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Unconventional reentrant quantum Hall effect in a HgTe/CdHgTe double quantum well
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We report on the observation of an unconventional structure of the quantum Hall effect (QHE) in a p-type
HgTe/CdxHg1−xTe double quantum well (DQW) consisting of two HgTe layers of critical thickness. The
observed QHE is a reentrant function of magnetic field between two i = 2 states (plateaus at ρyx = h/ie2)
separated by an intermediate i = 1 state in the shape of a flat-top peak placed on the remarkably long i = 2
plateau. This anomalous i = 1 peak separates two different regimes: (i) a traditional QHE at relatively low fields
corresponding to a small density of mobile holes ps and (ii) a high-field QHE with a 2-1 plateau-plateau transition
corresponding to a much larger ps. The high-field part is strongly sensitive to external influences such as gate
voltages, in contrast to the low-field part, which is much less responsive. We explain the observed behavior by
analyzing the calculated trajectories of the Fermi level EF (B) between hole-like and electron-like Landau levels
(LLs). At low fields, EF is captured by the lateral maximum (LM) of the valence subband, and only holes in the
center of the Brillouin zone contribute to QHE, while holes in the LM are inactive. In contrast, at fields above
the reentry, EF rises significantly higher than LM, approaching the zero-mode LLs, and all holes come into play
in QHE. At intermediate fields, the reentrance is caused by a combination of two factors in the specific energy
spectrum of this DQW: (i) the superposition of an electron-like LL on hole-like LLs and (ii) the stabilizing
influence of the LM reservoir on EF (B).
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I. INTRODUCTION

The quantum Hall effect (QHE) manifests most typically
as a stair-like sequence of plateaus in the Hall magnetore-
sistivity (MR) ρxy(B) located at its monotonically increasing
values ρxy(B) = h/ie2 for integer or fractional filling factors
i [1]. This picture is disturbed by a nonmonotonic reentrant
behavior of ρxy(B) for the integer QHE (RIQHE) in some
special cases: for a two-subband conductivity due to Landau
level (LL) or subband mixing [2]; in a traditional double
quantum well (DQW) under tilted magnetic fields [3], where
certain QH states are repeatedly destroyed as a function of
the parallel-field component B‖ due to an oscillating behavior
of the tunneling gap; and in the excited LLs of samples with
record high mobility at extra-low temperatures [4–9] due to
repeated transitions between the collective quantum liquid and
pinned quantum solid bubble states [10,11]. In this paper, we
demonstrate a distinct RIQHE appearing in a complex energy
spectrum of the HgTe DQW at helium temperatures and for
moderate mobilities that may be basically explained without
recourse to the collective nature of the electronic phases.

The uniqueness of the energy structure of the HgTe QW
and its strong dependence on the well thickness [12] make this
material suitable to construct various kinds of nontrivial en-
ergy spectra in a system of two HgTe layers separated by a thin
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CdxHg1−xTe barrier, i.e., in a HgTe/CdHgTe DQW [13,14].
Different applications were predicted for this structure [15,16]
which is also an opportunity to study fundamental phenomena
in new conditions [17]. Experimentally, several remarkable
novel features were revealed in quantum magnetotransport on
HgTe DQWs with relatively thick HgTe layers, like reentrant
sign-alternating QH states, the possibility to enlarge and reg-
ulate the band overlap, and the enhanced zero filling factor
state [13]. In the present study, we found that probably the
most unusual features of quantum magnetotransport appear
in a p-type HgTe/CdHgTe DQW when the thickness of the
HgTe layers is close to the critical value d ≈ dc = 6.3–6.5
nm, i.e., when a Dirac energy spectrum is formed in a single
HgTe layer [12]. In this case, a RIQHE is revealed [18] that
has indications of switching between two states with different
densities of mobile holes. The only analog we know of such
a kind of “switching” between different net carrier densities
with magnetic field was reported for a multi-quantum-well
structure made within a GaAs parabolic quantum well [19],
where the effect was attributed to a spatial redistribution of
electrons between different wells. In our case, we show that
the observed “switching” is an inherent property of the DQW
energy spectrum.

II. SAMPLES AND MEASUREMENTS

DQW structures were grown by molecular-beam epi-
taxy on a (013)-orientated GaAs substrate above a series of
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ZnTe and CdTe buffer layers. The DQW consists of two
HgTe layers with a thickness d = 6.5 ± 0.2 nm separated
by a 3 ± 0.1 nm CdxHg1−xTe barrier with x = 0.71. There
is no intentional doping. The layer widths were controlled
by single-wavelength ellipsometry during the growth [20].
Magnetoabsorption studies of similar structures confirmed
that ellipsometry gives the correct estimation of the layer
thicknesses [21,22]. Hall bar devices were then shaped by
photolithography. The overall size of the Hall bar is 3 ×
1 mm2. For some Hall bars, a top gate was fabricated with
parylene as an insulator and aluminum as a gate electrode.
Indium was directly soldered at the contact pads of the devices
to ensure the formation of ohmic contacts to both layers of the
DQW. We measured the longitudinal and Hall MRs ρxx(B)
and ρyx(B) at temperatures down to 0.26 K and in magnetic
fields up to 13 T. The measurements were performed on
two ungated and two gated samples obtained from the same
DQW growth (No. 150218). The four Hall bars gave identical
results, and for clarity, we will present the results obtained
mainly with one of the gated samples.

III. ENERGY SPECTRUM

The DQW parameters have been chosen to reproduce
the so-called “bilayer graphene” (BG) phase described
in Ref. [14]. The band dispersion of each of the two
HgTe/CdHgTe QWs taken separately is a Dirac cone, because
the nominal thickness of the QWs corresponds to the critical
thickness dc at which the gap disappears.

