqs. (22) and (23) remain valid. In addition, be-
cause of loss, the true delta functions in the reflection delay
time [Eq. (23)] broaden and become antiresonances (with a
Lorentzian shape), which enables their easy observation in the
experiments (see below).

Figure 5(a) reproduces the band structure of the infinite
system [Fig. 2(a)] made of alternating segments and loops
made of standard coaxial cables (Z = 50 �) of lengths d1 =
d2 = 1m. Figure 5(b) shows the transmission amplitude for
a finite structure made of N = 4 loops. Despite the small
number of cells, the positions of the gaps (transmission dips)
coincide clearly with those of the infinite system. Increasing
the number of cells will affect considerably the amplitude
of the transmission [Fig. 5(b)] because of the loss effect in
the cables, whereas the overall results such as gap widths
and dispersion curves [Fig. 2(a)] remain almost unaffected.
Figures 5(c) and 5(d) give the transmission phase and the cor-
responding delay time. One can see that the phase increases
monotonically, and the delay time reflects the DOS inside the
finite structure as described in Fig. 5(e). One can notice that
the DOS is directly proportional to the transmission delay time
in accordance with Eq. (24). The experimental results (open
circles) are in very good agreement with theory (solid lines).

Figure 6 illustrates the same results as in Figs. 5(b)–5(d),
but for the reflection coefficient. One can notice that the am-
plitude of the reflection vanishes N − 1 times in each band
[Eq. (25)], giving rise to N-1 phase drops [Fig. 6(b)] and there-
fore N − 1 negative delay times [Fig. 6(c)], which do not exist
in the DOS [Fig. 5(e)]. These results show that, contrary to the
transmission delay time, the reflection delay time is different
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(a)

(b)

(c)

(d)

(e)

FIG. 5. (a) Theoretical band gap structure of an infinite structure
made of segments and loops as shown in Fig. 1. (b) Transmission
amplitude through the finite size system composed of N = 4 cells
[Fig. 1(b)]. [(c) and (d)] Transmission phase and the corresponding
delay time. (e) DOS of the finite structure in Fig. 1(b). Open circles
show the experimental results, whereas solid lines correspond to the
theoretical ones.

from the DOS in accordance with Eq. (26). The delta peaks
in Fig. 6(c) are broadened because of the existence of the dis-
sipation in the cables. The experimental results (open circles)
are in very good agreement with theory (solid lines). Let us
mention that negative delta peaks in the reflection spectra have
been provided experimentally on microstrip dielectric slabs
and Bragg reflectors [64] with particular interest in superlu-
minal phenomenon [40,41]. In the absence of dissipation, the
reflection and transmission delay times seems equivalent [45]
as the negative peaks now become true delta peaks invisible
in the reflection delay time spectra. To give a better insight,
the behavior of the theoretical reflection delay time versus the
frequency in absence of dissipation is plotted in Fig. 6(d). We
can see clearly that, apart the true delta peaks indicated by
vertical bars, the reflection delay time is proportional to the
transmission delay time [Fig. 5(d)] and to the DOS [Fig. 5(e)].
However, in presence of loss, the transmission and reflection
delay times for a symmetric structure [Figs. 5(d) and 6(c)]
are not equivalent because of the additional negative delta
peaks [Eq. (23)] induced by the term CN = 0 [Eq. (12)]. In
order to show clearly the effect of loss on the relation between

(a)

(b)

(c)

(d)

FIG. 6. (a) Reflection amplitude through the finite size system
composed of N = 4 cells [Fig. 1(b)]. [(b) and (c)] Reflection phase
and the corresponding delay time. Open circles show the experimen-
tal results, whereas solid lines correspond to the theoretical ones.
(d) Reflection delay time in absence of loss, the vertical bars indicate
the positions of delta peaks. It is worth noticing that (c) and (d) are
not plotted with the same scale.

DOS and reflection delay time in presence of reflection zeros,
we have plotted in Appendix H (see Fig. 14), the theoretical
reflection coefficient and the corresponding delay times for
different values of loss.

In order to give a better insight about the behavior of
transmission and reflection delay times for high loss systems,
we have presented in Figs. 7 and 8, respectively, a comparison
between DOS, transmission and reflection delay times for
different values of the number of cells N. Red open circles
give the experimental results. Contrary to the derivative of
the phase of det(Sh), the transmission delay time in Fig. 7
represents very well the DOS even in presence of loss and
remains robust even for high loss systems [Figs. 7(b) and
7(c)]. Figures 8(a)–8(c) show a comparison between DOS
and reflection delay time for different values of N. We can
see that according to Eq. (26) the reflection delay time is
different from the DOS (green curves in Fig. 8) because of
the existence of negative delta peaks due to reflection zeros
giving by Eq. (12) for N − 1 frequencies in each band. The
main difference consists in the possibility of observing true
delta peaks (with zero width) in the reflection delay time
which become broadened due to dissipation in the cables.
Even though the negative delta peaks in the delay time dam-
age drastically the shape of the DOS, the existence of such
negative peaks represent a practical tool to deduce directly the
frequency positions of the confined and surface modes of a
finite photonic crystal with different boundary conditions on
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(a)

(b)

(c)

FIG. 7. Comparison between DOS and transmission delay time for different values of N . Open circles give the experimental results of
transmission delay time.

(a)

(b)

(c)

FIG. 8. Comparison between DOS (green dashed curves) and reflection delay time (blue curves) for different values of N . Red open circles
give the experimental results of reflection delay time.
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its both extremities as it will be detailed in the case of the
vertical structure (see Sec. IV).

To summarize all the above results, we have shown analyt-
ically that for lossless media, the relationship between DOS
and scattering parameters [transmission, reflection, det(S)]
are exact. These results are found still valid both numerically
and experimentally with a good approximation for relatively
low loss systems. However, for high loss systems, the DOS
represents different behaviors in comparison with the deriva-
tive of the phase of det(Sh) because of the negative peaks
displayed by the latter at the band edges. Also, the rela-
tion between the absorption and |det(Sh)| [Eq. (19)] becomes
no longer valid. Nevertheless, the transmission delay time
(Fig. 7) still exhibits similar behaviors as the DOS and re-
mains robust to the effect of loss.

