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Plasmons and magnetoplasmons in partially bounded two-layer electron systems
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We have analytically studied plasmons in an electron system comprising two spatially separated layers—an
infinite two-dimensional electron system (2DES) and a 2D strip. Our analysis reveals the existence of plasmon
modes that are localized near and propagate along the strip. These modes are characterized by the wave vector in
the direction of the strip, as well as the number of charge density nodes N across the strip. In the long-wavelength
limit, the fundamental mode N = 0 is found to have gapless linear dispersion. When the external perpendicular
magnetic field is applied, this mode remains gapless and exhibits peculiar magnetodispersion. We analyze the
correlation between our findings and the previously established results on plasmons in gated and partially gated
2DESs.
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I. INTRODUCTION

Plasma oscillations, or plasmons, have been studied ex-
tensively in 2DESs since the pioneering work [1] was first
reported over 50 years ago. Neglecting electromagnetic retar-
dation effects, plasmons in a 2DES embedded in a dielectric
medium with constant permittivity κ are described by the
gapless square-root dispersion law:

ωp(q) =
√

2πne2q

κm
, q =

√
q2

x + q2
y , (1)

where n is the 2D electron concentration, m is the electron ef-
fective mass, and q is the 2D wave vector of the plasmon. The
derivation of the dispersion relation (1) relies on the assump-
tion of infinite electron relaxation time and long-wavelength
limit, q � kF , where h̄kF is the Fermi momentum.

Considering an infinite metal gate placed near and parallel
to the 2DES, in the long-wavelength limit qh � 1, with h
being the distance between the gate and 2DES, the plasmon
frequency softens by a factor of

√
2hq leading to the linear

dispersion of so-called gated plasmons [2]:

ωg(q) = qVp, Vp =
√

4πne2h

mκ

, (2)

where Vp is the velocity of gated plasmons and κ is the dielec-
tric permittivity in the space between 2DES and the gate.

Initially observed in 2D systems of electrons on a liq-
uid helium surface [3] as well as in silicon inversion layers
[4–6], 2D plasmons continue to be actively investigated in
various 2D structures [7–22]. It should also be mentioned that
2D plasmons, especially in structures with metal gates, have
proven promising as detectors and emitters of radiation in the
terahertz range [23–32].

Recently, a new type of plasmons, referred to as near-gate
[33] or proximity [34] plasmons, was discovered in a system
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of an infinite 2DES with an ideal metal strip in its vicinity.
Unlike the gated plasmons, the fundamental mode of the near-
gate plasmon was found to have square-root dispersion, which
is defined in the long-wavelength limit as

ωng(qy) =
√

8πe2nh

mκ

|qy|
W

, (3)

where κ is the dielectric permittivity in the space between
the gate and 2DES, W is the width of the gate strip, and qy

is the plasmon wave vector along the strip. Such a surprising
spectrum results from substantial electrical currents flowing
outside the gated area of 2DES despite the fact that the charge
density of this mode is localized almost entirely under the
gate. This plasmon mode has been observed experimentally
in 2DESs based on GaAs/AlGaAs quantum wells with a
strip-shaped gate [34,35]. Near-gate plasmons have also been
studied theoretically [36] and experimentally [37] in systems
with a disk-shaped gate, showing good agreement between the
theory and experiment.

Given gated or ungated 2DES with imposed perpendicular
magnetic field B, the frequency of magnetoplasmons ωmp(B)
becomes

ωmp(B) =
√

ω2(B = 0) + ω2
c , (4)

where ω(B = 0) is the frequency of an ungated (1), gated (2),
or near-gate (3) plasmon in the absence of magnetic field, and
ωc = |e|B/(mc) is the electron cyclotron frequency in 2DES.

In this paper, we investigate near-gate plasmons under
more realistic conditions. While in the work [33], the con-
ductivity of the strip was assumed to be infinitely large (ideal
metal), our goal here is to take into account the finiteness, as
well as the frequency and magnetic field dependence of the
strip conductivity. In fact, we consider the case of a partially
bounded two-layer system, with the first layer—an infinite
2DES, and the second layer—an infinitely long strip of finite
width.
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Plasmons in double-layer systems with two infinite layers
have been well studied [38–48]. Such a system is known to
support optical and acoustic plasmon modes. As for the charge
carriers of the same sign, these two plasmon types correspond,
respectively, to the in-phase and out-of-phase oscillations of
the charges in the layers. It has also been established that the
optical mode has square-root dispersion ω ∝ √

q while the
acoustic plasmon mode has linear dispersion ω ∝ q and lower
frequency.

