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Kinetic approach to nuclear-spin polaron formation
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Under optical cooling of nuclei, a strongly correlated nuclear-spin polaron state can form in semiconductor
nanostructures with localized charge carriers due to the strong hyperfine interaction of the localized electron spin
with the surrounding nuclear spins. Here we develop a kinetic-equation formalism describing the nuclear-spin
polaron formation. We present a derivation of the kinetic equations for an electron-nuclear spin system coupled
to reservoirs of different electron and nuclear spin temperatures which generate the exact thermodynamic steady
state for equal temperatures independent of the system size. We illustrate our approach using the analytical
solution of the central spin model in the limit of an Ising form of the hyperfine coupling. For homogeneous
hyperfine coupling constants, i.e., the box model, the model is reduced to an analytically solvable form. Based
on the analysis of the nuclear-spin distribution function and the electron-nuclear spin correlators, we derive a
relation between the electron and nuclear spin temperatures, where the correlated nuclear-spin polaron state
is formed. In the limit of large nuclear baths, this temperature line coincides with the critical temperature of
the mean-field theory for polaron formation. The criteria of the polaron formation in a finite-size system are
discussed. We demonstrate that the system’s behavior at the transition temperature does not depend on details of
the hyperfine-coupling distribution function but only on the effective number of coupled bath spins. In addition,
the kinetic equations enable the analysis of the temporal formation of the nuclear-polaron state, where we find
the build-up process predominated by the nuclear spin-flip dynamics.
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I. INTRODUCTION

Intertwined dynamics of electron and nuclear spins in
semiconductor quantum dots attracts increasing interest
nowadays [1,2]. The hyperfine coupling of electron and nu-
clear spins limits the spin coherence time of the localized
charge carriers [3,4], provides the dynamical polarization of
nuclear spins [5–9], and is responsible for the manifesta-
tions of the nuclear spins in optical response of nanosystems
[10–12]. Polarized nuclei provide a substantial effective mag-
netic field acting on the electron spin which amounts to several
Tesla in GaAs [2,13–15]. Also, the nuclear spin system is
rather weakly coupled to the environment and nuclear spin
polarization can be preserved for hours [13,16]. It opens
up prospects of using the nuclear spins in semiconductor
nanosystems for various spintronics applications.

If the hyperfine interaction is sufficiently strong, it could
result in the correlated state of the electron and nuclear spins.
Such a state, where the electron and nuclear spins are ar-
ranged to minimize the total hyperfine-coupling energy, is
termed nuclear polaron. The nuclear-polaron state is predicted
to form under the conditions of the optical orientation in
semiconductors [17]. Within a quasiequilibrium mean field
approach well developed also for bound polarons in diluted
magnetic semiconductors [17–21] the electron and nuclear
spin systems can be characterized by effective temperatures

*These authors contributed equally to this work.

Te and Tn, respectively [22,23], the latter can be positive or
negative depending on the conditions of the dynamical nu-
clear polarization [5,13]. The notion of two different effective
spin temperatures [17,24] assigned to weakly coupled subsys-
tems emerges from a steady-state non equilibrium situation
characterized by the dynamic distribution functions that have
maintained their thermodynamic form.

If the nuclear spin temperature, Tn, is sufficiently low, the
nuclear spins align in accordance with the fluctuating electron
spin, and, in turn, support the electron spin polarization. The
mean-field approach immediately gives an estimate for the
critical nuclear spin temperature for the polaron formation
[2,17,24]

Tn,c ∼ a2

kBTe

∑
k

|ψ (rk )|4, (1)

where a is the hyperfine-coupling constant and ψ (rk ) is the
electron wave function at the position of a nucleus k. At
typical parameters of GaAs-based systems, Tn,c can be esti-
mated as 10−7–10−6 K depending on the electron localization
volume and the electron temperature Te ∼ 1 K.

Clearly, such low effective nuclear spin temperatures can-
not be achieved by conventional cooling but rely on optical
cooling protocols and the very weak interaction of the nuclear
subsystem with its environment [13,16]. The experimental
efforts of cooling down the nuclear spin system with the
aim to observe the nuclear-spin polaron are ongoing [23,25].
At the same time, the theory of the nuclear-spin polaron in
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semiconductor nanosystems is highly demanded: the nuclear
spin fluctuations beyond the mean-field theory have been ac-
counted for recently [24].

Here we propose a kinetic model of the nuclear-spin po-
laron formation in nanosystems with localized charge carriers:
donor-bound electrons and electrons in quantum dots. Our
calculations are based on the exact solution of the model
hyperfine-interaction Hamiltonian for which we derive and
solve the kinetic equation for the system’s distribution func-
tion. The results demonstrate a good agreement with the
mean-field theory of the transition temperature. Moreover,
our approach correctly reproduces the fully equilibrium sit-
uation where the electron and nuclear spin temperatures are
the same: The polaron formation is described by a smooth
crossover rather than by a critical phase transition. We discuss
the criteria of the polaron formation, consider the influence of
the hyperfine-coupling constant distribution, and address the
kinetics of the nuclear-spin polaron formation.