Numerically, the energy dispersion of the DQW was cal-
culated by an 8-band k × p method, including the influence
of elastic strain. The details of the calculation can be found
in Ref. [14]. The band dispersion of the DQW is shown in
Fig. 1 with the spatially quantized levels of a single HgTe QW
shown in the inset. The dispersion of a single QW is char-
acterized by two groups of levels—those of the heavy-hole
(HH ) nature and of the electron-like carriers (E )—that move
quickly toward each other with increasing layer thickness d .
At a critical thickness dc, the extreme levels in both series
intersect and the Dirac spectrum is formed at this meeting
point. Specific features of the energy spectrum in a DQW
made of these HgTe layers are due to that. The E levels of
single layers are strongly tunnel-coupled when joined into the
DQW, which is contrary to the HH levels, where the interlayer
coupling becomes significant only with an increase in k: see
the main panel of Fig. 1. In the DQW energy spectrum, we
denote the upper and lower subbands, which are split off from
the corresponding level of the single quantum well, by the
superscript (1 and 2).

The gapless isotropic energy dispersion of the DQW is
remarkably similar to the one of natural BG as it consists
of two touching parabolas formed by subbands HH11 and
HH12 and of two spaced parabolas: E11 and E12. Differences
with respect to natural BG are also noticed. In particular,
a lateral maximum (LM) appears around k � 0.4 nm−1 in
subbands HH11 and E11. This LM is associated with a very
flat dispersion and hence yields a high density of states (DOS).
Side maxima in the valence band of single HgTe/CdHgTe
QWs are also predicted theoretically and have been observed
experimentally by magnetotransport [23–26].

FIG. 1. Energy spectrum of the DQW under study, if its potential
profile is symmetrical. Inset: Spatial levels of a single QW as a
function of the layer thickness d . The upper index on the main
figure (1 or 2) means the first or second split-off subband in a DQW
originating from the corresponding level of a single well. The Fermi
level EF is drawn for the case of no gate.

The estimated deviations in the energy spectrum and in the
positions of the LLs induced by technological errors of the
layer thicknesses are within ±3 meV. Therefore, they do not
introduce a radical restructuring of E (k) or the LL scheme.
Qualitative changes in the spectrum will occur only in the case
of opposite deviations of the thicknesses of the two QWs. In
this case, a gap of less than 2 meV opens between the HH
branches due to the thus-induced DQW asymmetry. This gap
also appears (or is modified) if an electrical field is applied
perpendicular to the layers, which causes a slope in the DQW
potential profile [14].

IV. EXPERIMENTAL RESULTS

A. Magnetoresistivities

Natural BG has an unconventional QHE with an anoma-
lous sequence of quantum Hall plateaus, i = ±4,±8,±12,

. . .. One may wonder how the QHE will manifest in our “arti-
ficial BG”. Figure 2(a) shows the Hall MR ρyx(B) at different
gate voltages Vg and at a temperature T = 260 mK, when the
magnetic field B is swept between 0 T and 1.7 T. At B <

0.2 T, the classical Hall effect is apparent and the slope yields
hole densities varying between ps � 0.38 × 1015 m−2 at Vg =
−1 V and ps � 0.27 × 1015 m−2 at Vg = 1.7 V. The variation
of the hole density with Vg is very slow, d ps/dVg � 0.037 ×
1015 m−2/V, and is incomparably smaller than the esti-
mate for the geometric capacitance, (1/e)dQ/dVg � 0.6 ×
1015 m−2/V. Such a deviation has already been evidenced for
single HgTe QWs, cf. Ref. [24], and has been attributed to the
coexistence of two types of hole states: those in the central
and lateral maxima of the valence subband. The latter have a
much lower mobility, and they do not contribute to quantum
magnetotransport.
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FIG. 2. (a) Transverse magnetoresistivity ρyx (B) at T = 260 mK,
for B = 0–1.7 T and Vg varying from −1 V to 1.7 V; (b) transverse
and longitudinal magnetoresistivities ρyx (B) and ρxx (B) on an ex-
tended magnetic field range, B = 0–13 T, for the same temperature
and gate voltages Vg as in (a).

The sample resistivity as a function of gate voltage passes
through a maximum around Vg = 3 V thus indicating the
charge neutrality point (CNP). Simultaneously the Hall resis-
tivity changes its sign indicating the transition to the n-type
conductivity at high Vg.

At higher fields a traditional succession of QH plateaus
ρyx = h/ie2 is observed in Fig. 2(a), with i varying from about
8 down to 1 as B increases up to 1.5 T. The extrapolation of
the classical Hall resistivity crosses QH plateaus near their
centers, as evidenced by the dashed black line for Vg = 0. The
QHE does not reveal any intriguing features here.

However, Fig. 2(b) shows that at still higher magnetic
fields the ρyx behavior becomes unusual. For gate voltages
Vg � 0.5 V, the i = 1 plateau collapses around B � 1.8–2 T,
and ρyx returns to the i = 2 QH plateau. Subsequently, at
higher magnetic fields B � 3–6 T, ρyx increases again and the
i = 1 plateau reappears. At even higher fields, both ρyx and
ρxx increase and diverge. Assuming that the magnetic field at
which the second plateau-plateau transition (PPT) i = 2 → 1
takes place corresponds to the filling factor i = 1.5, this gives
the hole density ps � 1.66 × 1015 m−2 at Vg = 0, about four
times larger than that obtained at low B. The reaction of the
ps value found in this way to the applied Vg is d ps/dVg �

(0.52 ± 0.05) × 1015 m−2/V, which is close to the estimated
geometric capacitance and 14 times stronger than that in the
low-field regime.

The Fermi level EF position for ps = 1.66 × 1015 m−2 is
drawn in Fig. 1 where it is almost aligned with LM. This
suggests that the observed RIQHE of the i = 2 plateau may
be somehow linked to the population of LM.