IV. VERTICAL STRUCTURE: ANALYTICAL AND
EXPERIMENTAL RESULTS

In this section, we give an analytical and experimental
comparative study of DOS and scattering parameters in a
finite 1D coaxial photonic crystal made of N cells attached
vertically along a waveguide [Fig. 1(d)]. As in the previous
section, we shall first discuss analytically the relationship
between the DOS and the scattering phase for lossless media.
Also, we give a comparison between the transmission and
reflection delay times and DOS. The effect of loss on such
relations will be discussed through an analysis of numerical
and experimental results. In addition, we show that because
of loss, the observed negative delta peaks associated with
transmission and reflection delay times give respectively the
eigenmodes of the finite system with two different boundary
conditions at the bottom (E = 0 or H = 0), E and H being the
electric and magnetic fields respectively.

A. Density of states and scattering phase

For the vertical system, the two semi-infinite wires are
now grafted at the same site at the bottom side of the finite
structure. The inverse of the Green’s function of the vertical
structure illustrated in Fig. 1(d) becomes

g−1
v (M, M ) =

(AN − 2 jF BN

BN AN

)
. (27)

The expressions of the transmission and reflection coefficients
are given by [53]

tv = −2 jFAN det[gv (M, M )] (28a)

and

rv = (
B2

N − A2
N

)
det[gv (M, M )], (28b)

where

det[gv (M, M )] = 1

A2
N − B2

N − 2 jFAN
. (29)

It is worth mentioning that the eigenmodes of the finite
structure [Fig. 1(d)] are given by [53] (see Appendix A)

det
[
g−1

v (M, M )
] = 0. (30)

As mentioned above, the surface terminations (ends) of the
finite crystal with electric wall (E = 0) on the bottom side

(a)

(b)

(c)

FIG. 9. Same as in Fig. 2 but for the vertical structure depicted
in Fig. 1(d) with N = 4 cells.

and magnetic wall (H = 0) on the top side (Fig. 1(c)) are
given by AN = 0 [Eq. (A29)]. Therefore, from Eqs. (28a) and
(29), one can deduce that these modes correspond to vanishing
the vertical transmission tv = 0. Similarly, the eigenmodes
of the finite structure with H = 0 boundary condition on its
both sides [Fig. 1(a)] are given by A2

N − B2
N = 0 [Eq. (A27)].

Therefore, from Eqs. (28b) and (29), one can deduce that
these modes correspond to vanishing the vertical reflection
rv = 0. These results show clearly how the eigenmodes of
both structures in Figs. 1(a) and 1(c) are given by rv = 0 and
tv = 0, respectively.

All the above expressions of the transmission and reflection
coefficients [Eqs. (28a) and (28b)] are different from those
of the horizontal structure [Eqs. (10a) and (10b)]. However,
Eqs. (15)–(19) showing how the DOS and the absorption
coefficient can be extracted from the scattering parameters for
the lossless horizontal structure, remain valid in the case of
the vertical structure (see Appendix C), where we should only
replace the subscript (h) by (v).

Figure 9 illustrates the same results as in Fig. 2 but for the
vertical structure. Open circles in Fig. 9(a) give the experi-
mental dispersion curves derived from the scattering matrix
(see below). Figure 9(b) shows that the derivative of the phase
of det(Sv ) versus the frequency (open circles) is proportional
to the variation of the DOS (�nv (ω)) (solid line). In other
words, the DOS can be extracted from the measurement of
the phase of det(Sv ). In spite of the small number of cells
(N = 4), the DOS exhibits the same behavior that the DOS
derived from the dispersion curves for the infinite periodic
structure (dotted curves) depicted in Fig. 9(a) using the re-
lation �nv (ω) = Lv

π
dk
dω

, where Lv is the effective length of the
finite vertical structure (Lv � 7.4 m). Also, in presence of loss
the absorption in the system can be extracted from det(Sv )
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through the relation Av = 1 − |det(Sv )| as it is illustrated in
Fig. 9 (c). In addition, one can notice that the oscillations in
DOS [Fig. 9(b)] and absorption [Fig. 9(c)] for the vertical
structure, are more pronounced than those of the horizon-
tal structure [Figs. 2(a) and 2(b)]. The experimental results
(Open circles) are in very good agreement with theoretical
ones (solid lines). As in section III, we have checked here
also that the relation between DOS and 1

2
d

dω
Arg[det(Sv )] still

remains valid with a good approximation for relatively low
loss systems. However, for high loss systems, the DOS and
the derivative of the argument of det(Sv ) present different
behaviors, especially at the band edges where det(Sv ) almost
vanishes. Also, the absorption of the system can not be ex-
tracted from |det(Sv )|.

B. Density of states and delay times

Similarly to Sec. III B, in the case of lossless media, one
can deduce from Eqs. (28a) and (28b), the transmission and
reflection delay times for the vertical structure as follows:

τ v
T = dθv

T

dω
= d

dω
Arg{det[gv (M, M )]}

+ π
∑

n

[
sgn

dAN

dω
|ω=ωn

]
δ(ω − ωn) (31)

and

τ v
R = dθv

R

dω
= d

dω
Arg{det[gv (M, M )]}

+ π
∑

n

[
sgn

d
(
B2

N − A2
N

)
dω

|ω=ωn

]
δ(ω − ωn). (32)

θv
T and θv

R are the phases of the transmission and reflection
coefficients, respectively. sgn means the sign function and
ωn represents the frequencies where the expressions AN and
(B2

N − A2
N ) change sign, and the corresponding phases exhibit

a jump of π .
As mentioned in Sec. IV A, the vertical structure presents

transmission and reflection zeros for some frequencies given
by AN = 0 and B2

N − A2
N = 0, respectively [Eqs. (28a) and

(28b)], then the corresponding phases exhibit a jump of π ,
and the delay times present negative delta peaks [Eqs. (31)
and (32)]. Therefore, from Eqs. (15), (31), and (32), one can
deduce that

τ v
T �= π�nv (ω) (33a)

and

τ v
R �= π�nv (ω). (33b)

The negative delta peaks of the transmission delay time
induced by the second term in Eq. (31), give the eigenmodes
of the system with H = 0 boundary condition on one side and
E = 0 on the other side [Eq. (A29)] [Fig. 1(c)]. Whereas, the
negative delta peaks associated to the reflection delay time
induced by the second term in Eq. (32) give the eigenmodes
of the system with H = 0 boundary conditions on both sides
[Eq. (A27)] [Fig. 1(a)]. Equations (15), (31), and (32) show
that for lossless media, apart from the existence of delta peaks
in τ v

R and τ v
T , these latter quantities are equivalent to DOS.