The paper is organized as follows. In Sec. II, we derive
the kinetic equations by taking into account thermal reser-
voirs for the electron and the nuclear spins and establishing
the corresponding spin-flip rates. We start with a general
electron-nuclear spin system coupled by hyperfine interaction
in Sec. II A and specify the rate equations for our model
Hamiltonian in Sec. II B which allows for the analytical
considerations in Sec. II C. Section III contains the results
obtained by our approach. We present steady-state spin ex-
pectation values in Sec. III A and compare them to mean-field
calculations in Sec. III B. In Sec. III C a criterion for the
polaron formation is established. The spin system with a
distribution of hyperfine coupling constants is examined in
Sec. III D. Finally, we provide results for the temporal evolu-
tion of the polaron in Sec. III E. A conclusion of our findings
is given in Sec. IV.

II. MODEL

A. General analysis

We consider an electron spin S in a bath of nuclear spins
with the hyperfine-coupling Hamiltonian in the form [1,2]

Hh f =
N∑

k=1

∑
αβ

Ak,αβ Iα
k Sβ. (2)

Here, the individual nuclear spins are labeled Ik with index
k ∈ {1, . . . , N}, which enumerates the N nuclei within the
charge carrier localization volume, α and β ∈ {x, y, z} are the
Cartesian indices, and Ak,αβ is the hyperfine-interaction pa-
rameter of the k-th nucleus with the electron. In this definition
of the interaction constants, Ak,αβ incorporates the electron
wave function at the position of the nucleus k. Equation (2)
is written in the general form and accounts for the possi-
ble anisotropy of the hyperfine interaction. It includes the
isotropic limit where Ak,αβ ∝ δαβ with δαβ being the Kro-
necker δ-symbol typical for the conduction band electrons
in III-V and II-VI semiconductors, as well as the Ising limit
where Ak,αβ ∝ δα,zδβ,z relevant for the valence band heavy
holes in the same material systems [2]. It can also account
for more involved situations like in two-dimensional transition
metal dichalcogenides [26].

In addition to the hyperfine interaction described by Hamil-
tonian (2), electron and nuclear spins are subject to randomly
fluctuating effective magnetic fields related to interactions of
the spin system with its environment and also to the dipole-
dipole interactions between the nuclei [2]. Corresponding
interactions can be represented as perturbations acting on the
nuclear spins

Vn = b0

∑
k,α

bα
k Iα

k (3a)

and the electron spin

Ve = B0

∑
α

BαSα, (3b)

respectively. Here, b0 and B0 are dimensional constants
describing the strength of the perturbations, while the dimen-
sionless operators bα

k and Bα describe the effective magnetic
fields acting on the corresponding spin. We assume that these
operators obey standard spin-commutation relations[

bα
k , bβ

k′
] = iδkk′εαβγ bγ

k , (4a)

[Bα, Bβ] = iεαβγ Bγ , (4b)[
bα

k , Bβ
] = 0 (4c)

with εαβγ being the Levy-Civita symbol. The operators cor-
responding to the fields acting on different nuclei as well
as the fields acting on the electron and nuclei commute. In
our approach, we ignore the specific physical nature of the
fields. We, however, assume that the effect of those “agents”
producing the fields, i.e., neighboring nuclei in the case of the
dipole-dipole interaction, or lattice phonons (via the spin-orbit
coupling) can be described by the temperature Tn in the case
of the agents acting on the nuclei and the temperature Te for
agents acting on the electron.

Let |m〉 be the eigenfunctions of the Hamiltonian (2) and
Em be its eigenenergies where m ∈ {1, . . . , D} and the Hilbert
space dimension D = (2S + 1)(2I + 1)N for spin lengths S
and I . We introduce fm, the distribution function of the cou-
pled electron-nuclear spin system, as the diagonal part of
the full density matrix �mm′ , i.e., fm = �mm. Under standard
assumptions of weak perturbations Vn, Ve the kinetic equation
for fm as a function of time reads [27]

∂ fm

∂t
=

∑
m′

(Wmm′ fm′ − Wm′m fm). (5)

Here, Wmm′ is the transition rate from the state |m′〉 to the state
|m〉 due to the action of the fluctuating fields bk , B. It can be
expressed via Fermi’s golden rule as the sum

Wmm′ = Wn,mm′ + We,mm′ (6)

with the contributions

Wi,mm′ =
∑
ri ,r

′
i


ε=−
E

2π

Zi
exp

(
− εr′

i

kBTi

)
|〈ri|〈m|Vi|m′〉|r′

i〉|2 (7)

due to the perturbations Vi, where i ∈ {n, e} distinguishes the
nuclear/electronic reservoir, εri is the energy of the reservoir
eigenstate |ri〉, 
ε = εri − εr′

i
and 
E = Em − Em′ denote

the energy differences, and Zi is the partition function of
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the corresponding reservoir. Interference contributions of the
perturbations Ve and Vn are absent due to the commutation
relations (4c). In this approach, the nuclear spin diffusion and
non-Markovian dynamics of the system are neglected.