In the present work, we explore plasma excitations in a
partially bounded two-layer system, looking for plasmons that
are localized near and propagate along the strip. It should be
noted that here we consider only the acoustic plasmon mode,
corresponding to the near-gate plasmon in the limit of infinite
strip conductivity. The study of the optical plasmon mode is
beyond the scope of this paper. Nevertheless, in Sec. V, we
include some qualitative analysis addressing the subject.

Our investigation reveals that in the absence of the external
magnetic field, making the strip conductivity finite leads to
the softening of the square-root dispersion law of the funda-
mental near-gate plasmon mode (3), which becomes linear
in the long-wavelength limit. When the system is subject
to a perpendicular magnetic field, the fundamental plasmon
mode is preserved gapless, in contrast to the case of an ideal
metal strip [33], where it has a frequency gap at zero wave
vector (4).

II. ANALYTICAL APPROACH
AND PRINCIPAL EQUATIONS

In our analysis, we consider an infinite 2DES in the x-y
plane at z = 0 and a strip-shaped 2DES at z = h, infinite in
the y direction. The strip has a finite width W spanning the
interval [−W/2,W/2] in the x direction, as shown in Fig. 1.
The dielectric permittivity of the surrounding medium is κ.
The system is placed in a constant magnetic field B, directed
along the z axis. The dynamical conductivity tensors of the
infinite and strip-shaped 2DESs are given by σ1,i j (ω) and
σ2,i j (ω), accordingly.

To determine the plasmon spectra, we follow the same
approach used in [33]. We look for the solutions in the form
of waves, propagating along the strip, exp(iqyy − iωt ), and
consider the spectra in the long-wavelength limit |qy| � kF ,
neglecting a spatial dispersion in conductivity tensors and the
electromagnetic retardation effects.

Applying the Poisson equation together with the Ohm’s
law and continuity equation to the first layer, and then taking
the Fourier transform, we obtain

ϕ1(qx ) = 2π

κ

√
q2

y + q2
x

(
ρ1(qx ) + ρ2(qx )e−h

√
q2

y +q2
x
)
,

ϕ2(qx ) = 2π

κ

√
q2

y + q2
x

(
ρ1(qx )e−h

√
q2

y +q2
x + ρ2(qx )

)
,

iωρ1(qx ) = σ1,xx
(
q2

x + q2
y

)
ϕ1(qx ), (5)

where ϕ1(x) and ρ1(x) are the plasmon potential and charge
density in the first layer, ϕ2(x) and ρ2(x) are the potential
and charge density in the strip, with ρ2(x) equal zero outside

FIG. 1. The two-layer system under consideration: the first layer
is an infinite 2DES in the x-y plane; the second layer is a strip of
width W , infinite in the y direction. Dynamical conductivity tensors
of the first and second layers are σ̂1 and σ̂2, respectively.

the strip, and argument qx denoting the respective Fourier
transformation.

Eliminating ϕ1(qx ) and ρ1(qx ) in Eq. (5), and taking the
inverse Fourier transform yields

ϕ2(x) = 1

κ

∫ +∞

−∞

εgated(q, ω)

qε2D(q, ω)
ρ2(qx )eiqxxdqx, (6)

where q =
√

q2
x + q2

y , and

εgated(q, ω) = 1 − 2πσ1,xxq

iωκ

(1 − e−2hq ) (7)

is the effective dielectric permittivity of the infinite gated
2DES. Here, in the special case of zero magnetic field and
qh � 1, the condition εgated(q, ω) = 0 defines the spectrum
of gated plasmons (2). In (6), we also introduce the effective
dynamical dielectric permittivity of infinite 2DES:

ε2D(q, ω) = 1 − 2πσ1,xxq

iωκ

. (8)

We note that in the absence of magnetic field, the equation
ε2D(q, ω) = 0 defines an ordinary spectrum of 2D plasmons
(1).