However, in a lossy system, the previous Eqs. (31) and
(32) still remain approximately valid. Moreover, because of

loss, the true delta functions that appear in the transmission
and reflection delay times broaden and become antiresonances
with a Lorentzian shape easy to be detected experimen-
tally (see below). Figure 10 presents the same results as in
Fig. 5 but for the vertical structure [Fig. 1(d)]. Figure 10(b)
shows that the transmission coefficient vanishes for some
frequencies giving rise to abrupt phase drop [Fig. 10(c)] and
therefore negative delay time [Fig. 10(d)]. The peaks of DOS
[Fig. 10(e)] almost coincide with negative delta peaks in the
transmission delay time which give the eigenmodes of the
system described in Fig. 1(c) with H = 0 boundary condition
on one side and E = 0 on the other side. These discrete
modes are reported by red open circles in Fig. 10(a). One
can notice that among the different modes, there exists a
peak in each gap around 47 and 143 MHz; these modes are
induced by the surface with electric wall (i.e., E = 0 boundary
condition) [Fig. 1(c)]. We observe that these modes fall in
the mid-gaps around f1 = 47 MHz and f2 = 143 MHz given
by kd1 = ωd1

√
ε/c = (2n + 1)π/2 (n is an integer). These

surface modes do not appear in the DOS [Fig. 10(e)]. In
order to show the spatial localization of these modes, we
have presented in Fig. 11 the square modulus of the electric
field as function of the space positions x(m) along the finite
structure depicted in Fig. 1(c) for the two surface modes
at f1 = 47.68 MHz and f2 = 143.67 MHz [labeled 1 and 2
respectively in Fig. 10(a)]. As predicted, these two modes are
localized at the surface of the structure and decrease in the
bulk. In particular, the electric field vanishes at the surface
because of E = 0 boundary condition at this point. Also, the
number of oscillations in each cell increases for high frequen-
cies [Fig. 11(b)]. The penetration depth δ of the electric field
in Fig. 11 can be deduced from the decay of the amplitude
of oscillations between two periods, and gives δ = 2.9 m.
This quantity is almost the same as the one obtained from
the value of the imaginary part of the wave number in the
center of the gap in Fig. 10(a), namely, δ′ = 2.92 m. The
fast decay of the electric field (almost one period) is due to
the frequency position of the surface mode in the middle of
the gap. Similarly to Fig. 5, the behavior of the transmission
delay time versus the frequency in absence of dissipation is
plotted in Fig. 10(f). We can see clearly that, apart the true
delta peaks indicated by vertical bars, the transmission delay
time is equivalent to the DOS [Fig. 10(e)].

The reflection spectra exhibit the same behavior as the
transmission spectra as it is illustrated in Figs. 10(b) and
10(h). Similarly to the transmission coefficient, the negative
delta peaks associated to the reflection coefficient [Fig. 10(j)]
give the eigenmodes of the finite structure when the boundary
conditions are H = 0 on both sides [Fig. 1(a)]. These modes
are reported by red open circles in Fig. 10(g). Also, one can
notice the absence of surface modes in the gaps [Figs. 10(g)
and 10(j)]. Indeed, the surface termination with H = 0 bound-
ary conditions do not support surface modes [54]. Also, it is
worth noticing that the surface modes of the finite structure
are almost the same as the surface modes of the semi-infinite
structure. The latter are given by [54] kd1 = π/2, 3π/2, . . .

(i.e., f = 49 and 147 MHz). For both structures, one can
notice that the DOS is different from τT [Figs. 10(d) and
10(e)] and τR [Figs. 10(j) and 10(k)] because of the existence
of negative delta peaks induced by the terms AN and A2

N − B2
N
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

FIG. 10. Same as in Figs. 5 and 6 but for transmission (left panel) and reflection (right panel) coefficients of the vertical structure depicted
in Fig. 1(d) with N = 4 cells. It is worth noticing that (d) and (f) (left) and (j) and (l) (right) are not plotted with the same scale.

[Eqs. (31) and (32)], respectively. Let us mention here also
that the above analytical demonstrations suppose that AN and
BN [Eqs. (3a) and (3b)] are real quantities which is the case
for lossless media. However, we have checked numerically
(see Fig. 15 in Appendix I) that even in presence of loss the
real part of AN and A2

N − B2
N still vanish at the frequencies of

the eigenmodes of the finite system, which do not affect the
frequency positions of the peaks in the delay times, whereas
the imaginary part of AN and A2

N − B2
N slightly increases when

increasing loss. This quantity is responsible of the broadening
of the delta peaks in the delay time. These results clearly show
that even in presence of loss, the frequency positions of the
eigenmodes of the finite system are almost unaffected, while
the broadening of these resonances in the delay time enables
to detect easily these modes. This is the case for the modes
in Figs. 10(d) and 10(j). The behavior of the reflection delay
time versus the frequency in absence of dissipation is plotted
in Fig. 10(l). We can see clearly that, apart the true delta

peaks indicated by vertical bars, the reflection delay time is
equivalent to the transmission delay time [Fig. 10(f)] and to
the DOS [Fig. 10(k)].

V. CONCLUSION

In this paper, we have presented a comparative study of
DOS and scattering parameters (argument and modulus of the
scattering matrix S) for a finite 1D coaxial photonic crystal
made of N cells attached either horizontally or vertically
along a waveguide (Fig. 1). For both structures, we have
demonstrated analytically that for lossless systems, the DOS
is proportional to the derivative of the argument of det(S), the
so-called Friedel phase [17]. This proportionality remain valid
with a good approximation for relatively low loss systems,
which enables us to extract experimentally the DOS and there-
fore the dispersion curves. Also, the absorption coefficient can
be extracted from the modulus of det(S). However, for high
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FIG. 11. Square modulus of the electric field (in arbitrary units)
as function of the space positions x(m) along the finite structure
depicted in Fig. 1(c) for the two surface modes at f1 = 47.68 MHz
(a) and f2 = 143.67 MHz (b) labeled 1 and 2 in Fig. 10(a).