The fact, that we describe the agents by their respective
temperatures, makes it possible to relate the partial rates of
the direct m′ → m and the reverse m → m′ processes:

Wn,mm′

Wn,m′m
= exp

(
Em′ − Em

kBTn

)
, (8a)

We,mm′

We,m′m
= exp

(
Em′ − Em

kBTe

)
. (8b)

If the electron and nuclear temperatures were the same,
Tn = Te ≡ T , the total transition rates Wmm′ and Wm′m obey the
same relation as Eq. (8) and the system in the steady state is
described by the thermal distribution function:

fm = Z−1 exp

(
− Em

kBT

)
, (9)

regardless of the particular values of the transition rates, where
Z is the partition function of the system.

B. Simplified model

While for a small number of nuclei the hyperfine Hamil-
tonian Hh f can be diagonalized numerically for arbitrary
coupling constants [28–30], it is instructive to consider a sim-
plified model where the eigenstates can be found analytically.
To that end, we focus on the particular Hamiltonian

H =
N∑

k=1

AkIz
k Sz (10)

which is a special case of the Hamiltonian (2) with Ak,αβ =
Akδα,zδβ,z and takes into account the Ising-like hyperfine in-
teraction with the main axis being z. The Hamiltonian (10)
fulfills the commutator relation [H, Sz] = [H, Iz

k ] = 0, which
yields the energy eigenstates in the form of direct products
|Sz〉|{Iz

k }〉. Note that a possible physical realization of Hamil-
tonian (10) can be heavy-hole spins in III-V or II-VI quantum
dots [2]. The extension of the results to the general form
of the hyperfine interaction will be given elsewhere. Also,
for the sake of simplicity, we set the spin length 1/2 for all
spins in the system. This assumption is exact for an electron
spin, as well as for a bound hole state in a quantum dot
when the S = 3/2 spin multiplet is reduced to a Kramers
degenerate pair due to symmetry reduction. For the nuclear
spins, the approximation of spin 1/2 is justifiable based on
the large number of spins constituting the nuclear spin bath.
The hyperfine-coupling constants Ak determine a character-
istic energy scale by the dephasing rate of the electron spin

in the nuclear spin bath ωh =
√∑

k A2
k which is typically in

the order of 1 ns−1 for QD systems [31] and can be up to
two orders of magnitude smaller for donor-bound electrons
[32,33].

By coupling the electron-nuclear spin system with Ising-
type hyperfine interaction, Eq. (10), to two thermal reservoirs,
the general kinetic equation (5) for the distribution function

f ({Iz
k }, Sz ) reduces to

∂ f
({

Iz
k

}
, Sz

)
∂t

= f
({Iz

k

}
,−Sz

)
We

({
Iz
k

}
,−Sz

)
− f

({
Iz
k

}
, Sz

)
We

({
Iz
k

}
, Sz

)
+

∑
k′

[
f
({Iz

1, . . . ,−Iz
k′ , . . . , Iz

N }, Sz
)

× Wk′
( − Iz

k′ , Sz
)

− f
({

Iz
k

}
, Sz

)
Wk′

(
Iz
k′ , Sz

)]
. (11)

Due to the spin and energy exchange with two separate reser-
voirs, electron and nuclear spin flips occur independently
with the rates We (electron) and Wk′ (nuclei). In the frame-
work of Hamiltonian (10) specifying the energy E ({Iz

k }, Sz ) =
Sz

∑
k AkIz

k , the electron spin-flip rate Eq. (7) becomes

We
({

Iz
k

}
, Sz

)
W (0)

e

=
{

1, E ({Iz
k }, Sz ) > 0,

exp (−βe|
∑

k AkIz
k |), else,

(12)

where the flip rate for the transition to an energetically lower
state is W (0)

e , βe = 1/kBTe is the inverse electron spin temper-
ature. The flip process to a state of higher energy is suppressed
exponentially with respect to W (0)

e where a large inverse elec-
tron temperature or a large energy difference by the spin flip
act as factors decreasing the flip probability in accordance
with Eqs. (8). Analogously, we establish the rate for flipping
the nuclear spin k′ as a result of coupling to the reservoir of
inverse temperature βn= 1/kBTn

Wk′ (Iz
k′ , Sz )

W (0)
n

=
{

1, Ak′ Iz
k′Sz > 0,

exp (−βn|Ak′Sz|), else,
(13)

with flip rate W (0)
n for a downward transition in energy. The

physical origin of the flip processes and the details of the en-
vironment, that affect the rates via Eq. (7), remain unspecified
and are aggregated in the parameters W (0)

e and W (0)
n . Although

W (0)
e and W (0)

n do not enter the ratio of upward/downward
transition, they determine the relaxation timescale of the
system.

