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Dynamical Floquet spectrum of Kekulé-distorted graphene under normal incidence
of electromagnetic radiation
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Electromagnetic dressing by a high-frequency field drastically modifies the electronic transport properties
on Dirac systems. Here its effects on the energy spectrum of graphene with two possible phases of Kekulé
distortion (namely, Kek-Y and Kek-O textures) are studied. Using Floquet theory it is shown how circularly
polarized light modifies the gapless spectrum of the Kek-Y texture, producing dynamical band gaps at the Dirac
point that depend on the amplitude and the frequency of the electric field, and breaks the valley degeneracy of
the gapped spectrum of the Kek-O texture. To further explore the electronic properties under circularly polarized
radiation, the dc conductivity is studied by using the Boltzmann approach and considering both intervalley
and intravalley contributions. When linearly polarized light is considered, the band structure of both textures is
always modified in a perpendicular direction to the electric field. While the band structure for the Kek-Y texture
remains gapless, the gap for the Kek-O texture is reduced considerably. For this linear polarization it is also
shown that nondispersive bands can appear by a precise tuning of the light field parameters, thus inducing
dynamical localization. The present results suggest that optical measurements will allow one to distinguish
between different Kekulé bond textures.
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I. INTRODUCTION

Due to its hexagonal symmetry, graphene possesses a
double-cone linear spectrum [1], each of them labeled by K
and K ′ at the corners of the corresponding hexagonal Bril-
louin zone. As they are separated by a large momentum,
these two nonequivalent cones can be considered independent
and be described by a spinlike degree of freedom: the val-
ley isospin, provided that any perturbation in the system is
larger when compared with the lattice parameter [2]. There
are several mechanisms that allow one to engineer the spec-
trum of graphene, including interactions with substrates [3],
strain [4–6], moiré patterns [7], adatoms [8,9], magnetic fields
[10–12], and time-dependent electromagnetic fields [13–15].
In this manuscript, we study the effect of combinations of two
of these mechanisms on the band structure. Inspired by the
recent experimental confirmation of a Kekulé Y-shaped (Kek-
Y) phase in graphene when deposited on a Cooper substrate
[16] and the results of density functional theory calculations
that suggest the possibility of obtaining the Kekulé O-shaped
(Kek-O) phase by depositing graphene on top of a topolog-
ical insulator [17,18], we explore the effect of irradiating
Kekulé-distorted graphene with polarized light (linearly and
circularly) at normal incidence. Also, we calculate the dc con-
ductivity using a Boltzmann formalism [19,20], which could
be suitable to compare with experiments.
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In graphene, we call a Kekulé distortion to a periodic bond
distance modification (local strain) with a spatial frequency
that increases the size of the unit cell to that of an hexagonal
ring of carbon atoms [21]. This results in the merging of the
two Dirac cones at the center of the Brillouin zone, produc-
ing either a gap (Kek-O) or the superposition of two cones
with different Fermi velocities (Kek-Y) [22]. There have been
several works exploring the consequences of a Kekulé texture
on graphene, especially after the experimental realization of
Gutiérrez et al. [16]: Gamayun et al. demonstrated the absence
of a gap for a Kek-Y distortion and deduced the Hamiltonian
for both types of distortions [22]. Andrade et al. studied
the effects of uniaxial strain [23,24], which previously was
shown to affect the formation of the Kekulé pattern [25].
Other works have investigated the electronic transport prop-
erties of Kekulé-distorted graphene [26–29], the competition
with spin-orbit interactions [30], as well as the consequences
of a Kekulé distortion in analog systems, where low-energy
excitations are phonons [31] or magnons [32,33].

It is well established that electromagnetic radiation can
dramatically change the band structure of an electronic sys-
tem [34–37]. In particular, for Dirac-like systems (with linear
dispersion), it may lead to the creation of gaps and changes in
their topological flavor. One of the first studies addressing the
manipulation of electronic transport by electromagnetic fields
in the so-called Dirac matter is the one by Fistul and Efetov
[38], who suggested that the dynamic gap induced by irradiat-
ing graphene with an electromagnetic field can serve as a way
to control the Klein tunneling in a p-n junction [39]. Later,
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Oka and Aoki pointed out the nontrivial character of this gap
and thereby predicted a photoinduced dc Hall current associ-
ated with it [40]. The presence of this gap can be demonstrated
analytically [41–43] and can be confirmed using the stan-
dard quantum-field-theory approach, where electron-photon
interaction in graphene irradiated by polarized photons results
in a metal-insulator transition [44]. These results extend to
other Dirac materials [45,46], like topological insulators [47],
borophene [48–51], α-T3 graphene [52–55], and silicene [56].
Moreover, although the electronic and optical conductivity
that results from the application of an in-plane electromag-
netic field has already been analytically studied [26], until now
the dynamical band structure of irradiated Kekulé graphene,
where the two valleys are nested in the same point, has not
been explored yet.

In this paper we address the general problem of an electron
in a Kekulé-distorted graphene under circularly and linearly
polarized light. The circularly polarized light problem is ad-
dressed in the weak-field regime, and the corresponding linear
light problem is solved in the high-frequency regime. We
report the quasienergy spectrum for both textures, Kek-Y and
Kek-O, considering these two types of polarization. In the
case of circularly polarized light, we show the exact expres-
sions for gap-opening conditions. For linearly polarized light,
we demonstrate that it breaks the angular symmetry in the
quasienergy spectrum. To understand the physical properties
of this system, we calculate the dc conductivity by using the
Boltzmann approach and considering intervalley and intraval-
ley contributions under circularly polarized light.

The paper is organized as follows. In Sec. II we intro-
duce the honeycomb lattice of Kekulé-distorted graphene, as
well as its low-energy Hamiltonian, and in Sec. III we com-
pute the quasienergy spectrum by solving the Dirac equation
when an electromagnetic wave is applied normally to the
lattice. Finally, in Sec. IV we calculate the dc conductivity of
Kek-Y–distorted graphene under a circularly polarized elec-
tromagnetic wave, and in Sec. V we present the conclusions
of this work.