To simplify the integral equation in (6) and to find its an-
alytical solution, we make two reasonable assumptions [33].
First, we assume the separation distance h between the 2DES
layers to be small compared with the strip width W and the
characteristic length of the plasmon charge inhomogeneity
q−1, such that qh � 1 and h/W � 1. Then, in Eq. (7) we can
make the following approximation:

εgated(q, ω) ≈ 1 − 4πσxxhq2

iωκ

. (9)

The second assumption is that in the expression for the
dynamical dielectric permittivity of 2DES (8), the second
term dominates, i.e., |2πσ1,xxqy/(iωκ)| � 1. Qualitatively,
this means that for the given 2DES, the frequency of the
plasmon under consideration ω is small enough to become a
major contributing factor in the dynamical dielectric permit-
tivity, as well as, for instance, in the system response to an
external alternating electric field. In the “clean” limit of the
Drude model for the conductivity tensor, when the electron
relaxation time tends to infinity (A1), this assumption can be
formulated through the following inequalities:

ω2 � ω2
c + ω2

p1(qy) at |ω| > |ωc|, (10)

and

ω2 � ω2
c − ω2

p1(qy) at |ω| < |ωc|. (11)
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Here, ωc = |e|B/(m1c), m1, and ωp1 designate, respectively,
the electron cyclotron frequency, effective electron mass, and
2D plasmon frequency (1) in the first layer. It should be noted
that condition (10) implies the frequency of the given plasmon
ω to be much lower than that of 2D magnetoplasmons (4)
excited in an infinite 2DES large distance away from the strip.

Based on the two assumptions above, we obtain the follow-
ing approximation related to Eq. (6):

εgated(q, ω)

qε2D(q, ω)
≈ 2h − iωκ

2πσ1,xxq2
. (12)

Using this simplification, we rewrite the integral equation
(6) as

ϕ2(x) = 4πh

κ

ρ2(x)

− iω

2σ1,xx|qy|
∫ W/2

−W/2
e−|qy||x−x′|ρ2(x′)dx′. (13)

To bring this equation into a more convenient form, we
can express ϕ2(x) in terms of ρ2(x). To do so, we determine
the relationship between ϕ2(x) and ρ2(x) from the material
equations for the strip. Thus, applying the Ohm’s law and the
continuity equation, we obtain

(
∂2

x − q2
y

)
ϕ2(x) = −iω

σ2,xx
ρ2(x). (14)

Next, we impose standard boundary conditions for the po-
tential ϕ2(x)—vanishing the normal component of the current
density j2(x) at the edges of the strip:

j2,x(±W/2) = −(σ2,xx∂x + σ2,xyiqy)ϕ2(x)|x=±W/2 = 0. (15)

Given Eq. (14) and the boundary conditions (15), ϕ2(x) can
be expressed in terms of ρ2(x) using Green’s function G(x, x′)
defined as (

∂2
x − q2

y

)
G(x, x′) = δ(x − x′), (16)

where G(x, x′) should satisfy the boundary conditions in (15).
We find G(x, x′) to be of the following form (see also

[49,50]):

G(x, x′) = −b exp(|qy|(x + x′)) + b−1 exp(−|qy|(x + x′))
4|qy| sinh(|qy|W )

+2 cosh(|qy|W − |qy||x − x′|)
4|qy| sinh(|qy|W )

, (17)

where parameter b is defined as

b = σ2,xx − iσ2,xysgn(qy)

σ2,xx + iσ2,xysgn(qy)
. (18)

Now we can rewrite the first term in (13) as

ϕ2(x) = −iω

σ2,xx

∫ W/2

−W/2
G(x, x′)ρ2(x′)dx′, (19)

where −W/2 � x � W/2.