B. Calculation of the LLs

To explain the observed features of magnetoresistivity, we
extended calculations by means of the 8-band k × p Hamil-
tonian to obtain LLs. We use the axial approximation [14]
by keeping the in-plane rotation symmetry and omitting all
warping terms resulting from cubic symmetry of zinc-blende
semiconductors, bulk inversion asymmetry (BIA) of the unit
cell in bulk zinc-blende crystals, and interface inversion asym-
metry (IIA) due to anisotropy of chemical bonds at the QW
interfaces. We note that it is rotational symmetry that allows
one to introduce conventional LL indices in narrow-gap QW
systems. As the electric field E applied perpendicular to the
QW plane preserves the in-plane rotational symmetry, it can
be taken into account within the axial approximation as well.

In natural BG, E is an important parameter as it opens a
gap in the energy dispersion due to introduction of asymmetry
into the potential profile. Similarly, so introduced asymmetry
opens a gap in the spectrum of our DQW, as demonstrated in
Ref. [14].

As revealed from the magnetoabsorption experiments [27],
there is a gap of about 3 meV in the spectrum of ungated
samples cut from the same wafer from the same source as
our samples. This gap exceeds the value that can be caused
by the difference in the QW widths within the technological
errors. Therefore, this gap is most likely due to the residual
electric field. For a given gap, the local electric field should be
of the order of E � 10 kV/cm over a barrier width of 3 nm.
That is why we start analyzing our results at zero and low
gate voltages, comparing them with the LL pattern calculated
for the asymmetric DQW profile, with asymmetry caused by
the tentative value of E = 10 kV/cm; see Fig. 3. This induced
gap is visible at B = 0 and is retained with increasing field
between the n = −2 LLs. Other LLs emerge from both the
upper and lower edges of the gap.

In the overall picture, several LLs with specific behavior
are seen. These are the so-called “zero-mode LLs” with quan-
tum numbers n = 0,−1, and −2 known in a single HgTe QW
[28,29]. Two of these LLs, with n = −2 (shown as gray solid
lines), follow parallel lines when B increases and go slightly
downward. Another LL, with n = 0 (shown as a thick red
line), emerges from the lower subband E11. It undergoes a
local anticrossing with another n = 0 LL but goes up contin-
uously and finally crosses the two n = −2 LLs.

C. Landau levels and lateral maximum

At low energies E � −42 meV in the valence subband,
a dense grid of LLs appears: Fig. 3(a). These LLs have a
nonmonotonic dispersion. They originate from the top of the
HH11 and E11 subbands at B = 0 T and first they move
downward, then upward, and finally go downward again. This
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FIG. 3. (a) The Landau-level fan chart of the DQW with asym-
metrical potential profile due to a perpendicular electric field (as
found experimentally for zero and negative Vg). Each region de-
limited by the LLs is labeled by the index i defining the expected
transverse conductivity σxy = ie2/h (i is negative for electrons). The
Fermi energy EF (B), calculated for ps = 2.4 × 1015 m−2 (experi-
mentally found for Vg = −1 V), is indicated as a dot-dashed magenta
line. (b) Same as (a), but with only a reduced number of LLs taken
into account. The trace for EF (B) found in this case is incorrect since
the influence of LM is lost.

nonmonotonic behavior of the LLs is imposed by the shape
of subbands and by the Onsager relation A(En) = 2π (n +
γ )eBn/h, where γ is a phase shift and A is the area in the
k space enclosed by the classical orbital of the LL of index
n and energy En. In a semiclassical picture, assuming axial
symmetry for clarity (it does not change the validity of the re-
sult), En is associated with a trajectory in the two-dimensional
cross section of constant energy along the considered sub-
band, HH11(k) or E11(k), and the corresponding area is
A = πk2. As the Onsager relation imposes that this trajec-
tory must enclose an area which is proportional to B, we
get En(B) = HH11(k = aB1/2) with a ∝ √

n + γ . Thus, the
nonmonotonic variation of the LL energy vs B reflects the
nonmonotonic energy variation of the HH11 subband vs k.
The same reasoning is valid for the lower valence subbands.
However, we emphasize that the behavior of the zero-mode
LLs cannot be explained quasiclassically. They do not obey
the Onsager relation.

It follows from the quasiclassical approach that LLs with
different n reach a fixed energy at fields Bn ∝ 1/n. Thus, the

En(B) curves are compressed along the B axis with increasing
n. This corresponds to the LM energy as well, and the maxima
of these LLs follow a line of constant energy till B = 0 with
n → ∞. It means that an infinite array of LLs fills as a dense
grid the entire range of weak fields below the LM energy till
B → 0 for n → ∞, thus forming something like a LL band
(considering that individual LLs are hardly resolved in such a
dense grid). This is confirmed by the digital calculations of a
fragment for n = 1000–1005 presented in Fig. 3(a). For n �
45, the DOS in our calculations is underestimated below B �
1 T. The dashed gray horizontal line in the weak-field part of
Fig. 3(a) indicates the direction in which the upper edge of
this LL band should follow.

D. Fermi level as a function of field and its stabilization
at the LM energy

To explain the observed features of QHE, we calculated
the trajectories along which the Fermi level moves with the
field between the LLs: EF (B). It was done for finite DOS
in LLs (we used a Lorentzian with a fixed half-width of
0.5 meV) for a set of constant values of the total carrier density
in the sample, considering the hole or electron type of the
carriers in a LL. We assumed in calculations that the hole-like
(electron-like) LLs are those moving down (up) in energy with
increasing field regardless of what subband they come from.
This consideration is confirmed by the fact that the LLs shift in
the same direction on approaching the sample edge [30,31] as
they do in magnetic fields; see Eqs. (64) and (66) in Ref. [32],
and also Ref. [30]. Correspondingly, we consider the contri-
bution to ps, and to ρyx(B) or conductivity σxy(B), as positive
from the hole-like and negative from the electron-like LLs.