II. THE CONTINUUM HAMILTONIAN FOR
KEKULÉ-DISTORTED GRAPHENE

Considering a monolayer of Kekulé-distorted graphene
lying in the plane at z = 0, we define the lattice vectors,
a1 = δ3 − δ1 and a2 = δ3 − δ2, in terms of the three nearest-
neighbor vectors: δ1 = 1

2 (
√

3,−1)a0, δ2 = − 1
2 (

√
3, 1)a0,

δ3 = (0, 1)a0 (with the bond length a0 ≈ 1.42 Å). Thus
Kekulé distortions can be described in the first-neighbor tight-
binding Hamiltonian [22],

Htb = −
∑
r,l

tr,l a
†
r br+δl + H.c., (1)

by a bond-density wave

tr,l/t0 = 1 + 2 �{
�̃ei(pK++qK− )·δl +iG·r−i2π (p+q)/3}, (2)

which periodically modifies the hopping amplitudes, tr,l , be-
tween an atom at site r = n1a1 + n2a2 (n1, n2 ∈ Z) and its
three nearest-neighbor sites at r + δl . There, t0 ≈ 2.7 eV
is the hopping amplitude of the unperturbed C-C bond,
�̃ = ei2π (p+q+m)/3�0 (p, q ∈ Z3 and m ∈ Z) is the so-called

(a) (b)

(c) (d)

FIG. 1. Kekulé-distorted honeycomb lattice and dispersion rela-
tion for (a) the Kek-Y (ν = 1) and (c) the Kek-O (ν = 0) texture. The
red and black lines represent slightly shorter and longer bond lengths,
respectively. For ν = 1, the internal and external cones touch each
other at the Dirac point, while for ν = 0 a gap is open, as shown in
(b) and (d), respectively.

Kekulé parameter [22], and G = K+ − K− is the Kekulé
wave vector, with K± = 2π

9

√
3(±1,

√
3)a0 the reciprocal lat-

tice vectors. We can distinguish between the Kek-O and
the Kek-Y textures through the index ν = 1 + q − p mod 3,
where |ν| = 1 accounts for Kek-Y and ν = 0 for Kek-O (see
Fig. 1).

Using the low-energy approximation, it is possible to show
that the corresponding continuum Hamiltonian for Kekulé-
distorted graphene is [22]

H0 =
(

vσ · p �̃Qν

�̃∗Q†
ν vσ · p

)
, (3)

where p = h̄(kx, ky) is the momentum, σ = (σx, σy) is the
Pauli vector, with the Pauli matrices σi acting on the pseu-
dospin degree of freedom; while the matrix is expanded on the
valley degree of freedom, such that the valley mixing operator
Qν is defined by

Qν =
{

3t0σz if ν = 0,

vF (νpx − ipy)σ0 if |ν| = 1,
(4)

with v = 3
2 t0a0/h̄ ≈ c/300 the Fermi velocity in pristine

graphene.
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The electronic band structure is obtained by solving the
eigenvalue problem H� = E� in momentum space, where �

is a four-component spinor which contains the amplitudes on
sublattices A and B for the valleys K and K ′. Therefore the
spectrum for graphene with Kek-Y distortion consists of two
concentric gapless Dirac cones [see Fig. 1(b)],

E ξ,η

Y (k) = ηvh̄k(1 + ξ�0), (5)

where k =
√

k2
x + k2

y is the total momentum, and the cor-

responding spinors, that depend only on the momentum
direction, θ = tan−1(ky/kx ), are given by

�ξ,η(k) = 1
2 (ξe−i2θ , ξηe−iθ , ηe−iθ , 1)T. (6)

For graphene with Kek-O distortion, two degenerate gapped
cones are found [see Fig. 1(d)]:

Eη

O(k) = η
√

(vh̄k)2 + (3t0�0)2. (7)

Here η = ± denotes the band (conduction or valence, re-
spectively) and ξ = ± corresponds to the cone (internal
or external, respectively). The two concentric Dirac cones
in the Kek-Y spectrum are characterized by two different
velocities—v(1 + �0) for the internal cone and v(1 − �0) for
the external cone.

III. KEKULÉ-DISTORTED GRAPHENE UNDER
ELECTROMAGNETIC RADIATION

To study the dynamics of charge carriers in Kekulé-
distorted graphene under electromagnetic radiation, we intro-
duce a minimal coupling p → π = p − eA in the low-energy
Hamiltonian (3), where A = (Ax, Ay) is the vector potential
of the electromagnetic wave, which is a periodic function of
time, and e the electron charge. Therefore from Eq. (3) we
obtain

H (t ) =
(

vσ · π �̃Qν (t )

�̃∗Q†
ν (t ) vσ · π

)
, (8)

with Qν (t ) = vF (νπx − iπy)σ0 for |ν| = 1, where πx = px −
eAx and πy = py − eAy. For ν = 0 the operator Qν remains
invariant [see Eq. (4)]. The Dirac equation for charge carries
is thus given by

ih̄
∂

∂t
�(k, t ) = H (t )�(k, t ), (9)

where �(k, t ) is a four-component spinor. We can write the
Hamiltonian (8) as follows:

H (t ) = H0 + V (t ), (10)

where H0 is given in Eq. (3), and

V (t ) =
(−evσ · A �̃Wν

�̃∗W †
ν −evσ · A

)
(11)

is the external perturbation due to the presence of the elec-
tromagnetic wave, where Wν = −ev(νAx − iAy)σ0 if |ν| = 1,
and Wν = 0 if ν = 0.

We are interested in deducing the analytical expression
for the charge-carrier dynamics under this time-periodic ex-
ternal field with frequency �, given that V (t ) = V (t + T ),

with T = 2π/� the period. Instead of following the standard
perturbation theory or the usual Floquet approach [57–59],
here we use a method developed in Refs. [43,44,60], which
is based in an expansion using the basis that evolves with the
time-dependent part of the Hamiltonian. Then we write

�(k, t ) = e−iεt/h̄
4∑

n=1

an(k, t )ψn(t ), (12)

where the quasienergy ε and the time-dependent coefficients
an(k, t ) are to be determined, while the four-component spinor
ψn(t ) (n ∈ {1, 2, 3, 4}) is the nth solution of the matrix differ-
ential equation,

ih̄
d

dt
ψn(t ) = V (t )ψn(t ), (13)

with V (t ) defined by Eq. (11). In the ansatz of Eq. (12), the
dependence on momentum is contained in the coefficients
an(k, t ) and, according to the Floquet theory [57,59], ε de-
scribes the dynamical spectrum of quantum systems exposed
to periodic perturbations in time.

Now, using Eq. (12) in the Dirac equation (9), each coeffi-
cient am(k, t ) is given by

ih̄
d

dt
am(k, t ) =

4∑
n=1

[ψ†
m(t )H0ψn(t )]an(k, t ) − εam(k, t ).

(14)
Notice that this method is a variant of the usual Floquet theory.
Moreover, due to the Floquet theorem, the solution to Eq. (9)
must satisfy

(k, t + T ) = e−iHeffT/h̄(k, t ), (15)

where Heff is known as the effective Hamiltonian [58,59]. Its
eigenvalues are the quasienergies. In fact, the ansatz proposed
in Eq. (12) has the form of the Floquet solution, and this
requires the term inside the sum to be periodic. Indeed, all
of our final solutions follow the Floquet theorem. However,
the operator that appears inside the brackets in Eq. (14) is
not the effective Hamiltonian and in general does not have
periodicity T , due to the possible different quasienergies of
ψn(t ) and ψm(t ). One can check that in spite of this, the result
will always satisfy the Floquet theorem (see, for example,
Appendix A).