C. Analytical consideration

Aiming for an analytical expression for the steady-state
solution of the kinetic equations we apply the box model in
the following, i.e., we put Ak = A0 for all nuclei k. The box
model entails degeneracy of all states |{Iz

k }〉 with the same total
nuclear spin Iz = ∑

k Iz
k and thus allows for the introduction

of a distribution function g(Iz, Sz ) that does not depend on the
individual nuclear spins but on the total nuclear spin Iz only.
As a result the set of kinetic equations for g(Iz, Sz ) strongly
simplifies

∂g(Iz, Sz )

∂t
= We(Iz,−Sz ) g(Iz,−Sz )

− We(Iz, Sz ) g(Iz, Sz )

+
∑
j=±1

W ( j)
n (Iz − j, Sz ) g(Iz − j, Sz )

−
∑
j=±1

W ( j)
n (Iz, Sz ) g(Iz, Sz ), (14)
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and becomes analytically solvable. The spin-flip rates for the
box model read

We(Iz, Sz )

W (0)
e

=
{1, A0SzIz > 0,

exp (−βeA0|Iz|), else, (15a)

W (±1)
n (Iz, Sz )

W (0)
n

= N∓(Iz ) ×
{

1, ∓A0Sz > 0,

exp
(− βnA0

2

)
, else,

(15b)

where we distinguish between a nuclear spin flipping up (+1)
and a nuclear spin flipping down (−1) and absorb the number
N−(+)(Iz ) of nuclear spins in spin down (up) state into the
nuclear spin-flip rate.

Furthermore we can exploit the fact that typically the elec-
tron spin-flip rate is much larger than the nuclear spin-flip
rate, W (0)

e � W (0)
n , due to the much stronger electron-lattice

coupling [2]. Considering the nuclear spins as frozen on the
timescale of electron spin flips, the instantaneous steady-state
occupation of electron spin states for a fixed nuclear spin state
is given by the Boltzmann distribution

g(Iz,↑)

g(Iz,↓)
= exp (−βeA0Iz ). (16)

Subsequently the distribution of nuclear spin states can be
calculated rigorously by condensing

g(Iz,↑) + g(Iz,↓) = g(Iz ), (17)

and inserting the expressions of spin-flip rates, Eqs. (15), in
the kinetic equation Eq. (14), with the result

∂g(Iz )

∂t
=

∑
j=±1

( j)(Iz − j)g(Iz − j) − ( j)(Iz )g(Iz ). (18)

Here we introduced the effective nuclear spin-flip rates
(±)(Iz ). These nuclear spin-flip rates are combined into the
expression

(±1)(Iz )

W (0)
n

= N∓(Iz )
cosh(βeA0Iz/2 ± βnA0/4)

cosh(βeA0Iz/2) exp(βnA0/4)
(19)

that contains all contributions according to Eq. (15b) for either
a nuclear spin flipping up, (+1), or down, (−1). Note that in
the kinetic equation for g(Iz ) the contributions of g(Iz,↑) and
g(Iz,↓) to the electron spin-flips following Eq. (14) exactly
cancel each other. Therefore, only the nuclear spin-flip terms
remain in Eq. (18).

The steady-state solution, ∂t g(Iz ) = 0, is determined from
the detailed balance condition

g(Iz )(+1)(Iz ) = g(Iz + 1)(−1)(Iz + 1), (20)

for the exchange between neighboring nuclear spin states Iz

and Iz + 1 leading to the ratio

g(Iz + 1)

g(Iz )
= N/2 − Iz

N/2 + Iz + 1
× cosh (βeA0(Iz + 1)/2)

cosh (βeA0Iz/2)

× cosh (βnA0/4 + βeA0Iz/2)

cosh (βnA0/4 − βeA0(Iz + 1)/2)
, (21)

with the normalization condition
∑

Iz g(Iz ) = 1 and Iz =
−N/2, . . . , N/2. As a result, we obtain the steady-state dis-
tribution function g(Iz, Sz ) and calculate the observables, see
Sec. III for results.

FIG. 1. (a) Electron-nuclear spin correlator, (b) average abso-
lute value of the nuclear spin polarization, (c) fluctuations of the
correlator, and (d) fluctuations of the absolute value of the nuclear
polarization (N = 105). The white solid line in panel (a) corresponds
to the mean-field critical temperature, Eq. (27). The red dotted line
marks the transition to the polaron formation, Eq. (30).

III. RESULTS

A. Numerical results

The approach via kinetic equations, as described in
Sec. II C, enables us to calculate temperature-dependent spin
expectation values and study the formation of a nuclear po-
laron at sufficiently low temperatures. The expectation value
of a general observable O can be represented as

〈O〉 =
∑

Sz

∑
{Iz

k }

〈
Sz,

{
Iz
k

}∣∣O∣∣Sz,
{
Iz
k

}〉
f
({

Iz
k

}
, Sz

)
. (22)

in the steady state. Within the box model Eq. (22) simplifies
to a sum over the total spin Iz.

One particularly important quantity to reveal the spin ori-
entation in the system and reflect the polaron formation is the
electron-nuclear spin correlator 〈SzIz〉, see Fig. 1(a). While for
high spin temperatures the z components of the electron spin
and the total nuclear spin are uncorrelated (〈SzIz〉 = 0), the
electron and nuclear spins align oppositely (at A0 > 0) when
the system is cooled down. For temperatures low enough, the
electron-nuclear spin correlator normalized by the number of
nuclear spins finally reaches its maximum absolute value of
one quarter. Note that in Fig. 1, we use inverse temperatures,
βe and βn, on a logarithmic scale for illustrative purposes. The
dependence of 〈SzIz〉/N on electron and nuclear spin temper-
atures, however, is asymmetric. For βn � βe, the crossover
from a disordered state of the system to a polaron state is very
rapid but it turns smooth when βn and βe become comparable
in magnitude.