We take into account only the geometric capacitance of the
system, neglecting the quantum capacitance. A constant Vg

then corresponds to a constant carrier density ps in the DQW.
To fulfill this condition, ps was calculated as a difference
between the overall hole density in the hole-like LLs above
EF (B) and the electron density in the electron-like LLs below
it [13,33,34].

When the nature of conductivity in the LLs is known, be
it hole-like or electron-like, each gap between LLs can be la-
beled with an integer value i indicating the difference between
the number of populated hole-like LLs and the electron-like
ones. It is these numbers i that must correspond to the quan-
tum Hall effect plateau numbers in the experiment, when
EF (B) falls into this gap.

The transition point between different i states corresponds
to the intersection of the calculated EF (B) trajectory with
the delocalized state at the center of the LL separating the
corresponding gaps. Taking into account the finite width of
the DOS at the LL makes it possible to estimate the transition
field more accurately than in the simplified approach for the δ-
shaped DOS peaks. In the latter case, it is assumed by default
that the transition occurs at a half-integer value of i. Thus,
for the case of no gate such a simplified estimation for the
high-field 2-1 PPT yields, for i = 1.5, ps = 1.66 × 1015 m−2,
while it is somewhat larger for our case of finite DOS: ps =
1.9 × 1015 m−2.

When the finite DOS in LLs is considered, one can cor-
rectly evaluate the role of LM in quantum magnetotransport.
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We believe that the observed unusual experimental behavior
can be explained by properties of the DQW energy spectrum,
first of all, by a stabilizing influence of the LM on the EF (B),
due to a high DOS in it. To see this, a sufficiently large number
of LLs should be included in the calculations (n � 45 in our
case) to reproduce the dense grid of LLs below the LM energy
and hence the associated high DOS.

If too few LLs are taken into account, this grid of LLs
becomes sparse, the DOS in the valence subband is drastically
underestimated, and the EF (B) curve is traditional, crossing
LLs periodically in 1/B throughout the entire field range, see
Fig. 3(b), which is in stark contrast with our experiment. On
the contrary, with a sufficiently fully built dense LL grid of
LM, the calculated behavior of EF (B) becomes completely
different. In this case, when EF (B) tends to go down in energy,
passing with decreasing field to LLs with larger numbers, it
falls into the vicinity of LM and, as a result of a very high local
DOS here, the decrease of EF (B) slows down and it even stops
in the tails of LLs of this dense grid. One can say that EF (B)
is stabilized near the LM energy in the weak-field range.

E. The reservoir-like behavior at low fields

Even if the high DOS of the LM is not well reproduced
below 1 T by our calculations, we can draw some conclusions.

The EF (B) shown in Fig. 3(a) makes the weak-field i =
2 → 1 transition at B � 1.4 T through the n = 1 LL that
corresponds to the central maximum in the second valence
subband in this range of fields. The position of this crossing
formally corresponds to i = 1.5 that yields an apparent carrier
density 1.5 × eB/h ≈ 0.5 × 1015 m−2, which is much lower
than the carrier density ps = 2.4 × 1015 m−2 (taken from the
experimental high-field 2-1 PPT for Vg = −1 V) used in the
calculation of the whole EF (B) trace. But it is much closer to
the data of the classical Hall effect on the same experimental
curve. In this state, a large number of holes have been ab-
sorbed by the LLs in the dense grid of LM. These LLs remain
below EF and are poorly resolved in the dense grid, so they do
not cause any quantum Hall features. Therefore, the structure
of QHE in the weak-field part is formed exclusively by holes
of the central maximum and gives the density of these very
carriers.

Such a behavior may be compared to the “reservoir” model
for QHE, in which the reservoir absorbs a part of carriers ex-
cluding them from magnetotransport [35,36]. However, unlike
previous works, this “reservoir” in our case is not connected
with the surrounding of the quasi-2D structure [37,38] and
is not due to some in-plane inhomogeneity [39]. Instead, the
reservoir is induced by the LM, which is an integral part of the
conductive layer [40].

F. Unusually wide i = 2 plateau and QHE at high fields

With increasing field, EF (B) moves upward in its evo-
lution to LLs with lower numbers and, finally, reaches the
uppermost hole-like LLs with n = −2; see Fig. 3(a). These
two zero-mode LLs behave in a completely different way
with respect to the lower hole-like LLs. They move down
linearly and very slowly with the field, and as a result they
become much higher in energy than all the other hole LLs,

even at relatively weak fields. Therefore, a large gap is formed
between the lower n = −2 LL and the other hole-like LLs
below. As EF (B) progressively moves up with the field in this
wide i = 2 gap, it goes far from the LM energy, so that LM
becomes depopulated by holes. When the two upper LLs are
spaced from the other hole-like LLs and LM by much greater
distance than their broadening �, the usual 1/B periodicity
of quantum magnetotransport is restored at high fields, and
now all holes participate in the formation of QHE. Hence, the
total hole density ps is manifested in the high-field i = 2 → 1
transition.

Thus, the calculation of EF (B) for the correct picture of
LLs and the finite DOS at LLs makes it possible to explain
why only holes from the central maximum manifest in the
QHE of the HgTe DQW at low fields, while the QHE at higher
fields corresponds to the true total constant density of holes.
The unusually wide i = 2 state is obtained in calculations due
to the prolonged transition between these two regimes, when
EF (B) gradually leaves the high-DOS energy range next to
LM, moving with increasing field within a wide gap through
the high DOS area of the LM LL tails to the topmost LLs. The
main specificity of this process here is that not a single LL,
but many LLs in a dense LL grid of LM are simultaneously
depleted by increasing the field.

Returning to the reservoir model, it should be noted that
when explaining the anomalously wide first plateau observed
in a single QW in previous works [26,35,38,39], it was only
assumed that the phenomenon is associated with the field-
dependent transfer of current carriers from a certain reservoir
to a conducting monolayer, while other mechanisms that can
delay the transition of the first plateau to a dielectric state can
also influence the process. On the contrary, the abnormally
wide i = 2 state observed in our case in the DQW is automat-
ically derived from the calculations yielding a high-field 2-1
PPT, from which definitely follows a ps value significantly
larger than that obtained in the weak fields. Thus, we formally
get direct evidence of an increase in the density of mobile
carriers at high fields.