In the subsequent sections we obtain analytical expres-
sions for the quasienergies ε considering normal incidence
of electromagnetic radiation with both circular and linear
polarization.

A. Circularly polarized light

Consider the normal incidence of a circularly polarized
electromagnetic wave defined by the vector potential

A = E0

�
[cos (�t ), sin (�t )], (16)

where E0 is the amplitude of the electric field, taken as con-
stant, and � is the angular frequency. Also, we have neglected
the third dimension. The corresponding electric field is given
by E = −∂A/∂t = E0[ sin (�t ), − cos (�t )]. In the follow-
ing sections we analyze the resulting spectrum for the two
kinds of Kekulé bond textures.

165301-3



M. A. MOJARRO et al. PHYSICAL REVIEW B 102, 165301 (2020)

1. Kek-Y texture under circularly polarized radiation

For simplicity, in the Hamiltonian for Kek-Y–distorted
graphene we take ν = 1 and a real �̃ = �0; the case with
ν = −1 and a complex �̃ can be obtained by a unitary trans-
formation [22].

Here it is convenient to define

Ẽ = eE0v

h̄�2
. (17)

Since for this case we are interested in the effects of a weak
electromagnetic field, we ask for Ẽ 	 1 such that(ev

�

)
E0 	 h̄�, (18)

which means that the interaction energy between the electric
field and the induced dipole moment ev/� is smaller than the
energy of a photon.

Under these considerations we obtain analytical solutions
of Eq. (9). To this end we first find the vector solutions ψn of
Eq. (13); later we build the ansatz of Eq. (12) and substitute
it into Eq. (9), to finally find the coefficients an(k, t ) and
the energy eigenvalues ε (see Appendix A). Therefore, the
quasienergy spectrum for Kek-Y–distorted graphene irradi-
ated with circularly polarized light is

ε
ξ,η

Y (k) = η 1
2 (

√
(α − h̄�)2 + (2vh̄k)2

+ ξ
√

(β − h̄�)2 + (2�0vh̄k)2), (19)

where

α = h̄�

√
1 + (2Ẽ )2, (20)

β = h̄�

√
1 + (2�0Ẽ )2. (21)

In Appendix A we show the corresponding four-component
spinors. The resulting quasienergy spectrum is shown in
Fig. 2(a), where we have considered E0 = 9 V/m and � =
0.5 THz with the Kekulé parameter �0 = 0.1. It can be seen
that two different quasienergy band gaps appear at the Dirac
point, one for the external cones [shown schematically in
green in Fig. 2(b)],

ε
g
Y,− = α − β = h̄�(

√
1 + (2Ẽ )2 −

√
1 + (2�0Ẽ )2), (22)

and another one for the internal cones [shown schematically
in blue in Fig. 2(b)],

ε
g
Y,+ = ε

g
Y,− + 2δε

g
Y. (23)

The gap between the concentric cones is obtained from

δε
g
Y = β − h̄� = h̄�(

√
1 + (2�0Ẽ )2 − 1). (24)

The previous results have a simple interpretation. Let us
expand up to first order in Ẽ to find

ε
g
Y,± ≈ 2h̄�

(
1 ± �2

0

)
Ẽ2. (25)

Now consider the pristine graphene case �0 = 0 which
results in δε

g
Y = 0 and a gap ε

g
Y,± = 2h̄�Ẽ2. This represents

a transition from a valence state at quasienergy −ε
g
Y/2 to

a final state in the conduction band with quasienergy ε
g
Y/2.

The transition is induced by resonant photon absorption of

FIG. 2. Quasienergy spectrum for (a) Kek-Y (ν = 1) and
(c) Kek-O (ν = 0) textured graphene, irradiated with a weak cir-
cularly polarized electromagnetic wave, such that Ẽ 	 1. Here we
have defined k̃x ≡ kxv/� and k̃y ≡ kyv/�. As shown schematically
in (b) and (d), for a cut along the direction ky = 0, two quasienergy
band gaps appear at the Dirac point for the Kek-Y texture, and the
valley degeneracy breaks for the Kek-O texture, respectively. The
dotted lines represent the energy bands in absence of the external
electromagnetic wave. Considering an amplitude of the electric field
E0 = 9 V/m, and a frequency � = 0.5 THz, the quasienergy band
gaps are ε

g
Y,− ≈ 1.9442 μeV and ε

g
Y,+ ≈ 1.9835 μeV, for the Kek-Y

texture, and ε
g
O,− ≈ 1.620 134 1 eV and ε

g
O,+ ≈ 1.620 138 eV for the

Kek-O texture, with δε
g
Y ≈ 19.697 neV and δε

g
O ≈ 1.9639 μeV.

energy 2h̄� in the very-weak-field case, obtainable also with
the usual perturbation techniques [26]. Higher-order terms Ẽ
given by the Floquet theory are a dressing of the transition.
As expected, such dressing is small yet is vital in Floquet
theory, as otherwise the solution lies in a gap and is thus
unstable. By turning on the �0 Kekulé ordering parameter,
we have a small detuning due to the spatial modulation. This
produces satellite peaks around each resonant frequency of
the nonmodulated system, a phenomena akin to beating in
classical physics [61,62].
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2. Kek-O texture under circularly polarized radiation

To study the dynamical spectrum of charge carriers in
Kek-O (ν = 0) textured graphene under circularly polarized
light, we proceed as before (see Appendix A), we consider a
weak electromagnetic field, and obtain the following gapped
quasienergy spectrum:

ε
ξ,η

O (k) = η 1
2

√
(6t0�0 − ξα + ξ h̄�)2 + (2vh̄k)2. (26)

We can see that the there is no degeneration when com-
pared with the spectrum in the absence of external field. The
quasienergy spectrum now consists of two concentric cones
with different gaps at the Dirac point. For the external cones
we find a gap given by

ε
g
O,− = 6t0�0 − α + h̄� = 6t0�0 + h̄�(1 −

√
1 + (2Ẽ )2),

(27)
and for the internal cones

ε
g
O,+ = 6t0�0 + α − h̄� = 6t0�0 − h̄�(1 −

√
1 + (2Ẽ )2),

(28)
with the gap between the concentric cones given by

δε
g
O = α − h̄�, (29)

as shown schematically in Fig. 2(d).
The quasienergy spectrum for the ν = 0 Kek-O texture

under circularly polarized radiation in the weak electromag-
netic field regime (17) is shown in Fig. 2(c), where we have
considered E0 = 9 V/m and � = 0.5 THz, with the Kekulé
parameter �0 = 0.1.

From Eqs. (27) and (28), we obtain that

ε
g
O,± ≈ 6t0�0 ± (2h̄�)Ẽ2. (30)

Up to order zero in Ẽ the result is just the same static gap
6t0�0 already present in the system without radiation. Then
we have the transition from the valence to conduction band
induced by the photon with energy 2h̄� as in Eq. (25).