Finally, substitution of (19) into (13) yields a single integral
equation for the charge density in the strip ρ2(x):

4πh

κ

ρ2(x) = iω

2σ1,xx|qy|
∫ W/2

−W/2
e−|qy||x−x′|ρ2(x′)dx′

+−iω

σ2,xx

∫ W/2

−W/2
G(x, x′)ρ2(x′)dx′. (20)

Since this integral equation has exponential kernels, it can be
reduced to a differential equation with some boundary condi-
tions [51]. Hence, we can reduce Eq. (20) to the differential
equation valid for −W/2 < x < W/2:(

∂2
x − q2

y + iωκ

4πh

(
1

σ1,xx
+ 1

σ2,xx

))
ρ2(x) = 0, (21)

with the boundary conditions at the strip edges defined as(
∂x + |qy|C±

D

)
ρ2(x)|x=±W/2 ∓ |qy|F

D
ρ2(∓W/2) = 0,

where C± = ±(1 − e−2|qy|W )σ−2
1,xx

+ (±2 − b + b−1)σ−1
1,xxσ

−1
2,xx + (b−1 − b)σ−2

2,xx,

D = (
σ−1

1,xx + σ−1
2,xx(1 + b)

)(
σ−1

1,xx + σ−1
2,xx(1 + b−1)

)
− σ−2

1,xxe−2|qy|W ,

F = 2e−|qy|W σ−1
1,xxσ

−1
2,xx, (22)

and the upper and lower signs correspond to the first and
second condition.

At this point, let us briefly analyze the asymptotics of the
resultant equation and boundary conditions. Formal substitu-
tion of the partial derivative ∂x in Eq. (21) by iqx yields the
dispersion equation for acoustic plasmons in an infinite two-
layer system [38,42,44]. In the limit of infinite conductivity
σ2,xx or σ1,xx, we obtain the expression describing gated plas-
mons [2] in the first or second infinite layer, accordingly. As
for the boundary conditions (22), in the limit of infinite strip
conductivity, σ̂2 → ∞, we have C±/D → ±1 and F/D → 0,
which leads to the previously derived boundary conditions for
the case of the ideal metal strip [33]. In the limit of σ̂1 → ∞,
we arrive at the case of the gated strip, where C±/D →
sgn(qy)σ2,xy/σ2,xx, F/D → 0, and the boundary conditions
at x = ±W/2 become (σ2,xx∂x + iqyσ2,xy)ρ2(x) = 0, which
corresponds to the normal component of the current density
vanishing at the boundary, j2,x(±W/2) = 0, since in the gated
system ρ2(x) ∝ ϕ2(x).

It should be mentioned that Eqs. (21) and (22) are derived
for an arbitrary 2D conductivity tensor. Further on in this
paper, we consider only the Drude model for the conductivity
tensor, assuming the electron relaxation time in 2DESs to be
infinite (A1).

In the following Secs. III and IV, we analyze given plas-
mon spectra obtained in the absence and in the presence of
the external magnetic field.

III. PLASMON SPECTRA WITH NO EXTERNAL
MAGNETIC FIELD

First, let us consider plasmons at zero magentic field. In
this case, σxx = σ , σxy = 0, and b = 1; see Eq. (18). Now, the

165306-3



A. A. ZABOLOTNYKH AND V. A. VOLKOV PHYSICAL REVIEW B 102, 165306 (2020)

solutions to Eqs. (21) and (22) have certain parity across the
strip, thus, requiring only one boundary condition:(

∂x + |qy|
(

1 + 2σ1

σ2(1 ∓ e−|qy|W )

)−1)
ρ2(x)|x=W/2 = 0,

(23)

where the “−” and “+” signs refer to the even and odd modes,
accordingly.

In the following discussion, we use the Drude model (A1)
at zero magnetic field to analyze conductivities of the first
and second layers, σ1 and σ2, denoting the respective electron
concentrations by n1 and n2, and effective masses by m1 and
m2. In the given case, the even and odd solutions of Eq. (21)
are, correspondingly, cos kx and sin kx, with the effective
transverse wave vector k defined as

k2 = ω2

V 2
a

− q2
y , (24)

where V −2
a = V −2

p1 + V −2
p2 is the velocity of acoustic plasmons

in a two-layer system, and V 2
p1,2 = 4πe2n1,2h/(κm1,2).