G. High-field i = 1 plateau as a proof of the DQW potential
asymmetry

Having established the correspondence between the labels
of the gaps between LLs in the calculated picture of LLs and
the QH plateau numbers, we obtain direct proof of the initial
(ungated) DQW asymmetry. This follows from the existence
of a high-field i = 1 QH plateau for Vg <∼ 1.5 V. Indeed, at
high fields this plateau corresponds to the gap between two
n = −2 LLs, while for a symmetric DQW potential profile
these two zero-mode hole-like n = −2 LLs must coincide
[14]. The gap between the two HH1 subbands, and between
the two zero-mode n = −2 LLs, occurs only when the DQW
becomes asymmetric.

Thus, we confirm the conclusion of the magnetoabsorption
studies of this DQW [27] that the two n = −2 LLs are split.
The physical origin of the asymmetry causing this splitting is
yet unclear. Most likely, this could be due to a built-in per-
pendicular electric field caused by an uneven distribution of
charges inside the barriers or the fixed charges in the interfaces
and on the surface.
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H. Mechanism of the RIQHE

The anomalous behavior of the zero-mode n = 0 LL
emerging from the central maximum of the lower valence
subband E11 creates a nontrivial situation, which leads to the
observed unconventional structure of the QHE. The combina-
tion of a LL fan chart descending from the central maximum
of the upper valence subband HH11, an anomalous upward
movement of the n = 0 LL, and the LM stabilizing effect on
EF (B), Fig. 3(a), leads to that, when increasing the field from
small values, the calculated EF (B) successively crosses the
regions corresponding to i = 3, 2, 1, 2, and 1.

The observed RIQHE is induced by the weak-field i = 1
region between LLs which has the shape of a base-up trian-
gle surrounded by two gaps of i = 2. Remarkably, the lower
corner of this inverted quasi-triangle is located just above the
LM energy. The Fermi level EF , stabilized by the proximity
to LM, cuts off the lower corner of this triangle and enters the
i = 1 region within a limited range of fields, thus causing the
appearance of the flat-top ρyx peak observed in Fig. 2 with a
i = 1 plateau surrounded by two i = 2 plateaus.

Evolution of the reentrance with Vg is shown more in detail
in the σxy(B,Vg) color map, Fig. 4(a), where it is compared
with the calculated picture of LLs for the asymmetric DQW
with the superposed EF (B) trajectories for a set of Vg values
below 1.3 V. A stabilizing influence of LM on EF (B) is ex-
pressed on the map in the vertical boundaries of the i = 1 strip
in the range of B = 1–2 T and Vg < 1 V. Only at the lowest
values of Vg = −2.5 V this vertical strip narrows, reflecting
the approach of the EF (B) to the lower vertex of the i = 1
triangular gap.

The left border of this vertical strip starts moving to the
lower fields for Vg > 1 V indicating that for these low enough
ps densities the Fermi level starts moving up leaving the high-
DOS area next to LM.

The reentrant behavior of QHE disappears when, at Vg >

0.5 V, the EF (B) trajectories on their moving up with Vg no
longer enter the high-field i = 2 gap: Fig. 4(b).

It should be noted that a somewhat similar RIQHE was
observed in Refs. [12] and [31] in a single HgTe layer of the
same 6.5 nm width, but between the i = 1 phase and the i =
0 insulating states: i = 0 → 1 → 0, so it was a flat-bottom
structure in ρyx(B) with a restricted i = 1 plateau at its bottom
and with sides going to infinity. This picture is upside down
when compared to our flat-top peak with the i = 1 plateau
on its top. Their flat-bottom structure was also interpreted as
being due to intersecting electron-like and hole-like LLs.

I. Anticrossing in the i = 1 region

With an increase in Vg from 0 to +1 V, EF (B) is pushed
upward from the high-field i = 2 gap, as is seen in Fig. 4(b)
when switching from the black dash-dot curve to the green
one. In the intermediate case, EF (B) will enter the i = 2 gap
only in a narrow range of fields, as shown in Fig. 4(a) by a
short light-yellow horizontal line at 2–3 T for Vg = +0.5 V.
This is manifested in a significantly weakened transition back
to the i = 2 state, when it is displayed only as a minimum on
the i = 1 plateau: see Fig. 2(b) for this Vg. Finally, this mini-
mum disappears for Vg > 0.5 V, when EF will be completely
in the i = 1 gap.

FIG. 4. (a) Color map of the transverse conductivity σxy(B,Vg)
at T = 260 mK. The white lines are expected plateau-to-plateau
transitions. The triangles and circles are the positions of the first and
second i = 2 → 1 transitions, respectively, as deduced from panel
(b). (b) Zoom of the LL fan chart reported for asymmetrical DQW
potential from Fig. 3, put in relation with the σxy map. The Fermi
levels EF (B) for carrier densities ps = 2.4 × 1015 m−2 (Vg = −1 V),
1.9 × 1015 m−2 (Vg = 0), 0.9 × 1015 m−2 (1 V), and 0.5 × 1015 m−2

(1.3 V) are reported as dot-dashed colored lines. The thick dashed
red lines are illustrations of possible anticrossings.

To be more precise, EF should be located in two sectors
of this gap in this case, as seen in Fig. 4(b). Surprisingly, the
passage of EF (B) through the constriction between the two
sectors does not manifest in ρyx(B), although some elevation
appears in ρxx(B) between B = 2 and 4 T for Vg = 1–1.5 V:
see Fig. 2(b) and the map Fig. 5, where the elevation is
indicated by the green arrow. From our experiments in tilted
magnetic fields (see below) it is distinct that ρxx(B) in its
minima is more sensitive to the details of the LL picture than
the plateaus in ρyx(B).