loss systems, these relations are no longer valid. Nevertheless,
we have shown that the transmission delay time for the hor-
izontal structure describes very well the DOS even for high
loss systems. In addition, we have shown that the reflection
delay time is different from the DOS because of the negative
delta peaks due to reflection zeros. These results complete
our previous theoretical predictions, where we have shown
that the reflection and transmission delay times for a lossless
symmetric superlattice are equivalent, and are directly propor-
tional the DOS [45]. Indeed, we have shown analytically that,
apart from the negative delta peaks that may exist in the delay
times, the transmission and reflection delay times are equiva-
lent and proportional to the DOS. In presence of loss, the delta
peaks in the delay times become broadened which enables
their easy observation in experiments. Therefore, the reflec-
tion delay time shows different behaviors versus the frequency
for the horizontal structure can become different from the
DOS. In addition, for the vertical structure, we have demon-
strated that the negative delta peaks associated to the transmis-
sion coefficient give the eigenmodes of the system with H = 0
boundary condition on one side and E = 0 on the other side.
However, the negative delta peaks associated to the reflection
coefficient give the eigenmodes of the finite structure with
H = 0 boundary condition on both sides. H and E being
the magnetic and electric fields, respectively. The analytical
results are obtained within the framework of the Green’s func-
tion method [5,53], and the experiments are carried out using
coaxial cables in the radio-frequency regime. All the above
results show that both (horizontal and vertical) structures give
almost similar results about the DOS of the system for loss-
less media, however the vertical structure exhibits additional
informations as it enables to extract also the confined and
surface modes of the photonic crystal with different bound-
ary conditions on its extremities. The results presented here
for the photonic crystal are valid for any photonic structure

characterized by two network ports, all we need consists in
changing the elements of the Green’s function in Eq. (2) by
the appropriate values of a given photonic system. Also, these
results can be transposed straightforwardly to acoustic waves
in slender tubes [65], mesoscopic quantum waveguides [66],
and spin waves in magnonic circuits [67] as the mathematical
equations governing all these excitations are isomorphic.
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APPENDIX A: GREEN’S FUNCTION APPROACH

The calculation method used in this work is the interface
response theory of continuous media [5,53], which allows us
to calculate the Green’s function of any composite material.
The knowledge of the Green’s function enables us to deduce
the different properties of the system such as the dispersion
relation, transmission and reflection coefficients as well as
density of states (DOS). The Green’s function of any com-
posite system can be deduced from the juxtaposition of the
Green’s function of the elementary constituents of the system.
In what follows, we give the basic concept and the fundamen-
tal equations of this method.

Let us consider any composite material contained in its
space of definition D and formed out of N different homo-
geneous pieces located in their domains Di. Each piece is
bounded by an interface Mi, adjacent in general to j (1 �
j � J ) other pieces through subinterface domains Mi j . The
ensemble of all these interface spaces Mi will be called the
interface space M of the composite material. The elements of
the Green’s function g(DD) of any composite material can be
obtained from [68]

g(DD) = G(DD) − G(DM )G−1(MM )G(MD)

+G(DM )G−1(MM )g(MM )G−1(MM )G(MD),

(A1)

where G(DD) is the reference Green’s function formed out
of truncated pieces in Di of the bulk Green’s functions of the
infinite continuous media and g(MM ), the interface element
of the Green’s function of the composite system.

The knowledge of the inverse of g(MM ) is sufficient to
calculate the interface states of a composite system through
the relation [68]

det[g−1(MM )] = 0. (A2)

Moreover if U (D) represents an eigenvector of the ref-
erence system, Eq. (A1) enables the calculation of the
eigenvectors u(D) of the composite material as

u(D) = U (D) + G(DM )

× [G−1(MM )g(MM )G−1(MM ) − G−1(MM )]U (M ),
(A3)

In Eq. (A3), U (D), U (M ), and u(D) are row vectors. Equa-
tion (A3) provides a description of all the waves reflected
and transmitted by the interfaces, as well as the reflection
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FIG. 12. (a) The infinite periodic structure made of a wire of
length d1 and a loop formed out by two wires, each of length d2,
d = d1 + d2 is the period of the structure. (b) The finite periodic
structure containing N cells with loop termination on both sides.
(c) The finite periodic structure inserted between two semi-infinite
wires.

and transmission coefficients of the composite system. In this
case, U (D) is a bulk wave launched in one homogeneous piece
of the composite material [69].

The periodic structure is made of N cells, each cell is
composed of a wire of length d1 and a loop formed out by
two wires, each of length d2, d = d1 + d2 is the period of
the photonic crystal. In what follows, we give the detailed
analytical calculation of the Green’s functions of the infinite,
semi-infinite and finite wires which represent the elementary
constituents of any photonic crystal under study (Fig. 12).

We consider an infinite homogeneous isotropic dielectric
wire characterized by its characteristic impedance Z . In the
limit where the widths of the wires are much smaller than
their lengths, the telegrapher’s equation describing microwave
networks, the so-called TEM waves, is given by

[
∂2

∂x2
+ k2

]
E (x) = 0, (A4)

where

k = ω

c

√
ε(ω). (A5)

k is the wave number, which is directed along the direction of
the wire, ω the angular frequency of the wave, c the speed of
light in vacuum, ε(ω) the relative permittivity, and j = √−1.
The Green’s function between any two points x and x′ of the
infinite wire is defined by

F

[
∂2

∂x2
+ k2

]
G(x, x′) = δ(x − x′), (A6)

where

F = ω

Z
. (A7)

The solution of Eq. (A6) is given by [70]

G(x, x′) = − j
e− jk|x−x′ |

2F
, (A8)

The inverse of the Green’s function in the interface space
M = {−d1

2 , +d1
2 } of a wire of length d1 is given by a (2 × 2)

matrix under the following form [70]:

g−1
1 (M, M ) =

(a b
b a

)
, (A9)

where a = − jF C1
S1

, b = jF 1
S1

, C1 = cos(kd1), and S1 =
jsin(kd1).

Similarly, the inverse of the Green’s function of a symmet-
ric loop formed out by two finite wires of length d2 in the
interface space M = {−d2

2 , +d2
2 } is given by

g−1
2 (M, M ) =

(A B
B A

)
, (A10)

where A = − j2F C2
S2

, B = j2F 1
S2

, C2 = cos(kd2), and S2 =
jsin(kd2). One can see that the symmetric loop is equivalent
to a wire of length d2 and impedance Z/2.

Also, we shall need the inverse Green’s function of the
semi-infinite wires characterized by the impedance Z at the
extremities of the finite system [Fig. 12(c)], namely,

g−1
s (1, 1) = g−1

s (2, 2) = − jF (A11)

where F = ω
Z .