A quantity behaving similar to the electron-nuclear spin
correlator is the expectation value of the absolute value of
the total nuclear spin z polarization 〈|Iz|〉, see Fig. 1(b). We
introduce 〈|Iz|〉 = ∑

Iz |Iz|g(Iz ) as the absolute value of Iz

weighted by the nuclear distribution function g(Iz ) following
Eq. (22). The average absolute value of Iz, 〈|Iz|〉, can also
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FIG. 2. (a) Electron-nuclear spin correlator, (b) average abso-
lute value of the nuclear spin polarization, (c) fluctuations of the
correlator, and (d) fluctuations of the absolute value of the nuclear
polarization for a fixed electron temperature (βeωh = 0.05, N =
105). Solid dark blue lines present results for the kinetic equations.
The mean-field results, Eqs. (26), are added as dotted orange lines.
The red dotted vertical lines indicate the transition temperature for
the polaron formation, Eq. (30).

be interpreted as the nuclear spin polarization 〈Iz〉+ of the
symmetry broken distribution function

g(+)(Iz ) = θ (Iz )[g(Iz ) + g(−Iz )], (23)

and is usually used to study the polarization of a finite system,
where a spontanious symmetry breaking is naturally absent
(〈Iz〉 = 0) [24,34,35]. While 〈SzIz〉 and 〈|Iz|〉 appear similar at
first glance, their quantitative behavior differs. By displaying
the quantities as a function of the inverse nuclear spin tem-
perature for a fixed electron spin temperature, this difference
becomes visible [see Figs. 2(a) and 2(b)]. When the polaron
formation sets in, the correlator shows a nearly linear growth
[see inset, Fig. 2(a)]. In contrast the absolute value of the
total nuclear spin-z component displays a square-root like
behavior [see inset, Fig. 2(b)]. This behavior of 〈SzIz〉 and
〈|Iz|〉 can also be extracted from mean-field calculations [17]
(see Sec. III B).

The difference of the quantities 〈SzIz〉 and 〈|Iz|〉 transfers
to their fluctuations

σ 2
c = 〈(SzIz )2〉 − 〈SzIz〉2

, (24)

σ 2
n = 〈(Iz )2〉 − 〈|Iz|〉2

, (25)

see Figs. 1(c), 1(d) 2(c), and 2(d). The fluctuations of 〈SzIz〉,
depicted in Fig. 1(c), exhibit a rather broad peak in the temper-
ature range where the correlation between electron and nuclei

grows. For 〈|Iz|〉, the fluctuations display a sharp peak, when
polaron formation sets in. In the (βe, βn) plane, this peak of
σ 2

n clearly indicates a line separating the disordered state of
the system from the polaron state. For interpretation of these
fluctuations we refer to the case of a single temperature. Here
the average 〈SzIz〉 is proportional to the energy of the system.
Thus, in thermal equilibrium the fluctuations of the electron-
nuclear spin correlator define, up to a temperature-dependent
prefactor, the heat capacity of the system. Analogously, the
fluctuations of 〈|Iz|〉 can be connected to an effective finite-
system susceptibility introduced in Refs. [34,35]. Note that,
while the fluctuations of 〈Iz〉 are proportional to the “true”
nuclear spin susceptibility, the fluctuations of 〈|Iz|〉 are pro-
portional to the susceptibility corresponding to the symmetry
“broken” distribution function g(+)(Iz ). According to the Lan-
dau theory of phase transitions, at the critical temperature
the heat capacity would display a steplike behavior and the
susceptibility a divergence [36]. Since we consider a finite
system here, we do not have a phase transition, and thus do not
observe this clear-cut behavior; rather we observe a relatively
sharp cross-over as expected from the general theory [34].

B. Mean-field approach

It is instructive to compare the results obtained above
with the basic mean-field approach [17]. As a basis for the
comparison, we briefly recap the mean-field calculation here.
Electron and nuclear spin expectation value are determined by
the mean nuclear/electron polarization, respectively,

〈Sz〉 = −1

2
tanh

(βeA0〈Iz〉
2

)
, (26a)

〈Iz〉 = −N

2
tanh

(βnA0〈Sz〉
2

)
, (26b)

where the effective electron and nuclear spin temperature
differ. Inserting one into the other yields a self-consistent
equation that provides a nontrivial solution (〈Sz〉 �= 0) for a
specific range of the electron and nuclear temperatures. The
mean-field approach predicts the nuclear-polaron formation
once the product of the temperatures of both subsystems is
below a critical constant

TeTn � NA2
0

16k2
B

, (27)

in agreement with the estimate given in the introduction,
Eq. (1). For comparison with the kinetic approach, this critical
line of temperatures is added in Fig. 1(a) as a white line. The
“critical” behavior of the electron and nuclear spin polariza-
tions in the vicinity of the critical temperature is predicted by
the mean-field model as

〈|Sz|〉, 〈|Iz|〉 ∝
√

βeβn − 16

NA2
0

, (28)

while their values in the whole range of temperatures can be
determined by numerical solution of Eqs. (26).