B. Linearly polarized light

We consider the normal incidence of a linearly polarized
electromagnetic wave defined by the vector potential

A = E0

�
[cos (�t ), 0], (31)

where for simplicity we consider the polarization along the x̂
direction, and again we have neglected the third dimension.
The corresponding electric field is given by E = −∂A/∂t =
−E [sin(�t ), 0]. In the next sections we show the resulting
spectrum for the two kinds of Kekulé bond texture.

1. Kek-Y texture under linearly polarized light

Consider a Kek-Y textured graphene irradiated with lin-
early polarized light, where again we take ν = 1 and a real
�̃ = �0. For this case we are interested in the high-frequency
regime such that the energy of a photon is larger than the
energy of charge carriers in pristine graphene:

vh̄k 	 h̄�. (32)

FIG. 3. Schemes of the quasienergy spectrum of Kek-Y–
distorted graphene with a cut along (a) the kx direction and (b) the ky

direction, irradiated with a linearly polarized electromagnetic wave
in the high-frequency regime (32). Similarly, a cut of the quasispec-
trum of Kek-O–distorted graphene is shown along (c) the kx direction
and (d) the ky direction. Here, the dotted lines represent the energy
bands in absence of the external wave. It is shown how the spectrum
is modified perpendicular to the direction of polarization and how the
natural energy gap in the Kek-O–distorted graphene is reduced.

We can analytically solve the Dirac equation, Eq. (9), under
the last considerations (see Appendix B) and obtain the fol-
lowing gapless quasienergy spectrum:

ε
ξ,η

Y (k) = ηvh̄k(
√

cos2 (θ ) + J2
0 (2Ẽ ) sin2 (θ )

+ ξ�0

√
cos2 (θ ) + J2

0 (2�0Ẽ ) sin2 (θ )), (33)

where J0(z) is the Bessel function of the first kind.
Figure 3(a) shows a cut of the spectrum along the kx

direction. As can be seen from Eq. (33), for this parallel
direction there is no change in the spectrum; this holds even
without taking the high-frequency approximation as for θ = 0
we obtain ε

ξ,η

Y (k) = E ξ,η

Y (k). This means that transitions are
not induced by the external field, as for this kind of light the
symmetry is not broken. For any other direction of momen-
tum, the application of the linearly polarized light results in
a direction-dependent Fermi velocity, as shown schematically
in Fig. 3(b).

165301-5



M. A. MOJARRO et al. PHYSICAL REVIEW B 102, 165301 (2020)

The change in the direction-dependent Fermi velocity can
be obtained by developing the square root in Eq. (33),

ε
ξ,η

Y (k) ≈ E ξ,η

Y (k) + η�v(θ )h̄k, (34)

where

�v(θ ) =
[

J2
0 (2Ẽ ) + ξ�0J2

0 (2�0Ẽ )

2
− 1

]
sin2(θ ). (35)

Notice that for linearly polarized light, we do not need to
assume Ẽ 	 1; thus in Eq. (33) the system can reach the
condition J0(2Ẽ ) = 0 or J0(2�0Ẽ ) = 0. A zero of the Bessel
function will imply a band nearly flat in the direction θ =
±π/2.

2. Kek-O texture under linearly polarized light

Finally, for Kek-O (ν = 0) textured graphene under lin-
early polarized light under the high-frequency regime, we
found the following degenerate gapped quasienergy spectrum:

ε
η

O(k) = η{(vh̄k)2[cos2 (θ ) + J2
0 (2Ẽ ) sin2 (θ )]

+ (3t0�0)2J2
0 (2Ẽ )}1/2. (36)

We note that for this case, the incidence of radiation is equiv-
alent to perform ky → |J0(2Ẽ )|ky and to modify the band gap
by a factor �0 → |J0(2Ẽ )|�0 such that the quasienergy band
gap is ε

g
O = 6t0�0|J0(2Ẽ )|. The quasienergy spectrum for

Kek-O textured graphene under linearly polarized radiation is
shown schematically in Figs. 3(c)–(d). Whenever J0(2Ẽ ) = 0,
the quasispectrum becomes gapless, and then we have that

ε
η

O(k) = ηvh̄k cos θ = ηvh̄kx. (37)

This also shows that for θ = ±π/2 a nondispersive band is
observed, which means that electrons are localized in the y
direction. Hence we can find the value of the electric field to
obtain this nondispersive band. If we take into account the
first root of the Bessel function J0(2Ẽ ), this condition implies
that 2Ẽ ≈ 2.405, and therefore using Eq. (17) with a high-
frequency � = 1713 THz, we find E0 ≈ 2.32 V/nm. These
values of intensity and frequency for the electromagnetic field
can be achieved, for example, using a Ti:sapphire laser (650–
1100 nm) with a power per unit area of 7.16 × 10−3 W/nm2,
as in recent graphene photocurrent experiments [63,64].

IV. DC CONDUCTIVITY

As is now well established, light changes a 2D material
conductivity [34]. It is interesting to explore such a photocon-
ductivity effect for the studied system. As an example, we will
calculate the dc conductivity of the Kek-Y (ν = 1) distorted
graphene under circularly polarized radiation. This calcula-
tion is made using the Boltzmann transport theory [19,20],
which requires the introduction of a relaxation mechanism.
Here this is taken as random-distributed δ function scatters
such that the scattering potential is written as follows [47]:

U (r) =
N∑

j=1

U0δ(r − r j ), (38)

with r the position vector. It is important to remark that in
Kekulé-distorted graphene the Brillouin zone is folded and

the two Dirac cones are brought into the center, as mentioned
before. Consequently, electronic transitions between states in
the two valleys are now possible (intervalley transport), in
addition to those between states in a single valley (intravalley
transport). The probability of horizontal transitions of con-
duction electrons (η = +) between the cone ξ with wave
vector k and the cone ξ ′ with wave vector k′, per unit time,
is calculated using the Born scattering expression [43,65] and
has the following form:

w
ξ ′,ξ
k′k = 2π

h̄

∣∣χξ ′,ξ
k′k

∣∣2|Uk′k|2δ
[
ε

ξ ′,+
Y (k′) − ε

ξ,+
Y (k)

]
, (39)

where

χ
ξ ′,ξ
k′k =

4∑
n=1

bξ,+
n (k)

[
bξ ′,+

n (k′)
]∗

, (40)

with each bξ,+
n (k) given in Appendix A, and the square mod-

ulus of the matrix elements of the scattering potential [47] is
given by

|Uk′k|2 =
∣∣∣∣∣ 1

A

∫
A

d2r ei(k−k′ )·rU (r)

∣∣∣∣∣
2

= NA

A
U 2

0 , (41)

where A is the sample area and NA = N/A is the density of
impurities.