Applying the boundary conditions in (23), we arrive at the
dispersion relation below:

k
(

tan
kW

2

)±1

= ±|qy|
(

1 + n1m2

n2m1

2

1 ∓ e−|qy|W
)−1

, (25)

where the upper and lower signs indicate the even and odd
modes, respectively. From Eq. (25) we obtain a discrete se-
ries of plasmon modes with frequencies ωN (qy), where N =
0, 1, 2, ... designates the number of nodes in charge den-
sity across the strip. The spectra for the first four modes of
ωN (qy) are plotted in Fig. 2. In the long-wavelength limit,
when |qy|W � 2n1m2/(n2m1) and |qy|W � 1, the fundamen-
tal mode N = 0 has linear dispersion as follows:

ωN=0(qy) = Vp2|qy|. (26)

As the conductivity of the strip tends to infinity, i.e., n2 → ∞
(ideal metal strip), the qy interval of linear dispersion vanishes,
and we arrive at the square-root plasmon spectrum of the fun-
damental mode for |qy|W � 1 derived in the previous paper
[33]. Here, we note the fundamental mode frequency to be
lower than that of 2D plasmons in the first layer. Therefore,
the condition in (10) is satisfied in the absence of magnetic
field.

In addition, we determine the spectrum ωN (qy) numerically
for the wave vectors and frequencies outside the continuum of
2D plasmons in the first layer, i.e., for ωN (qy) < ωp1(qy). In
the exact Eqs. (6) and (19), we expand ρg(x) into the series of
sin(πPx/W ), for P = 1, 3, 5, ..., and cos(πPx/W ), for P =
0, 2, 4, ..., to find the odd and even modes, respectively. Then,
following a standard computational procedure, we arrive at the
spectra plotted in green in Fig. 2. For the fundamental mode
N = 0, the numerical and analytical solutions match perfectly.
For the higher excited modes, N = 1, 2, 3, ..., the results are
in good agreement overall, although numerical solution yields
slightly lower frequencies.

For small values of the wave vector qy, higher modes,
with N � 1, fall inside the bulk continuum of plasmons
in infinite 2DES. In this region, the analytically obtained
spectra become less accurate, as the condition (10) is not

FIG. 2. Spectra of plasmons in a partially bounded two-layer
system (see Fig. 1), in the absence of the external magnetic field.
Blue and green lines denote data for N = 0, 1, 2, 3 modes obtained
by analytical and numerical methods, respectively. Red-shaded area
designates the region ω > ωp1(qy ) (1) corresponding to the contin-
uum of 2D plasmons in the first layer. Within and in the vicinity
of this region, our analytical results become less accurate—see the
discussion preceding Eqs. (10) and (11). The dashed line represents
the long-wavelength asymptote (26). For the computed data, h/W =
0.003 and n1m2/(n2m1) = 1/5.

satisfied. Nevertheless, for a qualitative insight into plasmon
spectra, we include the asymptotics for small qy as follows.
For even modes N = 2, 4, .., we find ωN/Va = πN/W +
q2

yW (n2m1/(n1m2) + 1/2)/(πN ) for |qy|W � 2n1m2/(n2m1)
and |qy|W � 1. For odd modes N = 1, 3, .., we find ωN/Va =
πN/W + 2|qy|/(πN (1 + n1m2/(n2m1))) for |qy|W � 1.

As |qy| → ∞, all the modes exhibit asymptotic behavior
described by ω2

N/V 2
a = π2(N + 1)2/W 2 + q2

y , i.e., ωN ap-
proaches the frequency of the acoustic plasmon mode in a
two-layer system, with qx → π (N + 1)/W .

IV. PLASMON SPECTRA IN THE PRESENCE
OF EXTERNAL MAGNETIC FIELD

Next, we consider the system placed in a perpendicular
constant magnetic field B (Fig. 1), with conductivity tensors
of the given layers described by the Drude model (A1). Here,
for simplicity, we assume the effective mass in both 2DESs to
be the same, i.e., m1 = m2 = m. Consequently, the difference
between σ̂1 and σ̂2 can be due only to dissimilar electron con-
centrations in the layers, n1 and n2. Note also that below we
assume ω �= ωc since we are considering collisionless limit of
the Drude model (A1).