1. Green’s function and dispersion relation of an infinite photonic crystal

The Green’s function of the infinite structure [Fig. 12(a)] is obtained by a linear superposition of the (2 × 2) matrices
[Eqs. (A9) and (A10)] at different interfaces leading to an infinite tridiagonal matrix,

g−1(M, M ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

b A + a B
B A + a b

b A + a B
. . .

. . .
. . .

. . . A + a B
B A + a b

b A + a B
B A + a b

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A12)
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After a Fourier transform of the above tridiagonal matrix within one unit cell defined in the space Mc =
{(n, i = 1, −d1

2 ), (n, i = 1, +d1
2 )}, one obtains [71]

g−1
c (kB, McMc) =

( a + A b + B exp(− jkBd )
b + B exp( jkBd ) a + A

)
. (A13)

Here, kB is the Bloch wave number of the infinite periodic structure (note that kB is real inside the pass bands and complex inside
the gaps of the infinite system). From the previous matrix, one can deduce the dispersion relation of the infinite photonic crystal
[Fig. 12(a)] from the equation det(g−1

c (kB, MM )) = 0 [Eq. (A13)], namely,

cos(kBd ) = cos(kd1) cos(kd2) − 5
4 sin(kd1) sin(kd2). (A14)

It is also straightforward to Fourier analyze back into real space all the elements of gc(kB, MM ) and obtain the interface elements
of g in the following form [71]:

g(n, 1,+d1/2; n′, 1,+d1/2) = g(n, 1,−d1/2; n′, 1,−d1/2) = − (A + a)

Bb

t |n−n′ |+1

t2 − 1
, (A15a)

g(n, 1,−d1/2; n′, 1,+d1/2) = t |n−n′ |+1

B(t2 − 1)
+ t |n−n′−1|+1

b(t2 − 1)
, (A15b)

g(n, 1,+d1/2; n′, 1,−d1/2) = t |n−n′ |+1

B(t2 − 1)
+ t |n−n′+1|+1

b(t2 − 1)
, (A15c)

where the integers n and n′ refer to the cell number −∞ � n, n′ � +∞, and the parameter t represents e jkBd and is defined by

t = η +
√

η2 − 1 if η < −1, (A16a)

t = η + j
√

1 − η2 if |η| � 1, (A16b)

t = η −
√

η2 − 1 if η > 1, (A16c)

where η = cos(kBd ).

2. Green’s function and eigenmodes of a finite photonic crystal

The finite structure containing N equidistant loops [Fig. 12(b)] is cut out from the infinite periodic structure [Fig. 12(a)] and
this piece is subsequently connected at its extremities M0 = {(n = 1, i = 1, +d1

2 ), (n = N + 1, i = 1, −d1
2 )} to two semi-infinite

wires [Fig. 12(c)]. The finite system in Fig. 12(b) can be subtracted from the infinite system by eliminating the segments lying in
the space of interface Ms = {(n = 1, i = 1, −d1

2 ), (n = 1, i = 1, +d1
2 ), (n = N + 1, i = 1, −d1

2 ), (n = N + 1, i = 1, +d1
2 )}. There-

fore, one obtains an infinite tridiagonal matrix g−1
d (M, M ) defined in the interface domain of all the sites n (−∞ � n � +∞)

and composed of three decoupled submatrices associated with two semi-infinite systems and a finite system as follows:

g−1
d (M, M ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .

b A + a B
B A 0

0 A B
. . .

. . .
. . .

. . . A + a B
B A 0

0 A B
B A + a b

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A17)

This matrix is similar to the one associated to the infinite photonic crystal. Only the elements associated to the interface space
Ms are different. The cleavage operator [5], which enables to cut the finite system [Fig. 12(b)] from the infinite one [Fig. 12(a)],
is therefore, a (4 × 4) matrix in the interface space Ms and can be obtained from the following expression:

V (Ms, Ms) = g−1
d (M, M ) − g−1(M, M ) =

⎛
⎜⎝

−a −b 0 0
−b −a 0 0
0 0 −a −b
0 0 −b −a

⎞
⎟⎠, (A18)
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where a and b are given by Eq. (A9). The Green’s function in the interface space Ms of the infinite periodic structure can be
obtained from Eq. (A15) as follows:

g(Ms, Ms) = t

t2 − 1

⎛
⎜⎜⎜⎝

−A+a
Bb

b+Bt
Bb −A+a

Bb tN b+Bt
Bb tN

b+Bt
Bb −A+a

Bb
b+Bt

Bb tN−1 −A+a
Bb tN

−A+a
Bb tN b+Bt

Bb tN−1 −A+a
Bb

b+Bt
Bb

b+Bt
Bb tN −A+a

Bb tN b+Bt
Bb −A+a

Bb

⎞
⎟⎟⎟⎠. (A19)

The knowledge of the cleavage operator [Eq. (A18)] and the
Green’s function g(Ms, Ms) [Eq. (A19)] allows us to deduce
the operator �(Ms, Ms) as follows:

�(Ms, Ms) = I (Ms, Ms) + V (Ms, Ms)g(Ms, Ms). (A20)

In order to calculate the Green’s function on both ends of
the finite structure illustrated in Fig. 12(b), we only need
the truncated matrix �(M0, M0) in the interface space M0 =
{(n = 1, i = 1, +d1

2 ), (n = N + 1, i = 1, −d1
2 )},

�(M0, M0) =
(

1 − t
t2−1

Y1
Bb − tN

t2−1
Y2
Bb

− tN

t2−1
Y2
Bb 1 − t

t2−1
Y1
Bb

)
, (A21)

where

Y1 = b2 − a2 − aA + Bbt and Y2 = aB − Abt . (A22)

The inverse Green’s function g−1
0 (M0, M0) in the inter-

face space M0 of the finite periodic structure illustrated in
Fig. 12(b) is given by

g−1
0 (M0, M0) = �(M0, M0)g−1(M0, M0), (A23)

where g−1(M0, M0) is obtained by inverting the truncated
Green’s function in the interface space M0, namely,

g(M0, M0) = t

t2 − 1

( −A+a
Bb

b+Bt
Bb tN−1

b+Bt
Bb tN−1 −A+a

Bb

)
. (A24)