If we apply a stationary electric field E to the sample, the
Boltzmann equation for the current density at zero tempera-
ture and a Fermi energy εF in the conduction band are given
by

J =
∑

ξ

e2

(2π )2

∫
d2k[E · vξ (k)]τξ (k)vξ (k)δ

[
ε

ξ,+
Y (k) − εF

]
,

(42)
where vξ (k) = (1/h̄)∇kε

ξ,+
Y (k) is the group velocity and τξ (k)

is the relaxation time. The usual way to calculate τξ (k) can be
found in the literature [19,58]. However, usually this is done
for isotropic systems, where the wave vector of the incident
electron k and the wave vector of the scattered electron k′

satisfy |k| = |k′|. In our case, this is not possible, since we are
considering intervalley transitions such that |k| �= |k′|. Given
that, we need to consider the anisotropic relaxation time [66],
which is typically used when the Fermi surfaces are not spher-
ically symmetric. Therefore the more general anisotropic case
is written as the following integral equation [66]:

1

τξ (k)
=

∑
ξ ′

A
∫

d2k
[

1 − τξ ′ (k′)[E · vξ ′ (k′)]
τξ (k)[E · vξ (k)]

]
w

ξ ′,ξ
k′k . (43)

The sum in Eq. (42) runs over the initial states, and the sum in
Eq. (43) runs over the final states. Given the azimuth symme-
try, we consider an electric field in the x̂ direction E = (Ex, 0)
such that the conductivity will be given by σ = Jx/Ex. The
subsequent steps to calculate the current density as well as the
relaxation time are shown in Appendix C. It is found that the
dc conductivity has the following form:

σ =
∑

ξ

e2

2π h̄
kξ

F τξ

(
kξ

F

)
vξ

(
kξ

F

)
, (44)
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FIG. 4. dc conductivity of the Kek-Y–distorted graphene under
circularly polarized radiation as a function of the irradiance I0 (where
I0 = ε0E 2

0 c/2). (a) Behavior of the dc conductivity for different val-
ues of the Kekulé parameter �0 with εF = 0.15 meV. Notice how in
the limit of �0 → 0 we recover the dc conductivity of graphene [43].
In (b) we show the behavior of the conductivity for different values of
the Fermi energy and �0 = 0.15. In both panels, σ0 (4h̄e2v2/πNAU 2

0 )
is the dc conductivity in graphene when I0 = 0. The photon energy
of the polarized wave has a value h̄� = 4 meV.

where kξ
F is the Fermi wave vector such that ε

ξ,+
Y (kξ

F ) = εF ,
and vξ (k) = |vξ (k)|. Also, we have considered the spin de-
generacy (factor 2). In Fig. 4(a) we show the conductivity
at different values of �0 and the graphene limit �0 → 0,
recovering previous results [43]. Also, in Fig. 4(b) we show
the conductivity with a fixed Kekulé parameter �0 for differ-
ent values of the Fermi energy. As expected, Fig. 4(a) shows
that the Kekulé bond pattern decreases σ . Moreover, in the
limit �0 → 1, the conductivity goes to zero. In this limit the
hopping amplitude of the longer bonds in Fig. 1(a) is zero,
resulting in a disconnected lattice of red Y bond patterns.
Therefore the conductivity is zero.

By looking at Eq. (44), is clear that σ is modified mainly
by the new relaxation scattering channels, a typical result for
modulated systems [67,68]. Notice that in Eq. (44) two kinds
of relaxation appear. In one kind, the initial state is the internal
cone. Then the electron can be scattered into a state in the
same cone or into a state in a different cone. These transitions
are sketched out by the cuts of the energy dispersion seen

FIG. 5. Relaxation time as a function of the Kekulé parameter
�0 for different values of the irradiance I0 (ε0E 2

0 c/2) and εF = 0.15.
(a) Relaxation time for transitions with the internal cone as the initial
state (ξ = +). The inset shows a horizontal cut in the quasispectrum
to illustrate two possible horizontal transitions. In (b) we show the
relaxation time with the external cone as the initial state (ξ = −). In
the same way, the inset shows the two possible horizontal transitions.
In both panels we use τ0 = 4h̄3v2/εF NAU 2

0 , which corresponds to the
pristine graphene relaxation time when I0 = 0.

in Fig. 5(a). For pristine graphene, the relaxation between
different cones is forbidden while here it is allowed. In the
other kind, the initial state is in the external cone. The corre-
sponding relaxation times are given in Eqs. (C13) and (C14)
for a fixed Fermi energy. In Fig. 5 we show the relaxation
time as a function of the Kekulé parameter �0 for different
values of the irradiance of the external electromagnetic wave.
Observe that for I0 = 0, the relaxation time decreases as a
function of �0, explaining the results of Fig. 1.

V. CONCLUSIONS

We studied the effects of normal electromagnetic radia-
tion on Kekulé-distorted graphene. We presented analytical
expressions for the quasienergy spectrum for both textures,
Kek-Y and Kek-O, and considering two types of polariza-
tion, circular and linear. Circularly polarized radiation opens
a gap in the otherwise gapless spectrum of Kek-Y–distorted
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graphene, while it breaks the valley degeneracy in the gapped
spectrum of Kek-O textured graphene. To further characterize
these gapped systems we calculated, by using the Boltzmann
approach, the dc current as a function of the field intensity,
considering inter- and intravalley contributions. We found that
the total conductivity is decreased by the Kekulé distortion as
relaxation times are decreased due to the new open scattering
channels, such as, for example, transitions between the inter-
nal and external cones. On the other hand, linearly polarized
radiation does not open a gap in the Kek-Y–distorted graphene
but modifies the gap in Kek-O graphene. Moreover, it breaks
the angular symmetry in the quasienergy spectrum for both
textures. An interesting result is that for linear polarization,
nondispersive bands can appear by a precise tuning of the light
field parameters, thus inducing dynamical localization. In all
cases we successfully recover the expressions for pristine
irradiated graphene [43] in the limit �0 → 0.
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APPENDIX A: CIRCULARLY POLARIZED LIGHT

We detail below the procedure to obtain the quasienergy
spectrum and the corresponding spinors of Kek-Y (ν = 1)
distorted graphene under circularly polarized light. We start
from Eq. (13), expressed as

ih̄
d

dt
ψ(t ) = −ev[(A · σ ) ⊗ μ0 + �0σ0 ⊗ (A · μ)]ψ(t ),

(A1)

where A is given by Eq. (16) and with an extra set of Pauli
matrices μi acting on the valley degree of freedom. To solve
the previous equation, we make the following ansatz:

ψ(t ) = e−iεt/h̄U (t )ϕ, (A2)

where ε is a characteristic exponent, ϕ is a four-component
spinor, and U (t ) is a unitary operator given by

U (t ) =

⎛
⎜⎝

e−i�t 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei�t

⎞
⎟⎠. (A3)