Unlike the previous case, in the presence of the magnetic
field, solutions for the charge density ρ2(x) no longer have
parity across the strip, as boundary conditions lead to the
intermixture of even and odd solutions. Therefore, we look for
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FIG. 3. Spectra of the plasmons in a partially bounded two-layer
system subject to an external magnetic field (Fig. 1). Analytically
and numerically obtained data are plotted in the blue and green
lines, correspondingly. The dashed line denotes the long-wavelength
asymptote (27). The red- and yellow-shaded areas, designate the
regions defined by inequalities ω2 > ω2

c + ωp1(qy ) and ω2 < ω2
c −

ωp1(qy ), respectively. Within and in the vicinity of the two regions,
our approach results in appreciable discrepancy—see the discussion
preceding Eqs. (10) and (11). For comparison, the dotted line repre-
sents the dispersion law of acoustic plasmons in an infinite two-layer
system, ω2 = ω2

c + V 2
a q2

y . For the computed data, h/W = 0.005,
n1/n2 = 1/5, ωc/(πVa/W ) = 0.7.

ρ2(x) in the form of a linear combination of sin kx and cos kx,

where k =
√

(ω2 − ω2
c )/V 2

a − q2
y corresponds to the effective

wave vector across the strip. To find the plasmon spectra, we
substitute ρ2(x) into the boundary conditions in (22) and then
derive the analytical dispersion equation. As this leads to a
fairly cumbersome expression, we do not include it here. The
resultant characteristic plasmon spectrum is shown in Fig. 3,
where the blue and green curves refer to the analytically
and numerically obtained solutions, accordingly. Clearly, the
outcomes of both methods indicate close agreement.

In the figure, the red- and yellow-shaded regions are de-
fined by respective inequalities: ω2 > ω2

c + ωp1(qy) and ω2 <

ω2
c − ωp1(qy). Here, our analytical solution formally becomes

inappropriate, according to Eqs. (10) and (11). Nonetheless,
it is important to emphasize the difference between these
two areas. In the red-shaded zone, ε2D(q, ω) (8) becomes
zero for a certain qx, corresponding to the excitation of 2D
magnetoplasmons in the first layer. Therefore, even if plasmon
modes localized near the strip exist, they strongly fade due to
their interaction with 2D magnetoplasmons in the first layer.
On the other hand, in the yellow-shaded region, ε2D(q, ω)
does not go to zero. Here, our method is inaccurate to some
degree, as the unity in Eq. (8) can no longer be neglected
when carrying out the integration in Eq. (6) for small values
of qx. However, the localized plasmon mode still exists in this
zone, while our analytical solution within and in the vicinity

of this area merely shows a slight deviation from the actual
dispersion curve obtained by a numerical method, as can be
seen in Fig. 3. Although for small qy the fundamental mode
N = 0 lies inside the yellow-shaded area, for its qualitative
description, we find the asymptotic behavior at |qy|W � 1,
|ω/ωc| � 1, and Va|qy| � |ωc| to be as follows:

ω2
N=0 = ω2

c |qy|W n2

2(1 + n1/n2)n1
+ |ωcqy|Va

1 + n1/n2
tanh

|ωc|W
2Va

+q2
yWVan2

2n1
|ωc| coth

|ωc|W
2Va

+ q2
yV 2

a . (27)

In the yellow-shaded region, the numerically obtained so-
lution for the fundamental mode seems to indicate a linear
trend, rather than analytically derived square-root dependency
at qy → 0 (27). Importantly, both solutions show gapless be-
havior of the fundamental mode, in contrast to the case of
near-gate plasmons [33], which at zero wave vector exhibit
a frequency gap equal to the cyclotron frequency (4). We
also note that in part, the fundamental mode lies below the
dispersion of plasmons in an infinite two-layer system (the
dotted line in Fig. 3), meaning that in this spectral area, k
becomes purely imaginary and the plasmon charge density
ρ2(x) tends to be localized near the strip edges.