These data mean that in fact there is an anticrossing
between the zero-mode n = −2 and n = 0 LLs, so that a
continuous connection is formed between the two sectors of
the i = 1 gap, as shown schematically by the red short-dashed
curves in Fig. 4(b) around the expected intersections of these
LLs. In this case, the elevation in ρxx(B) indicates not the
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FIG. 5. Color map of the longitudinal conductivity σxx (B,Vg) at
T = 260 mK. The white lines and the symbols have been reported
from Fig. 4. The solid green arrow points toward the σxx elevation
visible around the position of an apparent zero-mode LL anticross-
ing. The circles and triangles are drawn to compare with similar
points in σxy(B,Vg) on Fig. 4(a).

closure, but the local narrowing of the i = 1 gap in the an-
ticrossing.

The origin of the anticrossing between the mentioned LLs
may be attributed to bulk inversion asymmetry of the unit
cell of zinc-blende semiconductors [12,41] or to the interface
inversion asymmetry due to anisotropy of chemical bonds at
the QW interfaces [42]. The fingerprints of such anticrossings
were observed in LL transitions by means of far-infrared
magnetic spectroscopy [28,43–46], and a possible impact of
many-particle interaction on the observed anticrossings was
also discussed [47].

J. RIQHE and anticrossing in the i = 2 region

A remarkable modification of the RIQHE has been ob-
served by tilting the magnetic field with respect to the sample
normal. As shown in Fig. 6, a tilt angle θ > 30◦ suppresses
the anomalous peak in ρyx(B) at the reentrance, so that an
extra-long unperturbed flat i = 2 plateau appears.

The good reproducibility of the results in the negative field
polarity, seen in Fig. 6 both for a perpendicular and a char-
acteristic tilted field, indicates a high quality of the studied
samples and the robustness of the observed effects.

The tilt also suppresses the corresponding peak in ρxx(B),
but the complete suppression in this case is at larger tilts θ >

44◦, thus indicating a higher sensitivity of ρxx(B) to the details
in the picture of LLs.

Theoretically, the magnetic field component B‖ parallel to
the DQW plane can induce a LL anticrossing even in the
absence of interface inversion asymmetry or bulk inversion
asymmetry [48]. Based on the symmetry analysis of the 8-
band k × p Hamiltonian, we conclude that B‖ mixes the states
of the n = 1 and n = 0 LLs, thereby opening an anticrossing
gap at the expected intersection of these LLs [34]. The implied
anticrossing opens an isthmus between the two i = 2 regions,
so that EF can now avoid the i = 1 region and stay in the
continuous i = 2 region from low to high magnetic fields.

FIG. 6. ρyx (B) in perpendicular fields (at T = 260 mK) and in
the rotator (at 1.8 K). The parallel field component suppresses the i =
1 state so that a pure flat extra-long i = 2 plateau is formed for θ >

30◦. The corresponding anomalous peak in ρxx (B) is fully suppressed
for θ > 44◦.

Consequently, an undisturbed wide i = 2 plateau appears in
place of the RIQHE.

K. The missing low-field i = 0 gap

A zero filling factor state i = 0 is clearly visible at high
fields in Figs. 4 and 5. Its divergent triangular shape in the
experimental maps is remarkably similar to the shape of the
high-field i = 0 region formed within the calculated pictures
of LLs. This additionally confirms our hierarchy of gap num-
bering.

This i = 0 region collapses at Vg = +3 V and B ≈ 2 T.
Randomly, this voltage turns out to be close to the CNP
voltage VCNP.

Intriguingly, the second i = 0 region, which should appear
at still lower magnetic fields between the two n = −2 LLs
according to the calculated picture of LLs in an asymmet-
ric DQW potential, is absent in the experiment. Only in the
weakest fields B � 0.5 T does the state σxy � 0 reappear on
the map, but this area is already close to the transition into the
classical mode where the contour lines for fixed values of σxy

on the map must in any case obey the rule |Vg − VCNP| ∝ 1/B.
The absence of the i = 0 state below the field where the

i = 0 triangle gap is closed corresponds to the case when the
two n = −2 LLs coincide; see Fig. 7. In its turn, this indicates
that at a sufficiently high gate voltage, around Vg = +3 V, the
initially asymmetric DQW becomes symmetric.

The above described existence of a gap between the n =
−2 LLs at high fields, apparent by the observation of the high-
field i = 1 plateau, Fig. 4(a), and the absence of this gap in
weak fields, Fig. 7, can be reconciled by the fact that these
two states manifest in our experiment at different Vg, while
the asymmetry of the DQW profile is modified by applying a
gate voltage. The high-field i = 1 plateau connected with this
gap is observed at Vg � 0, while the absence of the i = 0 gap is
found at Vg = 3 V. Thus, just around Vg = 3 V the initial DQW
asymmetry is compensated by the external electric field due
to the applied gate voltage. From rough estimations based on
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FIG. 7. LL fan chart for a symmetrical DQW with E = 0. The
traces of the Fermi level EF (B) are also reported for four different
positive gate voltages that illustrate transitions between different QH
states when compared to Fig. 4(a) around CNP at Vg = +3 V.

the structure of our gated sample, one expects an electric field
variation 	E � 10 kV/cm for a gate voltage variation 	Vg �
3 V. Thus, the experimental data at Vg = +3 V and around it
should be better analyzed based on Fig. 7 for symmetric DQW
while the LL patterns used for other Vg values should contain
a gap between the n = −2 LLs [these LL patterns may be
roughly obtained by interpolations between or extrapolations
from Fig. 7 and Fig. 4(b)].