From Eqs. (A21), (A23), and (A24), we obtain

g−1
0 (M0, M0) =

(AN BN

BN AN

)
, (A25)

where

AN = Y1

(A + a)�

[
� − Bb

(
t − 1

t

)
Y1

]
, (A26a)

BN = Bb
(

t − 1

t

) Y1Y2

(A + a)�
t (N−1), (A26b)

and

� = Y 2
1 − Y 2

2 t2(N−1). (A26c)

The eigenmodes of the photonic crystal with H = 0 bound-
ary conditions on both sides [Fig. 1(a)] are given by

det
[
g−1

0 (M, M )
] = A2

N − B2
N = 0. (A27)

Similarly, we can show that the eigenmodes of the finite
photonic crystal with E = 0 boundary conditions on both
sides are given by

� = [Y1 − Y2t (N−1)][Y1 + Y2t (N−1)] = 0. (A28)

Finally, the eigenmodes of the finite structure with E = 0
boundary condition on its bottom side and H = 0 on its top
side [Fig. 1(c)] are given by

AN = 0. (A29)

APPENDIX B: EXPERIMENTAL SETUP

The experimental setup used in this study consists of stan-
dard coaxial cables RG-58/U of different lengths with the
same characteristic impedances Z = 50 �. The segments of
coaxial cables were connected by standard BNC T connec-
tors. The cables were filled with polyethylene (ε′ = 2.3),
corresponding to a nominal propagation speed of 0.66c. The
boundary conditions at the surfaces of the finite 1D photonic
crystal [Figs. 1(a) and 1(c)] can be either E = 0 (i.e., electric
wall) or H = 0 (i.e., magnetic wall). The attenuation in the
coaxial cables was simulated by introducing a complex dielec-
tric permittivity ε = ε′ + jε′′. The attenuation coefficient α′′

can be expressed as α′′ = ε′′ω/c
√

ε′. On the other hand, the
attenuation specification data supplied by the manufacturer of
the coaxial cables based on energy decreasing of the waves
along the cables in the frequency range of 10–200 MHz,
can be approximately fitted with the expression ln(α′′) = γ +
βln(ω), where γ and β are two constants. From this fitting
procedure, a useful expression for ε′′ as a function of fre-
quency can be obtained under the form ε′′ = ( f

f0
)−0.5, where

the frequency f is expressed in Hz and f0 = 9200 Hz. The
scattering matrix S of the 1D photonic crystal was measured
in the frequency range 1–200 MHz by means of a broadband
vector network analyzer (VNA) Agilent PNA-X N5242A. The
VNA allows accurate forward and reverse measurements on
the device under test, which are needed to characterize all
the four S parameters. The resolution of amplitude and phase
measurement is around 0.5 mV and 0.01◦, respectively using
an intermediate frequency filter bandwidth of 1 KHz (IF). The
dynamic range is around 100 dB. The noise of the VNA at
GHz frequency is two small (0.01 mV rms) and is drastically
reduced by the IF filter. The measured S parameters are accu-
rate and reliable and the error is less than 0.2%.

APPENDIX C: TRANSMISSION AND REFLECTION
COEFFICIENTS FOR LOSSLESS SYSTEMS

The Green’s function method allows us to calculate the
reflection and transmission coefficients through the finite size
photonic crystal. The inverse of the Green’s function of the
final structure in the interface space M = {1, 2} [Fig. 12(c)]
can be obtained from Eqs. (A11) and (A25), namely,

g−1
h (M, M ) =

(AN − jF BN

BN AN − jF

)
. (C1)
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The Green’s function enables us to determine the transmis-
sion and reflection coefficients through the finite structure.
These latter quantities are obtained by inverting the above
matrix in Eq. (C1), namely,

gh(M, M ) = det[gh(M, M )]
(AN − jF −BN

−BN AN − jF

)
, (C2)

where

det[gh(M, M )] = 1

A2
N − B2

N − F 2 − 2 jFAN
. (C3)

Let us consider an incident wave U (x) = e− jkx launched from
the left side of the finite structure [Fig. 1(b)]. With the help of
Eq. (A3), one can find the transmitted wave

uT (x) = G(x, 1)G−1(1, 1)gh(1, 2)G−1(2, 2) = the− jkx,

(C4)

where th is the transmission coefficient. Labels 1 and 2 in the
Green’s functions mean the space of interfaces related to the
entrance and the exit of the system. From Eqs. (A8), (C2), and
(C4) one can deduce,

th = −2 jFgh(1, 2), (C5)

where

gh(1, 2) = −BN det[gh(M, M )]. (C6)

By the same way, the reflected wave is given by

uR(x) = G(x, 1){G−1(1, 1)gh(1, 1)G−1(1, 1) − G−1(1, 1)}
= rhe jkx, (C7)

where rh is the reflection coefficient. From Eqs. (A8), (C2),
and (C7) one can deduce

rh = −1 − 2 jFgh(1, 1). (C8)

By replacing gh(1, 1) = (AN − jF )det[gh(M, M )] by its ex-
pression using Eq. (C3) and from Eq. (C8), one obtains the
reflection coefficient in an explicit form

rh = −CN det[gh(M, M )], (C9)

where CN is given by

CN = A2
N − B2

N + F 2

= j2
(
A2

1 − B2
1 + F 2

)(
Y 2

1 − Y 2
2

)
tN−2 sin(NkBd ). (C10)

Equations (C5) and (C8) are equivalent to the well-known
Fisher-Lee relation [2,72] relating the Green’s function and
the scattering matrix elements.

It is worth mentioning that in lossless sytem, AN and BN

[Eqs. (A26a) and (A26b)] are real quantities. Therefore, from
the expressions of th [Eq. (10a)] and rh [Eq. (10b)] (Sec. III A),
one can deduce easily the transmission and reflection rates,
respectively,

Th = |th|2 = (2FBN )2(
A2

N − B2
N − F 2

)2 + (2FAN )2

= (2FBN )2(
A2

N − B2
N + F 2

)2 + (2FBN )2
, (C11)

Rh = |rh|2 = C2
N(

A2
N − B2

N − F 2
)2 + (2FAN )2

=
(
A2

N − B2
N + F 2

)2

(
A2

N − B2
N + F 2

)2 + (2FBN )2
. (C12)

From Eqs. (C11) and (C12), we can show that in absence of
loss, Th and Rh verify the conservation energy Th + Rh = 1.