Substituting Eq. (A2) into Eq. (A1) (with a real �̃ = �0) we
find

−h̄�

⎛
⎜⎜⎜⎜⎝

1 Ẽ �0Ẽ 0

Ẽ 0 0 �0Ẽ

�0Ẽ 0 0 Ẽ

0 �0Ẽ Ẽ −1

⎞
⎟⎟⎟⎟⎠ϕ = ε ϕ, (A4)

where Ẽ = eE0v/h̄�2.
Analyzing the eigenvalue problem of Eq. (A4) we find ε

and ϕ. Hence, Eq. (A2) is expressed as

ψn(t ) = ψξ,η(t )

= eiη(α+ξβ )t/2h̄

2
√

αβ

⎛
⎜⎜⎜⎝

ξe−i�t√(α + ηh̄�)(β + ξηh̄�)
ξη

√
(α − ηh̄�)(β + ξηh̄�)

η
√

(α + ηh̄�)(β − ξηh̄�)
ei�t√(α − ηh̄�)(β − ξηh̄�)

⎞
⎟⎟⎟⎠,

(A5)

with ξ = ±, η = ±, n ∈ {1, 2, 3, 4}, according to the prescrip-
tion ψ1(t ) = ψ+,+(t ), ψ2(t ) = ψ−,−(t ), ψ3(t ) = ψ−,+(t ),
and ψ4(t ) = ψ+,−(t ); and we have defined the following con-
stants

α = h̄�

√
(2Ẽ )2 + 1, β = h̄�

√
(2�0Ẽ )2 + 1. (A6)

Now, keeping in mind Eq. (A5) in Eq. (12), the Dirac
equation (9) for each coefficient am(k, t ) is

ih̄
d

dt
am(k, t ) =

4∑
n=1

[ψ†
m(t )H0ψn(t )]an(k, t ) − εam(k, t ),

m ∈ {1, 2, 3, 4}. (A7)

Equation (A7) can then be written as

ih̄
d

dt
am(k, t ) =

4∑
n=1

Hmn(t )an(k, t ) − εam(k, t ), (A8)

where Hmn(t ) = ψ†
m(t )H0ψn(t ). This matrix can be further

simplified in the weak-electric-field regime, where Ẽ 	 1.
Therefore we can use this approximation in the amplitudes
of Eq. (A5) but keeping the exact expression for the phase
on the exponential, as this is an oscillating factor. Under this
condition,

H(t ) = vh̄k

⎛
⎜⎜⎜⎜⎜⎝

0 e−i[(α−h̄�)t/h̄+θ] �0e−i[(β−h̄�)t/h̄+θ] 0

ei[(α−h̄�)t/h̄+θ] 0 0 �0e−i[(β−h̄�)t/h̄+θ]

�0ei[(β−h̄�)t/h̄+θ] 0 0 e−i[(α−h̄�)t/h̄+θ]

0 �0ei[(β−h̄�)t/h̄+θ] ei[(α−h̄�)t/h̄+θ] 0

⎞
⎟⎟⎟⎟⎟⎠. (A9)

165301-8



DYNAMICAL FLOQUET SPECTRUM OF … PHYSICAL REVIEW B 102, 165301 (2020)

Notice that as explained in Sec. III, Hmn(t ) it is not the effective Hamiltonian as it is not necessarily periodic. The next
step is to find the quasienergy spectrum ε. However, as explained before, the set of coefficients am(k, t ) multiplied by ψm(t )
must have periodicity 2π/�. Therefore we assume that each coefficient am(k, t ) in Eq. (A8) can be expressed using a unitary
transformation,

am(k, t ) =
4∑

n=1

Ũmn(t )bn(k), (A10)

where

Ũ (t ) =

⎛
⎜⎜⎜⎜⎝

ei(2h̄�−α−β )t/2h̄ 0 0 0

0 ei(α−β )t/2h̄ 0 0

0 0 ei(β−α)t/2h̄ 0

0 0 0 ei(α+β−2h̄�)t/2h̄

⎞
⎟⎟⎟⎟⎠ (A11)

is a unitary operator. Introducing Eq. (A10) into (A8) we get the following eigenvalue problem:

ε

⎛
⎜⎜⎜⎝

b1(k)

b2(k)

b3(k)

b4(k)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

h̄� − (α + β )/2 vh̄ke−iθ vh̄k�0e−iθ 0

vh̄keiθ (α − β )/2 0 vh̄k�0e−iθ

vh̄k�0eiθ 0 (β − α)/2 vh̄ke−iθ

0 vh̄k�0eiθ vh̄keiθ (α + β )/2 − h̄�

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

b1(k)

b2(k)

b3(k)

b4(k)

⎞
⎟⎟⎟⎠. (A12)

Considering a nontrivial solution in the previous equation, the eigenvalues of the previous matrix give the gapped quasienergy
spectrum for Kek-Y–distorted graphene under electromagnetic radiation,

ε
ξ,η

Y (k) = η 1
2 (

√
(α − h̄�)2 + (2vh̄k)2 + ξ

√
(β − h̄�)2 + (2�0vh̄k)2), (A13)

and the final four-component spinors of Eq. (12) have the following form:

�ξ,η(k, t ) = e−iεξ,η
Y t/h̄

⎛
⎜⎜⎜⎜⎝

bξ,η

1 (k)

bξ,η

2 (k)

bξ,η

3 (k)

bξ,η

4 (k)

⎞
⎟⎟⎟⎟⎠, (A14)

where

bξ,η

1 (k) = N e−i2θ�0
{[

ε
g
Y,−/2 − ε

ξ,η

Y (k)
][

ε
g
Y,+/2 − ε

ξ,η

Y (k)
] − (

�2
0 − 1

)
(vh̄k)2}, (A15)

bξ,η

2 (k) = N2e−iθ�0vh̄kε
ξ,η

Y (k), (A16)

bξ,η

3 (k) = N e−iθvh̄k

ε
g
Y,−/2 + ε

ξ,η

Y (k)

{[
ε

g
Y,−/2 − ε

ξ,η

Y (k)
][(

�2
0 − 1

)
ε

g
Y,+/2 − (

�2
0 + 1

)
ε

ξ,η

Y (k)
] − (

�2
0 − 1

)2
(vh̄k)2

}
, (A17)

bξ,η

4 (k) = N
{−[

ε
g
Y,−/2 − ε

ξ,η

Y (k)
][

ε
g
Y,+/2 + ε

ξ,η

Y (k)
] + (

�2
0 − 1

)
(vh̄k)2

}
, (A18)

and N a normalization constant. It is important to remark here
that in the absence of the external electromagnetic field, the
spinors of Eq. (A14) coincide with the solution of unperturbed
Kek-Y–distorted graphene (6). It is important to remark that
the solution satisfies the Floquet theorem.

A similar procedure can be followed to compute
the quasienergy spectrum for the ν = 0 Kek-O–distorted
graphene under circularly polarized light. The expression for
this spectrum is given in Eq. (26).