As for the higher modes N � 1, the analytically obtained
spectra become inappropriate at small values of qy because
of the violated condition in (10). However, we still include
the asymptotics that are valid for the moderate values of qy,
when conditions |qy|W � 1, |qy|W � 2n1/n2, |qy|Va � ωc

and (10) are satisfied. Thus, for even modes N = 2, 4, .., we
find

ωN (qy) = ωN (0) + q2
yV 2

a

ωN (0)

(
1

2
+ n2π

2V 2
a N2

n1ω
2
N (0)W 2

+ 2ω2
c

πNω2
N (0)

)
,

(28)

while for odd modes N = 1, 3, .., we find

ωN (qy) = ωN (0) + 2|qy|V 2
a

W (1 + n1/n2)

(πVaN/W )2

ω3
N (0)

, (29)

where ωN (0) = √
(πVaN/W )2 + ω2

c is the frequency at
qy = 0. As |qy| → ∞, all the modes follow standard
asymptotic behavior described by ω2

N (qy) = ω2
c +

V 2
a [π2(N + 1)2/W 2 + q2

y ].
Last but not least, we explore the magnetodispersion of

the plasmons under study, i.e., the dependence of plasmon
frequency on the magnitude of the magnetic field, which is
often measured experimentally. In Fig. 4, we include the char-
acteristic magnetodispersion computed for |qy|W = 0.1 � 1.
Here, the higher modes N = 1, 2, ... exhibit ordinary mag-
netodispersion described by Eqs. (28) and (29), when the
plasmon frequency tends to the electron cyclotron frequency
with increasing magnetic field. In contrast, the fundamental
mode N = 0 indicates quite a nontrivial dependency. For its
qualitative interpretation, we consider two special limiting
cases—plasmons in the gated strip with n1/n2 → ∞, and
near-gate plasmons with n1/n2 → 0. In the first instance,
plasma excitations show no magnetodispersion at qh � 1
(similar to the case of gated edge magnetoplasmons [52,53]),
i.e., their frequency is independent of the magnetic field. At
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FIG. 4. Magnetodispersion of plasmons under study. Analytical
and numerical results are plotted in the blue and green lines, corre-
spondingly. The dashed line marks the long-wavelength asymptote
(27). The red- and yellow-shaded regions are analogous to those in
Fig. 3. The dash-dotted line is the “cyclotron frequency” ω = ωc. For
the computed data, h/W = 0.005, n1/n2 = 1/5, and qyW = 0.1.

the opposite extreme, however, we have typical magnetodis-
persion for near-gate plasmons defined in (4). Thus, at finite
values of n1/n2, we expect to see some degree of magne-
todispersion, ranging in between the given limiting cases.
Indeed, this qualitative consideration has been confirmed by
numerical and analytical calculations, as shown in Fig. 4. In
addition, from (27) it follows that with an increase in magnetic
field (but outside the yellow-shaded region and if n1/n2 is
of the order of unity), the plasmon frequency approaches its
asymptotic value:

ω ≈ ωc

√
|qy|W n2

2n1(1 + n1/n2)
. (30)

V. DISCUSSION AND CONCLUSION

In this paper, we focus on the acoustic plasmon mode in
a two-layer electron system, where the charges in the infinite
2DES and the strip oscillate out of phase, partially “screening”
each other. However, as we have already mentioned, along
with this type of plasmon, there should exist the optical plas-
mon mode, with charges in the two layers oscillating in phase.
Although the analysis of this mode is beyond the scope of the
present work, here we include a related qualitative description.
Considering the optical plasmon mode at small values of sepa-
ration distance h between the infinite 2DES and the strip, i.e.,
under the conditions of |qy|h � 1 and h/W � 1, the given
two-layer system can be treated as a single 2DES with inho-
mogeneous conductivity—σ1 for |x| > W/2 and σ1 + σ2 for
|x| < W/2. It has been established that in such a system, near
x = ±W/2, there exist so-called interedge magnetoplasmons
[54,55]. Therefore, it is likely that optical plasmon modes

correspond to these interedge magnetoplasmons excited at
x = ±W/2, provided the strip width W is sufficiently large to
prevent their interaction. Otherwise, optical plasmon modes
can be regarded as the result of the hybridization of these
excitations.

In our analysis we neglected the electromagnetic retarda-
tion effects, therefore the obtained results are applicable only
for ω � cq/

√
κ, where c is the speed of light in vacuum.