We present the functional dependency of the expectation
values 〈SzIz〉 and 〈|Iz|〉 and their fluctuations on the inverse
temperature βn of the nuclear spin subsystem for a fixed
electron spin temperature of βeωh = 0.05 in Fig. 2. Overall,
the mean-field expectation values (orange dotted lines) are
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FIG. 3. Probability distribution g(Iz ) of total nuclear spin Iz in
steady state (N = 105, βeωh = 0.05). The upper panel displays the
βn driven transition from one maximum (at Iz = 0) to two maxima
that move further apart when the system is cooled down. The lower
panel presents g(Iz ) for βnωh = 10 (dark blue) and 3000 (orange) as
an example.

congruent with the kinetic results, though the kinetic results
are smoothed at the edge due to thermal fluctuations in the
finite system in the vicinity of the critical mean-field tempera-
ture. Therefore, the mean-field expectation values according
to Eq. (28) allow analytical understanding of the differing
temperature dependencies of 〈SzIz〉 and 〈|Iz|〉 observed in
Fig. 2.

C. Criterion for the polaron formation

Although Figs. 1 and 2 provide visual indicators for the de-
velopment of an antiparallel electron-nuclear spin orientation
in a cooled system, we aim for an analytic criterion where the
formation of a nuclear polaron sets in. In case of a disordered
spin system, the nuclear distribution function g(Iz ) exhibits a
single maximum at Iz = 0, see Fig. 3. In contrast, when the
nuclear-polaron formation starts g(Iz ) develops a minimum at
Iz = 0 with two maxima Iz �= 0 placed symmetrically around
it. With decreasing the nuclear spin temperature these two
maxima are spaced further apart until finally the maximum
alignment of nuclear spins is reached.

The transition point to the polaron formation for a fixed
electronic temperature can be naturally related to the nuclear
spin temperature at which the two peaks in the distribution
function are starting to be formed. We use the ratio g(1)/g(0)
(for even N) as a rigorous mathematical criterion for the
formation of a polaron state and define the crossover line via

g(1)

g(0)
= 1 (29)

since the splitting of the peak requires g(1)/g(0) � 1. Using
the analytical result of Eq. (21) yields the implicit condition

1 = N

N + 2

cosh (βnA0/4) cosh (βeA0/2)

cosh (βnA0/4 − βeA0/2)
(30)

for the transition line to the polaron formation. We added this
line to all panels of Fig. 1 as a red dotted line. It coincides
with the maxima of the fluctuations σ 2

n as shown in Fig. 1(d).
We supplemented the location of the nuclear transition

temperature as vertical red dotted lines to all panels of Fig. 2
for a fixed electron spin temperature. For 〈SzIz〉 and 〈|Iz|〉 the
transition temperature indicates where the expectation values
start to increase substantially. This behavior can be directly
related to the emergence of peaks in g(Iz ) at Iz �= 0.

In the limit of small inverse electron temperatures, βeA0 �
1, we can rewrite Eq. (30) to the explicit expression

βn = 4

A0
artanh

(
4

(2 + N )βeA0

)
. (31)

This asymptotics matches the results of Eq. (30) within the
numerical uncertainty for the chosen set of parameters. Note
that the artanh(x) diverges for |x| = 1 defining a lower bound
for βe for a transition to occur: βe > 4/(2 + N )A0.

Generally, the temperature course of the transition to a
polaron state can be understood in the following way: For
a higher electron spin temperature the nuclear spins have to
be cooled down further in order to achieve a polaron state.
When the electron spin temperature exceeds the upper bound
(2 + N )A0/4kB, however, a polaron cannot form even for
minimum nuclear spin temperature due to fluctuations of the
electron spin. The latter effect is absent in the mean-field
approach which causes a divergence of the transition line and
the mean-field critical temperature, white line in Fig. 1(a). It
is noteworthy that for a sufficiently large number of nuclear
spins (or low electron spin temperatures) where

N � (βeA0)−1,

the condition Eq. (31) crosses over to the mean-field critical
temperature in Eq. (27).

D. Role of the distribution of hyperfine-coupling constants

Since in a real quantum dot or donor-bound electron sys-
tem the hyperfine-coupling constants are determined by the
electron wave function at the position of the nuclei, we lift
the restriction to a fixed hyperfine-coupling constant A0 in
the following and take into account a realistic distribution
of Ak . To this end, we assume the electron envelope wave
function ψ (�r) ∝ exp [−rm/(2Lm