APPENDIX B: LINEARLY POLARIZED LIGHT

Similarly to the Appendix A, in this part we show the
main results to obtain the quasienergies spectrum for the
ν = 1 Kek-Y–distorted graphene (with a real �̃ = �0) under
linearly polarized light. From Eq. (13) and using the vector

potential (31), we find

ih̄
d

dt
ψ(t ) = −eE0v

�
cos(�t )

⎛
⎜⎝

0 1 �0 0
1 0 0 �0

�0 0 0 1
0 �0 1 0

⎞
⎟⎠ψ(t ).

(B1)

The last expression can be easily solved by integration, and
hence the solution is

ψn(t ) = ψξ,η(t ) = 1
2 eiηẼ (1+ξ�0 ) sin(�t )

⎛
⎜⎝

ξ1
ξη1
η1
1

⎞
⎟⎠, (B2)

with ξ = ±, η = ±, and n ∈ {1, 2, 3, 4} as in Eq. (A5).
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Now according to the Floquet theorem, each a j (k, t ) in
Eq. (12) is a periodic function of time with period T = 2π/�.
Therefore we can express each coefficient aj (k, t ) as a Fourier
series

a j (k, t ) =
∞∑

m=−∞
eim�t f j,m(k), j ∈ {1, 2, 3, 4}. (B3)

With these coefficients we can write the sum in Eq. (12) to
later substitute into the Dirac equation, Eq. (9), and obtain

∞∑
m=−∞

[ε − mh̄�]eim�t f j,m(k)

=
4∑

n=1

∞∑
m=−∞

eim�t fn,m(k)ψ†
j (t )H0ψn(t ). (B4)

To obtain the eigenvalues ε from this expression, we ex-
pand the exponential in ψ j and ψn [see Eq. (B2)], using the
Jacobi-Anger expansion

eiz sin(φ) =
∞∑

s=−∞
Js(z)eisφ, (B5)

where Js(z) is the s-esim Bessel function of the first kind.
After using the orthogonality condition in the time-dependent
exponentials, we get

[ε − mh̄�] f j,m(k)

=
4∑

n=1

[ ∞∑
s=−∞

(Js) jn fn,m−s(k) + K jn fn,m(k)

]
, (B6)

where K jn and (Js) jn are the elements of the matrices

K = vh̄k cos(θ )

⎛
⎜⎜⎜⎝

1 + �0 0 0 0

0 �0 − 1 0 0

0 0 1 − �0 0

0 0 0 −(1 + �0)

⎞
⎟⎟⎟⎠, (B7)

and

Js = ivh̄k sin(θ )

⎛
⎜⎜⎜⎜⎝

0 −Js(−2Ẽ ) −�0Js(−2�0Ẽ ) 0

Js(2Ẽ ) 0 0 −�0Js(−2�0Ẽ )

�0Js(2�0Ẽ ) 0 0 −Js(−2Ẽ )

0 �0Js(2�0Ẽ ) Js(2Ẽ ) 0

⎞
⎟⎟⎟⎟⎠, (B8)

respectively.
Here we focus on the high-frequency field; this condition

implies (ε/h̄�) ≈ 0 and (vk/�) ≈ 0. Then, Eq. (B6) can be
reduced as

−mh̄� f j,m(k) =
4∑

n=1

∞∑
s=−∞

(Js) jn fn,m−s(k). (B9)

The normalization condition implies that | f j,m(k)| � 1, and
the Bessel functions obey |Js(z)| � 1. Keeping this in mind, as
previous reported [43], the last equation leads to f j,m �=0 ≈ 0.
Therefore it is possible to neglect all the Fourier coefficients
except for m = 0. Under these considerations, Eq. (B6) is
reduced to the following eigenvalue problem:

(ε I4×4 − K − J0)

⎛
⎜⎜⎜⎝

f1,0(k)

f2,0(k)

f3,0(k)

f4,0(k)

⎞
⎟⎟⎟⎠ = 0, (B10)

where I4×4 is the identity matrix.
Finally, considering a nontrivial solution in Eq. (B10), we

arrive at the gapless quasienergy spectrum for the Kek-Y–
distorted graphene under linearly polarized light,

ε
ξ,η

Y (k) = ηvh̄k(
√

cos2 (θ ) + J2
0 (2Ẽ ) sin2 (θ )

+ ξ�0

√
cos2 (θ ) + J2

0 (2�0Ẽ ) sin2 (θ )). (B11)

A similar procedure can be followed to compute
the quasienergy spectrum for the ν = 0 Kek-O–distorted
graphene under linearly polarized light. The expression for
this spectrum is shown in Eq. (36).

APPENDIX C: DC CONDUCTIVITY

In this Appendix we show the relevant calculations to
obtain the current density, the relaxation time, and the con-
ductivity for the Kek-Y–distorted graphene under circularly
polarized light.

First, in order to calculate the dc conductivity we in-
troduce a stationary electric field to the Kekulé-distorted
graphene sample. For simplicity, we assume an electric
field along the x̂ direction E = (Ex, 0). The Boltzmann
equation for current density at zero temperature and a
Fermi energy εF in the conduction band (η = +) is
given by

J =
∑

ξ

e2

(2π )2

∫
d2k (E · vξ (k))τξ (k)v (k)δ

(
ε

ξ,+
Y (k) − εF

)
,

(C1)

where εF is the Fermi energy, vξ (k) = (1/h̄)∇kε
ξ,+
Y (k)

is the group velocity, and τξ (k) is the relaxation time,
which in the more general case in polar coordinates is
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given by [66]

1

τξ (k)
=

∑
ξ ′

A

(2π )2

∫
dθ ′

∫
k′dk′

[
1 − τξ ′ (k′)[E · vξ ′ (k′)]

τξ (k)[E · vξ (k)]

]
w

ξ ′,ξ
k′k , (C2)

where w
ξ ′,ξ
k′k is the probability of horizontal transitions of conduction electrons between the cone ξ (initial state) with wave vector

k, and the cone ξ ′ (final state) with wave vector k′, per unit time. The sum in Eq. (C1) runs over the initial states, and the sum in
Eq. (C2) runs over the final states.