Thus far, we consider plasmons using the collisionless
Drude model (A1). Given finite relaxation time τ (for sim-
plicity the same in both layers), plasmons under study exist if
ωτ � 1 and strongly fade if ωτ � 1. If we extract τ from
typical electron mobility for GaAs/AlGaAs quantum wells
μ = 5 × 106 cm2/(V s) at 1.5 K [34], then we find that
the plasmons are well defined at frequencies ω/(2π ) larger
than 1/(2πτ ) ≈ 0.9 GHz; experiments under consideration
[34,35] are usually conducted at higher frequencies, which are
of the order of 10–100 GHz.

Let us also discuss qualitatively the consequences of taking
into account the spatial dispersion in conductivity, which we
neglected by using the Drude model. First, we disregard the
“electronic pressure” contribution, which is characterized
by the effective velocity s, where s2 = v2

F /2 and vF is the
Fermi velocity; see, for example, Eqs. (53)–(57b) from
Ref. [56]. This contribution results in the additional term s2q2

in the squared plasmon frequency, thus it can be neglected
at ω2 � s2q2. Consider this condition in the case of the
fundamental mode N = 0. In the absence of magnetic field
and at |qy|W � 1 we have ω2

N=0(qy) = V 2
p2q2

y (26), so we
arrive at the condition V 2

p2 � s2. If we consider for qualitative
estimation two identical layers based on GaAs/AlGaAs
quantum wells, with electron concentration n = 3 × 1011

1/cm2 and the distance between the layers h = 440 nm,
which correspond to the experimental setup in the case of
previously studied near-gate plasmons [34,35], then we obtain
V 2

p2/s2 ≈ 170, so electronic pressure is negligible. However, it
should be taken into account for smaller separation distances,
when h is of the order of 20 nm or less. In the presence
of perpendicular magnetic field another contribution to the
spatial dispersion of conductivity arises. This contribution is
due to the existence of so-called Bernstein magnetoplasma
modes; see Refs. [57,58]. Qualitatively, this contribution
can be neglected if the plasmon frequency does not fall into
frequency gaps, which are situated near harmonics of the
cyclotron frequency 2ωc, 3ωc,... (see Fig. 2 from Ref. [58]),
and when the long wavelength limit qRc � 1 takes place,
where Rc is the electron cyclotron radius.

We reiterate that Eqs. (21) and (22) are derived for an
arbitrary conductivity model based on the approximation in
(12), as was mentioned in the discussion preceding and fol-
lowing Eq. (9). Besides the Drude model used in this paper,
our method can be applied to describe plasmons in systems
with other conductivity models, such as 2D conductivity in
a strong magnetic field and quantum Hall regime, graphene
conductivity, etc.

In summary, we have studied analytically as well as nu-
merically acoustic plasmon modes in a partially bounded
two-layer system comprising an infinite 2DES and an infi-
nite strip. The obtained plasmon spectra are characterized
by the mode number N and the wave vector qy directed
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along the strip. The fundamental mode N = 0 is found to be
gapless, whereas higher modes N = 1, 2, ... exhibit gapped
dispersion law. Without the external magnetic field, the fun-
damental mode has linear dispersion in the long-wavelength
limit, in contrast to the square-root dispersion of this mode
established in the previously studied case of infinite strip
conductivity (ideal metal strip) [33]. In the presence of a
perpendicular magnetic field, the fundamental mode retains
gapless dispersion and shows nontrivial magnetodispersion.
The magnetodispersion is found to be strongly affected by
the relation between electron concentrations in the first and
second layers.
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APPENDIX: DRUDE MODEL

Consider a “clean” 2DES, with infinite electron relaxation
time, exposed to the constant magnetic field B applied per-
pendicular to the 2DES plane. Then, in the framework of the
Drude model, the dynamical longitudinal and transverse 2D
conductivities, σxx and σxy, can be expressed as

σxx = e2n

m

−iω

−ω2 + ω2
c

, σxy = e2n

m

−ωc

−ω2 + ω2
c

, (A1)

where n is the electron concentration in 2DES, −e and m are
the electron charge and effective mass, and ωc = |e|B/(mc)
is the electron cyclotron frequency in 2DES. Note that ω �=
ωc as we consider the “clean” limit. Mention also that when
deriving expression (A1), we neglect the spatial dispersion of
conductivity.
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