By the same way, from Eqs. (28a) and (28b) (Sec. IV A),
one can determine the transmission and reflection rates for the
vertical system, respectively,

Tv = |tv|2 = (2FAN )2(
A2

N − B2
N

)2 + (2FAN )2
, (C13)

Rv = |rv|2 =
(
A2

N − B2
N

)2

(
A2

N − B2
N

)2 + (2FAN )2
. (C14)

From Eqs. (C13) and (C14), it is clear that Tv and Rv verify
the conservation energy Tv + Rv = 1.

APPENDIX D: Arg[det(Sh)] AND Arg[det(Sv )] FOR
LOSSLESS SYSTEMS

For lossless systems, the determinant of the scattering ma-
trix Sh [Eq. (16)] for the horizontal system (Sec. III A) can
be derived from the expressions of th and rh [Eqs. (10a) and
(10b)] as follows:

det(Sh) = r2
h − t2

h = {
C2

N + (2FBN )2
}{det[gh(M, M )]}2,

(D1)

where the expression of det[gh(M, M )] is given by Eq. (C3).
From Eq. (D1) and after some algebraic calculation, one can
find that

det(Sh) = [(AN − BN )2 + (F )2][(AN + BN )2

+ (F )2]{det[gh(M, M )]}2. (D2)

Equation (D2) clearly shows that the argument of the first
term in Eq. (D2) vanishes, and therefore,

Arg[det(Sh)] = 2Arg{det[gh(M, M )]}. (D3)

By the same way, for the vertical system (Sec. IV), the
determinant of the scattering matrix Sv can be deduced from
the expressions of tv and rv [Eqs. (28a) and (28b)] such as

det(Sv ) = r2
v − t2

v = {(
B2

N − A2
N

)2

+ (2FAN )2}{det[gv (M, M )]}2, (D4)

where the expression of det[gv (M, M )] is given by Eq. (29) in
Sec. IV A.

From Eq. (D4) and after some algebraic calculation, one
can find that

det(Sv ) = {
A2

N − B2
N + 2 jF

}{det[gv (M, M )]}. (D5)

The first term in Eq. (D5) is the complex conjugate of
det[g−1

v (M, M )], and therefore,

Arg[det(Sv )] = 2Arg{det[gv (M, M )]}. (D6)
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APPENDIX E: |det(Sh)| = Th + Rh = 1 FOR LOSSLESS SYSTEMS

In what follows we shall check the well known property of det(S), namely |det(Sh)| = Th + Rh = 1. From Eq. (D1), we can
deduce for lossless systems the modulus of det(Sh) as follows:

|det(Sh)| = C2
N + (2FBN )2√[(

A2
N − B2

N − F 2
)2 − (2FAN )2

]2 + [
4FAN

(
A2

N − B2
N − F 2

)]2
. (E1)

By developing Eq. (E1), we find

|det(Sh)| = C2
N + (2FBN )2(

A2
N − B2

N − F 2
)2 + (2FAN )2

. (E2)

From Eqs. (C11), (C12), and (D1), we can deduce that |det(Sh)| = Th + Rh = 1. Similarly, from Eqs. (28a), (28b), and (D4), one
can demonstrate that |det(Sv )| = Tv + Rv = 1.

It should be pointed out that for low loss media, the absorption can be extracted from the modulus of the determinant of
the scattering matrix through the relation Ah,v � 1 − |det(Sh,v )|, where the subscripts h and v refer to the horizontal or vertical
structure respectively.

APPENDIX F: THE TOTAL DENSITY OF STATES DOS

The total DOS of the system is obtained by integrating over x and summing on n and i the local density n(ω2; n, i, x). For
the horizontal system [Fig. 12(b)], the finite structure is placed between two semi-infinite wires. The expression of DOS can be
written as the sum of three contributions [60],

�nT (ω2) = n1(ω2) + 2n2(ω2) + 2�ns(ω
2), (F1)

where n1(ω2) and n2(ω2) are the contributions of wires 1 and 2 of the photonic crystal, respectively, and �ns(ω2) comes from
the two semi-infinite waveguides surrounding the photonic crystal. The explicit expressions of the three quantities in Eq. (F1)
are given by [60]

n1(ω2) = −ε

π
Im

t

F (t2 − 1)

(
t (1 − t2(N−1))

(t2 − 1)

Y

�−
{−3

2
d1S2 + 4S1

F
Y a

1

}
+ (N − 1)�+

�−
{−3S1S2

F
+ 2d1Y

a
1

})
, (F2)

n2(ω2) = −ε

π
Im

t

F (t2 − 1)

(
(1 − t2N )

(t2 − 1)

Y

�−
{3

4
d2S1 + S2

F
Y a

2

}
+ N�+

�−
{3

4

S1S2

F
+ d2Y

a
2

})
, (F3)

and

�ns(ω
2) = −ε

π
Im

1

2F

{
1

2F
+ 1

F

[
1

�−

(
t2 − 1

t
+ Y b

1

)
(2C2S1 + C1S2) − t2(N−1)Y b

2 (2S1 + S2t )

]}
, (F4)

where

Y =
(

t2 − 1

t
+ Y s

1

)
Y b

2 +
(

t2 − 1

t
+ Y b

1

)
Y s

2 , (F5)

�± =
(

t2 − 1

t
+ Y s

1

)(
t2 − 1

t
+ Y b

1

)
± t2NY s

2 Y b
2 , (F6)

and the quantities Y a
1 , Y a

2 , Y b
1 , Y b

2 , Y s
1 , and Y s

2 are given by the following expressions:

Y a
1 = C2S1 + 5

4
C1S2, (F7)

Y a
2 = C1S2 + 5

4
C2S1, (F8)

Y b
1 = Y s

1 − (C1S2 + 2C2S1), (F9)

Y b
2 = Y s

2 − (2S1 + S2t ), (F10)

Y s
1 = C1C2 + 2S1S2 − t, (F11)

and

Y s
2 = C1 − C2t . (F12)
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FIG. 13. [(a)–(e)] Theoretical comparison of 1
2

d
dω

Arg[det(Sh )] and DOS for different values of loss. [(f)–(j)] Theoretical comparison of
Ah = 1 − Rh − Th and 1 − |det(Sh )| for different values of loss. (b) and (g) correspond to the coaxial cable case.