0 )] with a characteristic size
of the quantum dot L0. We use the wave function in this form
to calculate the distribution function for hyperfine-coupling
constants following Ref. [37]

p(Ak ) = d

m

Ld
0

AkRd

[
ln

(Amax

Ak

)]d/m−1

(32)

where d is the dimension of the quantum dot (e.g., d = 2
corresponds to a flat dot and d = 3 to a spherically symmetric
one). The parameters Amax and R are needed to regularize
the distribution function: Amax is the largest coupling con-
stant in the center of the quantum dot and the cutoff radius
R determines the smallest coupling constant and regularizes
the distribution p(Ak ). Under the relevant assumptions of a
Gaussian wave function and a flat dot, m = 2 and d = 2,
the distribution function becomes p(Ak ) ∝ 1/Ak . In our cal-
culations, we set the cutoff R = 2.5L0 and adjust Amax to
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FIG. 4. Polaron formation in a system (N = 105) with realistic
hyperfine-coupling constants, see Eq. (32). (a) Electron-nuclear spin
correlator, and (b) fluctuations of the absolute value of the nuclear
spin polarization as a function of βe and βn. The red dotted line
indicates the transition temperature, Eq. (30), adjusted with Neff . The
white dotted line presents the transition line with N . (c) Correlator for
a fixed electron temperature (βeωh = 0.1). The black dashed/dash-
dotted lines correspond to the approximation in Eq. (34).

provide the dephasing rate ωh. Figure 4 displays the steady-
state results of the kinetic equations, Eq. (11), in a system
(N = 105) with Ak distributed accordingly. To gain these data,
we employed a Monte Carlo simulation implementing spin
flips according to the flip rates in Eqs. (12) and (13), and set
W (0)

e /W (0)
n = 105.

We observe that the polaron formation is shifted to lower
temperatures in comparison to the box model, i.e., the anti-
correlation between electron and nuclei, see Fig. 4(a), builds
at larger βe and βn. Note that the presented temperature range
is expanded compared to Fig. 1 in order to include the area
with maximum correlator. The shift to lower temperatures is
reflected in the temperature line indicated by the fluctuations
of 〈|Iz|〉 as well, see Fig. 4(b). We find that the initial transition
line of the box model, added as a white dotted line to the
Figs. 4(a) and 4(b), does not match the maxima line of σ 2

n .
The cutoff radius R in Eq. (32) is arbitrary and can be send

to infinity in a real system while keeping Amax fixed. That
implies that the theory would include many nuclear spins that
do not couple to the electron spin in the relevant energy or time
window while in the box model all nuclear spins contribute
equally to the dynamics. In order to quantify this effect and
relate general results to the box model, we define an effective
number of nuclear spins Neff relevant for the dynamics [38,39]

Neff

N
= 〈Ak〉2〈

A2
k

〉 (33)

by taking into account the first two moments of the dis-
tribution function p(Ak ). While the box model yields N =
Neff , we obtain Neff/N ≈ 0.32 for the distribution function in
Eq. (32). Entering this effective bath size into Eq. (30) yields
a corrected transition line (red dotted line) which coincides

with the peak of σ 2
n . Hence, for the shape of the transition

line, the effect of distributed coupling constants is reflected
by the effective bath size Neff whereas the explicit distribution
function p(Ak ) plays a minor role.

Apart from the transition line, the distributed Ak effect
the system’s behavior below the transition temperature. Fig-
ure 4(c) presents the electron-nuclear spin correlation as a
function of the inverse nuclear temperature for a fixed electron
spin temperature, βeωh = 0.1. The green line was obtained
for the hyperfine-coupling distribution p(Ak ), and the box-
model result is depicted as an orange line. Compared to the
box-model calculation, the maximum anticorrelation (i.e., the
maximum absolute value of 〈SzIz〉/N of minus one quarter)
is reached for much lower nuclear temperatures. Analytically
we can shed some light into this behavior at low temperatures
by the assumption of a frozen electron spin, since the electron
spin flips are suppressed due to the high energy difference by
a flip for strong Overhauser fields. For a frozen electron spin,
the system factorizes, and the correlator

〈SzIz〉 ≈ −
∑

k

tanh (Akβn/4)/4 (34)

is given by the contributions of the individual nuclei. This
approximation is added to Fig. 4(c) for the box model (black
dashed line) and the distribution in Eq. (32) (black dash-dotted
line). While this approximation fails close to the transition
temperature, where the assumption of a frozen electron spin
does not hold and the physics is dominated by quantum fluc-
tuations, it precisely predicts the correlation at low nuclear
temperatures. Hence, the distribution function p(Ak ) governs
the slope of the anticorrelation function when cooling the
nuclear spin system while the effective number of nuclear
spins Neff determines the transition point.

E. Kinetics of the nuclear-polaron formation

In addition to the properties of the steady-state distribution
function, our model also allows to investigate their temporal
evolution and address the kinetics of the polaron-state forma-
tion. For this purpose we fix the temperatures in the polaron
regime and consider the time evolution determined by the
kinetic equations, Eq. (11). Knowing that a distribution of
hyperfine-coupling constants can be mapped to the box model
by Neff , we return to fixed coupling constants Ak = A0 in
this section when solving the coupled differential equations
(14) with finite flip rates, W (0)

n and W (0)
e . Including N = 105

nuclear spins, we use the time evolution of the distribution
function to calculate the nonequilibrium dynamics of the
correlation function 〈SzIz〉 for two different electron spin tem-
peratures and different ratios W (0)

e /W (0)
n . The time-dependent

expectation value is obtained from Eq. (22) assuming that
the off-diagonal contributions in the density operator can be
neglected. As initial condition for the electron-nuclear spin
system, we start with the completely disordered state, i.e.,
with an occupation of the spin states in the distribution func-
tion according to their degeneracy

g0(Iz, Sz ) = 2−N−1

(
N

N+(Iz )

)
, (35)

where N+(Iz ) = N/2 + Iz and
(a

b

)
is the binomial coefficient.
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FIG. 5. Formation of the nuclear polaron (N = 105, βnωh =
104) at different inverse electron temperatures, (a) βeωh = 5 and
(b) βeωh = 0.05. The time axis is scaled by the nuclear spin-flip rate
W (0)

n .