Some difference between the experimental and calculated
field positions where the i = 0 gap is closed, seen in Fig. 4,
could be possibly removed by considering the anticrossing of
the upper n = −2 LL with the n = 0 LL and/or by inclusion
of some additional terms into the Hamiltonian. This is an open
question which is left for future work.

L. Capacitance estimations above the RIQHE

As we showed above, the transitions i + 1 → i at B higher
than the RIQHE are driven by the total charge ps. This
implies that Vg and B follow the relation CVg = pse = (i +
1/2)e2B/h, where C is the geometric capacitance. The relation
is shown as white solid lines for i = 1, 0,−1 in the σxy(B,Vg)
color map, Fig. 4(a), starting at B = 0 from the CNP position
Vg = 3 V, from a single point as we conclude that the DQW
randomly becomes symmetric around Vg = VCNP.

Working with the σxy(B,Vg) map, not only the transition
i = 2 → 1 can be analyzed, as described above in weak fields
for ρyx, but also the i = 0 → −1 and i = 1 → 0 transitions.
These transitions are indeed almost perfectly aligned with the
calculated lines, thus confirming the obtained LL pattern and
the adequacy of our analysis and gap numbering.

M. Why is RIQHE in DQW?

At first sight, the conditions for observing the RIQHE in
DQWs may be realized as well in a single HgTe QW with
an inverted spectrum at thicknesses slightly larger than the
critical value [26], since it also contains LM, a highly raised
topmost hole LL, and an electron-like n = 0 LL. However,
the differences are (i) the absence of an additional array of

LLs for holes in the central maximum of the second valence
subband above the electron-like LL as in a DQW and (ii) that
a single topmost hole n = −2 LL is in a single QW, not two
such LLs as in DQWs. Due to the latter, the corresponding
hole filling factors and QH plateau numbers will be shifted
one unit down in a single QW with respect to our case. As a
result, EF (B) at relatively high fields will be stabilized near
LM in the gap with i = 1, not i = 2 as in a DQW. That is why
the prolonged evolution of EF (B) from LM to the topmost
hole LL with increasing field will be developed within the
i = 1 gap and, although an extra-long i = 1 plateau was really
observed in some single HgTe QWs [26,35], this does not give
a distinct information on the exhaustion of the LM reservoir.
The i = 1 QH plateau does not have a distinct high-field
boundary, which is dictated by the transition into an insulating
state in this case. On the contrary, the high-field boundary of
the extended i = 2 plateau in the DQW should be distinctly in
the vicinity of i = 1.5, thus yielding a well-defined value of
the total density ps. The obtained larger value of the latter with
respect to the low-field data indicates unambiguously that a
reservoir-like phenomenon is implied into the process.

In addition, there is no reason for the reentrant behavior of
MR in a single QW, since LLs of only one valence subband
are involved in magnetotransport there, whereas in the DQW
there is an overlap of downward LLs of the second valence
subband (HH11) and the zero-mode n = 0 LL, going up from
the first valence subband (E11) below.

The center part of the DQW energy spectrum resembles the
fragments of the bilayer graphene spectrum around K points
[49] but the latter has no LM and no anomalous LLs [49,50]
to induce the described effects.

V. CONCLUSIONS

In the well-known classical two-fluids model, in which two
types of carriers participate in the electrical conductivity, the
Hall effect at low field is given by the carriers of highest
mobility only, whereas at high magnetic fields, the Hall effect
is given by the overall density of both types of carriers. The
unconventional QHE observed here can be interpreted as a
spectacular quantum extension of this phenomenon. At low
magnetic field, a first set of quantum plateaus is initiated only
by holes from the central maximum of the valence subband
with a small effective mass, while a significant number of
holes in the states of the valence subband lateral maximum
do not manifest themselves in QHE. At higher fields, a new
set of quantum plateaus appears, whose position, shifted to
higher fields with respect to the first set, is dictated by the total
density of holes. At the transition between the two regimes,
the reentrant QHE takes place. A combination of factors is
responsible for this remarkable QHE structure: (i) a lateral
maximum in the valence subband against the background
of the LL fan chart formed from the states of the central
maximum, and an achievable proximity of EF to it in p-type
samples; (ii) the existence of two topmost zero-mode hole LLs
(n = −2) that are significantly raised in energy with respect to
the other hole LLs; (iii) a zero-mode electron-like LL (n = 0)
superposed on LLs of the second subband central maximum.

The observed RIQHE is specific to DQW structures and,
presumably, cannot be found in a single p-type HgTe layer
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with a Dirac or inverted energy spectrum, even if some simi-
larities are observed [12,26,31,40,46,51].
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APPENDIX: TWO-FLUID MODEL OF THE
MAGNETORESISTIVITY

The observation of a distinct linear part of the classical
Hall effect in ρyx(B) as B → 0 (Fig. 2), which yields ps much
smaller than the value obtained from QHE at high fields, may
be accepted as surprising. To understand this difference, the
QHE at low T is compared in Fig. 8 with MR at T = 30 K,

FIG. 8. QHE at 1.8 K and MR at 30 K (circles) with a two-carrier
fit for the latter (lines).

when QHE is quenched. At T = 30 K, ρyx(B) also consists
of two parts with significantly different slopes, the low-field
slope being the same as at low temperatures and the high-field
part with much smaller slope crossing the high-field i = 1 QH
plateau.

This high-temperature ρyx(B) is reproduced by the so-
called classical “two-fluid” model, which takes into account
two kinds of holes: a small amount of high-mobility holes,
p1 = 0.27 × 1015 m−2, μ1 = 3.6 m2/V s, and a large den-
sity of low-mobility holes, p2 = 1.3 × 1015 m−2, μ2 =
0.16 m2/V s. These densities are of the same order as those
determined from quantum magnetotransport at low tempera-
tures. As seen in Fig. 1 the two kinds of holes may originate
from the central valence subband maximum and LM.

[1] The Quantum Hall Effect, 2nd ed., edited by R. E. Prange and
S. M. Girvin (Springer-Verlag, New York, 1990).