For the vertical system [Fig. 1(d)], the finite structure is grafted vertically along a waveguide. The total DOS can be obtained
by the following expression [60]:

�nv (ω2) = n1(ω2) + 2n2(ω2) + 2�n′
s(ω

2), (F13)

where

�n′
s(ω

2) = −ε

π
Im

1

4F

{
1

4F
+ 1

F

[
1

W

(
t2 − 1

t
+ Y s

1

)
(2C2S1 + C1S2) − t2(N−1)Y s

2 (2S1 + S2t )

]}
(F14)

and

W =
(

t2 − 1

t
+ Y s

1

)2

− (
tNY s

2

)2
. (F15)
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 14. (a) Reflection amplitude through the finite size system of Fig. 1(b) for different values of loss. [(b)–(f)] Reflection delay time for
different values of loss. (e) corresponds to the coaxial cable case.

APPENDIX G: COMPARISON BETWEEN DOS AND
1
2

d
dω

Arg[(det(Sh)] AS WELL AS Ah = 1 − Rh − Th AND
1 − |(det(Sh)| IN PRESENCE OF LOSS

The effect of loss on the relation between DOS and
1
2

d
dω

Arg[(det(Sh)] as well as the relation between the ab-
sorption and |(det(Sh)| can be also studied by varying the
imaginary part of the permittivity ε′′. Figures 13(a)–13(e) give
a theoretical comparison between DOS and 1

2
d

dω
Arg[(det(Sh)]

for N = 6 and different values of ε′′. For lower values of
ε′′, we see that the DOS is approximately equivalent to the
derivative of the phase of det(Sh) [Fig. 13(a)]. Also, we can
notice that the DOS remains almost the same as the derivative
of the phase of det(Sh) inside the bands with a noticeable
discrepancy between the two spectra at the bulk band edges
[Figs. 13(b) and 13(c)]. However, for high values of ε′′, the
DOS and the derivative of the phase of det(Sh) exhibit dif-
ferent behaviors especially at the band edges where the latter

changes sign [Figs. 13(d) and 13(e)]. Indeed, we have checked
that det(Sh) vanishes at these frequencies (i.e., r = ±t) and
changes sign, giving rise to an abrupt phase change of π in
the argument of det(Sh) and therefore a negative delta peak in
the derivative of the phase of det(Sh). Figures 13(f)–13(j) give
a theoretical comparison between the absorption Ah = 1 −
Rh − Th and 1 − |(det(Sh)| for different values of ε′′. We can
see a discrepancy between the two latter quantities as far as ε′′
increases. In particular, at the band edges when det(Sh) almost
vanishes, the absorption becomes simply Ah = 1 − 2Rh (as
Rh = Th), whereas 1 − |(det(Sh)| becomes almost unity.

APPENDIX H: COMPARISON BETWEEN DOS AND
DELAY TIME IN PRESENCE OF LOSS

In order to show the effect of loss on the relation between
the DOS and the reflection delay time in presence of reflection
zeros, we have plotted in Fig. 14, the theoretical reflection
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FIG. 15. (a) Variation of AN as function of frequency for lossless system. Red circles indicate the frequencies for which AN = 0. (b) Real
and imaginary parts of AN around the frequencies associated to the mode labeled 1 in (a). [(c)–(f)] Theoretical transmission delay times for
different loss strength. [(g) and (h)] Same as (a), (b) but for A2

N − B2
N . [(i)–(l)] Same as (c)–(f) but for the reflection delay time.
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coefficient and the corresponding delay times for different val-
ues of loss. The blue curves [Fig. 14(e)] correspond to the case
of coaxial cables. As mentioned above, for lossless systems
the reflection zeros [Fig. 14(a)] give rise to true delta peaks
in the delay time indicated by vertical red lines in Fig. 14(b).
In this case, apart the delta functions (impossible to observe
experimentally) the delay time [black curve in Fig. 14(b)]
is equivalent to DOS. For small loss [Fig. 14(c)], the delay
spectra still show the shape of the DOS as the negative peaks
are now slightly enlarged. For high loss [Figs. 14(d)–14(f)],
the delay spectra are quite different from DOS. Similar results
are obtained for transmission spectra when the latter present
transmission zeros.

APPENDIX I: BEHAVIOR OF AN AND A2
N − B2

N IN
PRESENCE OF LOSS

In absence of loss, all the parameters [AN (3a), BN (3b),
and A2

N − B2
N (6)] are real quantities, however if loss is taken

into account, they become complex. We shall detail below the
behaviors of these terms and their meanings with and without
loss. In absence of loss, AN = 0 gives the eigenmodes of the
system with H = 0 boundary condition in one side and E = 0
in the other side [Fig. 1(c)]. These modes are indicated by
red circles in Fig. 15(a) where AN vanishes. In presence of
loss, the parameter AN becomes complex. We have presented
in Fig. 15(b) its real and imaginary parts around the frequency
f = 6.66 MHz associated to the mode labeled 1 in Fig. 15(a).

We can see that when increasing loss, the real part of AN

remains almost zero, whereas its imaginary part increases
slightly. The real part of AN , responsible of the position of the
negative delta peaks (Lorentzians) in Figs. 15(c)–15(f), makes
the latter falling at almost the same frequency. However, the
imaginary part of AN , responsible of the width of negative
delta peaks in Figs. 15(c)–15(f), makes the latter larger when
loss increases.

Similarly, for lossless system the parameter A2
N − B2

N = 0
[Eq. (A27)] gives the eigenmodes of the finite photonic crystal
with magnetic wall (H = 0) on both sides. Figure 15(g) gives
a plot of A2

N − B2
N versus the frequency. The red circles on

the abscissa axis give the frequencies of the eigenmodes
of such system. These modes coincide with the reflection
zeros [see Eq. (28b) and Fig. 10(h)] giving rise to negative
delta delay times [Fig. 10(j)]. For a lossy system, A2

N − B2
N

becomes a complex. We have presented in Fig. 15(h) its real
and imaginary parts around the frequency f = 24.62 MHz
associated to the mode labeled 2 in Fig. 15(g). The real
part of A2

N − B2
N changes very slightly from zero, which

does not affect the position of the enlarged negative delta
peaks (Lorentzians) in Figs. 15(i)–15(l) below. However, the
imaginary part of A2

N − B2
N , affects considerably the width of

negative delta peaks in Figs. 15(i)–15(l). These results clearly
show that even in presence of loss, the frequency positions
of the eigenmodes of the finite system are almost unaffected,
while the width of these resonances in the delay time enables
to detect easily these modes.
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