For temperatures well below the transition temperature,
βnωh = 104 and βeωh = 5, the correlation between electron
and nuclei evolves on a timescale determined by the nuclear
spin-flip rate, see Fig. 5(a). Introducing the dimensionless
time τ = W (0)

n t reveals that the evolution of 〈SzIz〉 does not
depend on the electron flip rate at low temperatures. The
evolution for various ratios W (0)

e /W (0)
n follows a universal

function independent of whether the electron or the nuclear
spin flips occur with a faster rate. This universal function
is given by 〈SzIz〉/N = −(1 − exp(−τ ))/4 (indicated by the
gray line) where only W (0)

n enters via τ .
This independence on the electron spin-flip rate W (0)

e
indicates that the Overhauser field polarization suppresses
electron spin-flip processes. While a single nuclear spin flip
only involves a small change in the total energy of the coupled
system, the electron spin flip induces a large energy change
that is exponentially suppressed as stated in Eq. (12). The
state of maximum anticorrelation can be reached without any
electron spin flip while at least half of the nuclear spins have
to flip starting from the disordered state. As a consequence
the timescale, on which 〈SzIz〉 builds up, is solely given by
the nuclear flip rate W (0)

n .
Increasing the electron spin temperature, βeωh = 0.05, see

Fig. 5(b), the time evolution of 〈SzIz〉 changes. While at the
end still the maximum anticorrelation is reached, the buildup
differs from a purely exponential growth since the electron
flip rate gains influence according to Eq. (12). For a fast
electron flip rate, the electron spin flips disturb the formation
of the polaron state. Reorientation of the electron when the
nuclear spins have started to align according to the momen-
tarily electron state hinders the polaron formation. Thus the
polaron forms more slowly in comparison to lower tempera-
tures. After some time, these random electron spin flips are
suppressed as the nuclear spins have managed to build an
Overhauser field strong enough to prevent electron spin flips.
Then, again, the further evolution of the polaron state depends
on the nuclear spin-flip rate. The effect of electron spin flips is

especially strong for large W (0)
e , however, when the electron

already follows the nuclear spins almost instantaneously a
further increase of W (0)

e does not alter the dynamics much
anymore. In the opposite case, where the electron spin-flip
rate is comparable to the nuclear rate or slower, we recover
the exponential behavior depending on W (0)

n .

IV. CONCLUSION

We derived a set of kinetic equations to describe the spin
dynamics and, particularly, the formation of a nuclear-polaron
state in an electron-nuclear spin system. Such a polaron state
may occur under optical cooling of the nuclear spin system
in semiconductors with localized charge carriers, such as bulk
materials with donor-bound electrons or quantum dot struc-
tures. Our theory incorporates the electron coupling to the
bath of nuclear spins within the central spin model, as well as
electron and nuclear spin flips due to the exchange with two
distinct reservoirs of temperatures Te and Tn. Phenomenolog-
ical temperature-dependent flip rates for electron and nuclear
spins are introduced. For the analytical and numerical study of
the spin system’s expectation values, we focused on a model
Hamiltonian for the hyperfine interaction which is of Ising-
type, however the generalization to the isotropic central spin
model would provide an advance towards real semiconductor
systems and remains a topic for future investigations.

The polaron formation as a function of the electron and
nuclear spin temperatures is studied by analyzing the electron-
nuclear spin correlation function and the nuclear distribution
function. We discuss the criteria of the polaron formation and
it turns out that a relatively sharp transition line can be de-
termined by the condition where the nuclear spin distribution
function demonstrates two peaks at Iz �= 0 instead of one at
Iz = 0. This temperature line translates to a pronounced peak
in the fluctuations of the absolute value of the total nuclear
spin and agrees with the mean-field critical temperature in a
wide range of parameters. Generally, due to the finite size of
the studied system, the nuclear-polaron formation is described
by a crossover rather than by a phase transition.

We also investigate the role of the distribution of the
hyperfine-coupling constants and show that it can be semi-
quantitatively taken into account by reducing the effective
number of nuclei interacting with the electron spin in the box
model.

Furthermore, the derived kinetic equations yield the tem-
poral evolution of the polaron state. We find that the polaron
formation is governed by spin flips in the nuclear spin bath. As
a result, the dynamics in the cooled system depends mostly on
the nuclear flip rate while the electron flip rate has less effect
on the timescale of the polaron formation. The developed
formalism allows one to address the fluctuations in the course
of polaron formation. The study of the temporal fluctuations
of the electron and nuclear spins and their cross-correlations
in the regime of nuclear-polaron formation is a task for future.
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