Second, we calculate w
ξ ′,ξ
k′k using the four-component spinors of the Kek-Y–distorted graphene under circularly polarized light

(A14),

w
ξ ′,ξ
k′k = 2π

h̄

∣∣χξ ′,ξ
k′k

∣∣2|Uk′k|2δ
[
ε

ξ ′,+
Y (k′) − ε

ξ,+
Y (k)

]
, (C3)

where

χ
ξ ′,ξ
k′k =

4∑
n=1

bξ,+
n (k)[bξ ′,+

n (k′)]∗, (C4)

such that∣∣χξ ′,ξ
k′k

∣∣2 = [∣∣bξ ′,+
2 (k′)

∣∣∣∣bξ,+
2 (k)

∣∣ + ∣∣bξ ′,+
3 (k′)

∣∣∣∣bξ,+
3 (k)

∣∣]2 + ∣∣bξ ′,+
1 (k′)

∣∣2∣∣bξ,+
1 (k)

∣∣2 + ∣∣bξ ′,+
4 (k′)

∣∣2∣∣bξ,+
4 (k)

∣∣2

+2
[∣∣bξ ′,+

2 (k′)
∣∣∣∣bξ,+

2 (k)
∣∣ + ∣∣bξ ′,+

3 (k′)
∣∣∣∣bξ,+

3 (k)
∣∣]∣∣bξ ′,+

1 (k′)
∣∣∣∣bξ,+

1 (k)
∣∣ cos(θ ′ − θ )

+2
∣∣bξ ′,+

4 (k′)
∣∣∣∣bξ,+

4 (k)
∣∣{[∣∣bξ ′,+

2 (k′)
∣∣∣∣bξ,+

2 (k)
∣∣ + ∣∣bξ ′,+

3 (k′)
∣∣∣∣bξ,+

3 (k)
∣∣] cos(θ ′ − θ ) + ∣∣bξ ′,+

1 (k′)
∣∣∣∣bξ,+

1 (k)
∣∣ cos(2θ ′ − 2θ )

}
,

(C5)

and |Uk′k|2 = NA
A U 2

0 according to Eq. (41). Now, considering that the relaxation time does not depend upon the angle θ , from
Eq. (C2) we can find two relaxation times. If we consider the internal cone as the initial state (ξ = +) we obtain

1

τ+(k)
= NAU 2

0

h̄2

k−

v−(k−)

[
�1(k, k−) − τ−(k−)v−(k−)

τ+(k)v+(k)
�2(k, k−)

]
+ NAU 2

0

h̄2

k

v+(k)
�+

3 (k), (C6)

and if now we chose the external cone as the initial state (ξ = −),

1

τ−(k)
= NAU 2

0

h̄2

k+

v+(k+)

[
�1(k+, k) − τ+(k+)v+(k+)

τ−(k)v−(k)
�2(k+, k)

]
+ NAU 2

0

h̄2

k

v−(k)
�−

3 (k), (C7)

where

�1(κ, κ̃ ) = (|b−,+
2 (κ̃ )||b+,+

2 (κ )| + |b−,+
3 (κ̃ )||b+,+

3 (κ )|)2 + |b−,+
1 (κ̃ )|2|b+,+

1 (κ )|2 + |b−,+
4 (κ̃ )|2|b+,+

4 (κ )|2, (C8)

�2(κ, κ̃ ) = (|b+,+
2 (κ )||b−,+

2 (κ̃ )| + |b+,+
3 (κ )||b−,+

3 (κ̃ )|)(|b+,+
1 (κ )||b−,+

1 (κ̃ )| + |b+,+
4 (κ )||b−,+

4 (κ̃ )|), (C9)

�±
3 (κ ) = (|b±,+

2 (κ )|2 + |b±,+
3 (κ )|2)2 + |b±,+

1 (κ )|4 + |b±,+
4 (κ )|4 − (|b±,+

2 (κ )|2 + |b±,+
3 (κ )|2)(|b±,+

1 (κ )|2 + |b±,+
4 (κ )|2).

(C10)

We defined the wave vectors k+ such that ε+,+
Y (k+) = ε−,+

Y (k), and k− with ε−,+
Y (k−) = ε+,+

Y (k). The explicit forms of k+ and
k− are given by the following expression:

k± = 1

vh̄
(
1 − �2

0

){ ∓ ε∓,+
Y (k)

√
4�2

0[ε∓,+
Y (k)]2 + (

1 − �2
0

)[
(β − h̄�)2 − (α − h̄�)2�2

0

]
+ (

1 + �2
0

)
[ε∓,+

Y (k)]2 − (
ε

g
Y,−/2

)(
ε

g
Y,+/2

)(
1 − �2

0

)}1/2
. (C11)

For a fixed Fermi energy εF , the Fermi wave vectors k+
F and k−

F are defined such that ε+,+
Y (k+

F ) = ε−,+
Y (k−

F ) = εF . Then, we
notice that Eqs. (C6) and (C7) form a system of algebraic equations for τ+(k+

F ) and τ−(k−
F ), that is to say,

1

τ+(k+
F )

= NAU 2
0

h̄2

k−

v−(k−
F )

[
�1(k+

F , k−
F ) − τ−(k−

F )v−(k−
F )

τ+(k+
F )v+(k+

F )
�2(k+

F , k−
F )

]
+ NAU 2

0

h̄2

k+
F

v+(k+
F )

�3(k+
F ),

1

τ−(k−
F )

= NAU 2
0

h̄2

k+
F

v+(k+
F )

[
�1(k+

F , k−
F ) − τ+(k+

F )v+(k+
F )

τ−(k−
F )v−(k−

F )
�2(k+

F , k−
F )

]
+ NAU 2

0

h̄2

k−
F

v−(k−
F )

�3(k−
F ). (C12)
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By solving the system we obtain,

τ+(k+
F ) = h̄2

NAU 2
0

v−(k−
F )v+(k+

F ){v−(k−
F )[k+

F �1(k+
F , k−

F ) + k−
F �2(k+

F , k−
F )] + v+(k+

F )k−
F �−

3 (k−
F )}

×{[v+(k+
F )k−

F �1(k+
F , k−

F ) + v−(k−
F )k+

F �+
3 (k+

F )][v−(k−
F )k+

F �1(k+
F , k−

F ) + v+(k+
F )k−

F �−
3 (k−

F )]

+ v+(k+
F )v−(k−

F )k+
F k−

F [�2(k+
F , k−

F )]2}−1, (C13)

and

τ−(k−
F ) = h̄2

NAU 2
0

v−(k−
F )v+(k+

F ){v+(k+
F )[k−

F �1(k+
F , k−

F ) + k+
F �2(k+

F , k−
F )] + v−(k−

F )k+
F �+

3 (k+
F )}

×{[v−(k−
F )k+

F �1(k+
F , k−

F ) + v+(k+
F )k−

F �−
3 (k−

F )][v+(k+
F )k−

F �1(k+
F , k−

F ) + v−(k−
F )k+

F �+
3 (k+

F )]

+ v−(k−
F )v+(k+

F )k−
F k+

F [�2(k+
F , k−

F )]2}−1. (C14)

Now we consider the Jx component of the current density in
polar coordinates:

Jx =
∑

ξ

e2Ex

(2π )2

∫ 2π

0
dθ

∫ ∞

0
kdk τξ (k)v2

ξ (k) cos2(θ )

× δ
[
ε

ξ,η

Y (k) − εF
]
. (C15)

By solving the last integral we obtain

Jx =
∑

ξ

e2Ex

2π h̄
kξ

F τξ

(
kξ

F

)
vξ

(
kξ

F

)
, (C16)

where we have considered the spin degeneracy (factor 2). Fi-
nally, the dc conductivity is given by σ = Jx/Ex [see Eq. (44)].
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