[2] X. Y. Lee, H. W. Jiang, and W. J. Schaff, Phys. Rev. Lett. 83,
3701 (1999).

[3] G. M. Gusev, A. K. Bakarov, T. E. Lamas, and J. C. Portal,
Phys. Rev. Lett. 99, 126804 (2007).

[4] M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and
K. W. West, Phys. Rev. Lett. 82, 394 (1999).

[5] R. R. Du, D. C. Tsui, H. L. Stormer, L. N. Pfeiffer, K. W.
Baldwin, and K. W. West, Solid State Commun. 109, 389
(1999).

[6] K. B. Cooper, M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and
K. W. West, Phys. Rev. B 60, R11285 (1999).

[7] J. P. Eisenstein, K. B. Cooper, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 88, 076801 (2002).

[8] N. Deng, A. Kumar, M. J. Manfra, L. N. Pfeiffer, K. W. West,
and G. A. Csáthy, Phys. Rev. Lett. 108, 086803 (2012).

[9] E. Kleinbaum, A. Kumar, L. N. Pfeiffer, K. W. West, and G. A.
Csáthy, Phys. Rev. Lett. 114, 076801 (2015).

[10] A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev.
Lett. 76, 499 (1996).

[11] M. O. Goerbig, P. Lederer, and C. M. Smith, Phys. Rev. B 69,
115327 (2004).

[12] M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C.-X.
Liu, X.-L. Qi, and S.-C. Zhang, J. Phys. Soc. Jpn. 77, 031007
(2008).

[13] M. V. Yakunin, A. V. Suslov, M. R. Popov, E. G. Novik, S. A.
Dvoretsky, and N. N. Mikhailov, Phys. Rev. B 93, 085308
(2016).

[14] S. S. Krishtopenko, W. Knap, and F. Teppe, Sci. Rep. 6, 30755
(2016).

[15] P. Michetti, J. C. Budich, E. G. Novik, and P. Recher, Phys. Rev.
B 85, 125309 (2012).

[16] P. Michetti and B. Trauzettel, Appl. Phys. Lett. 102, 063503
(2013).

[17] J. C. Budich, B. Trauzettel, and P. Michetti, Phys. Rev. Lett.
112, 146405 (2014).

[18] M. V. Yakunin, S. S. Krishtopenko, S. M. Podgornykh, M. R.
Popov, V. N. Neverov, N. N. Mikhailov, and S. A. Dvoretsky,
JETP Lett. 104, 403 (2016).

[19] G. M. Gusev, Yu. A. Pusep, A. K. Bakarov, A. I. Toropov, and
J. C. Portal, Phys. Rev. B 81, 165302 (2010).

[20] V. A. Shvets, N. N. Mikhailov, D. G. Ikusov, I. N. Uzhakov,
and S. A. Dvoretsky, Opt. Spectrosc. 127, 318 (2019).

[21] L. S. Bovkun, S. S. Krishtopenko, A. V. Ikonnikov, V. Ya.
Aleshkin, A. M. Kadykov, S. Ruffenach, C. Consejo, F. Teppe,

165305-9

https://doi.org/10.1103/PhysRevLett.83.3701
https://doi.org/10.1103/PhysRevLett.99.126804
https://doi.org/10.1103/PhysRevLett.82.394
https://doi.org/10.1016/S0038-1098(98)00578-X
https://doi.org/10.1103/PhysRevB.60.R11285
https://doi.org/10.1103/PhysRevLett.88.076801
https://doi.org/10.1103/PhysRevLett.108.086803
https://doi.org/10.1103/PhysRevLett.114.076801
https://doi.org/10.1103/PhysRevLett.76.499
https://doi.org/10.1103/PhysRevB.69.115327
https://doi.org/10.1143/JPSJ.77.031007
https://doi.org/10.1103/PhysRevB.93.085308
https://doi.org/10.1038/srep30755
https://doi.org/10.1103/PhysRevB.85.125309
https://doi.org/10.1063/1.4792275
https://doi.org/10.1103/PhysRevLett.112.146405
https://doi.org/10.1134/S0021364016180132
https://doi.org/10.1103/PhysRevB.81.165302
https://doi.org/10.1134/S0030400X19080253


M. V. YAKUNIN et al. PHYSICAL REVIEW B 102, 165305 (2020)

W. Knap, M. Orlita, B. A. Piot, M. Potemski, N. N. Mikhailov,
S. A. Dvoretskii, and V. I. Gavrilenko, Semiconductors 50, 1532
(2016).

[22] L. S. Bovkun, A. V. Ikonnikov, V. Ya. Aleshkin, S. S.
Krishtopenko, N. N. Mikhailov, S. A. Dvoretsky, M. Potemski,
B. A. Piot, M. Orlita, and V. I. Gavrilenko, JETP Lett. 108, 329
(2018).

[23] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A.
Sherstobitov, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev.
B 88, 155306 (2013).

[24] G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A.
Sherstobitov, M. O. Nestoklon, S. A. Dvoretski, and N. N.
Mikhailov, Phys. Rev. B 93, 155304 (2016).

[25] A. M. Kadykov, S. S. Krishtopenko, B. Jouault, W. Desrat, W.
Knap, S. Ruffenach, C. Consejo, J. Torres, S. V. Morozov, N. N.
Mikhailov, S. A. Dvoretskii, and F. Teppe, Phys. Rev. Lett. 120,
086401 (2018).

[26] I. Yahniuk, S. S. Krishtopenko, Gr. Grabecki, B. Jouault, Ch.
Consejo, W. Desrat, M. Majewicz, A. V. Kadykov, K. E. Spirin,
V. I. Gavrilenko, N. N. Mikhailov, S. A. Dvoretsky, D. B. But,
F. Teppe, J. Wróbel, Gr. Cywiński, S. Kret, T. Dietl, and W.
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