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We investigate the thermodynamics and finite-temperature spectral functions of the Holstein polaron using a
density-matrix renormalization group method. Our method combines purification and local basis optimization
(LBO) as an efficient treatment of phonon modes. LBO is a scheme which relies on finding the optimal local
basis by diagonalizing the local reduced density matrix. By transforming the state into this basis, one can truncate
the local Hilbert space with a negligible loss of accuracy for a wide range of parameters. In this work, we
focus on the crossover regime between large and small polarons of the Holstein model. Here, no analytical
solution exists and we show that the thermal expectation values at low temperatures are independent of the
phonon Hilbert space truncation provided the basis is chosen large enough. We then demonstrate that we can
extract the electron spectral function and establish consistency with results from a finite-temperature Lanczos
method. We additionally calculate the electron emission spectrum and the phonon spectral function and show
that all the computations are significantly simplified by the local basis optimization. We observe that the electron
emission spectrum shifts spectral weight to both lower frequencies and larger momenta as the temperature is
increased. The phonon spectral function experiences a large broadening and the polaron peak at large momenta
gets significantly flattened and merges almost completely into the free-phonon peak.
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I. INTRODUCTION

Developments in experimental methods with ultrafast dy-
namics (see, e.g., Refs. [1–5] and Refs. [6,7] for a review)
have reinforced the interest in the theoretical modeling of
electron-phonon interactions. Despite the complexity of real
materials, qualitative insights can be gained from model sys-
tems such as the Holstein model [8–37], Hubbard-Holstein
model [38–47], hard-core boson-phonon models [48,49], the
t-J model augmented with phonons [50,51], and spin-boson
models [52–55]. It is believed that many experimental results
can be interpreted by studying such toy Hamiltonians that
contain important key features. A paradigmatic example is
the Holstein-polaron model [8] which consists of one elec-
tron interacting with local bosons. Since the electron-boson
interaction is the only means of thermalization in the system
(see, e.g., Ref. [56]), the model allows us to study this partic-
ular relaxation channel, which plays an important role in real
materials, in a controlled way.

The Holstein polaron at zero temperature has been the
subject of intense research [13,18,27,57–61]. Recent devel-
opments in the field of thermalization in isolated quantum
systems and quench dynamics have fueled the demand for
additional research on the model at a finite temperature
[56,62–71]. In particular, the momentum dependence of the
spectral function and the self-energy have recently been com-
puted using a finite-temperature Lanczos method by Bonča
et al. in Ref. [72], followed by a comparison between spectral
properties of the Holstein polaron and an electron coupled to
hard-core bosons [73].

In this paper, we introduce an alternative numerical ap-
proach. We demonstrate that a density-matrix renormalization
group (DMRG) method [74–76] can efficiently reproduce
the spectral function. We also compute the electron emission
spectrum, which can be accessed in angle-resolved photoe-
mission spectroscopy (ARPES) experiments [77–82] and the
phonon spectral function. The method further allows us to
compute thermodynamic observables for very large system
sizes compared to other wave-function based methods.

We combine finite-temperature DMRG with purification
[83–86], time-dependent DMRG (tDMRG) [76,87–90], and
local basis optimization (LBO) [91] to obtain an efficient
scheme to both generate the finite-temperature matrix-product
state (MPS) and to compute different Green’s functions. LBO,
originally introduced by Zhang et al. in Ref. [91], has al-
ready been used for the real-time evolution [35,37,92,93]
and ground-state algorithms [37,52,94–100]. The DMRG
method with purification requires an infinite-temperature state
as its starting point which is artificial and strongly depen-
dent on the truncation of the phonon Hilbert space. Our
results, however, become independent of that truncation in the
polaron-crossover regime at low temperatures, which is phys-
ically most relevant. This allows for the efficient computation
of static and dynamic properties of the Holstein model at finite
temperatures.

In particular, using finite-temperature states we compute
the electron addition spectral function. This quantity has al-
ready been analyzed thoroughly at finite temperatures by
Bonča et al. in Ref. [72] for a system with periodic boundary
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conditions. We show that we can resolve the same peaks as the
finite-temperature Lanczos method and observe an excellent
quantitative agreement. We additionally compute the electron
emission spectrum and the phonon spectral function. The
electron emission spectrum was computed in Ref. [62] for a
two-site and two-electron system. Here, we focus on one elec-
tron and go up to twenty one sites. We further show that the
LBO scheme proposed in Ref. [92] becomes computationally
beneficial at low temperatures and significantly simplifies the
computations of these spectral functions.

This paper is structured as follows. In Sec. II, we intro-
duce the Holstein-polaron model, the observables, and the
spectral functions. We proceed in Sec. III with a description
of the methods used. We introduce DMRG with purifica-
tion in Sec. III A, the time-evolution algorithm in Sec. III B,
and the finite-temperature Lanczos method in Sec. III C. In
Sec. III D and Sec. III E, we show the spectral functions for
the single-site Holstein model. We present the results for the
thermodynamic expectation values in Sec. IV and the results
for the spectral functions in Sec. V. In Sec. VI, we summarize
the paper and provide an outlook.

II. MODEL

A. The Holstein polaron

To study finite-temperature polaron properties we consider
the single-electron Holstein model [8]. The Hamiltonian is
defined as

Ĥ = Ĥkin + Ĥph + Ĥe-ph . (1)

The model has L sites and we use open boundary conditions,
unless stated otherwise. We set h̄ = 1 throughout this paper.
The first term, the kinetic energy of the electron, then becomes

Ĥkin = −t0

L−1∑
j=1

(ĉ†
j ĉ j+1 + ĉ†

j+1ĉ j ) , (2)

with ĉ†
j (ĉ j ) being the electron creation (annihilation) operator

on site j and t0 the hopping amplitude. The second term is the
phonon energy

Ĥph = ω0

L∑
j=1

b̂†
j b̂ j , (3)

where b̂†
j (b̂ j ) is the creation (annihilation) operator of an opti-

cal phonon on site j with the constant frequency ω0. The last
term is the electron-phonon coupling

Ĥe-ph = γ

L∑
j=1

n̂ j (b̂
†
j + b̂ j ) , (4)

with n̂ j = ĉ†
j ĉ j . We furthermore define the dimensionless cou-

pling parameter

λ = γ 2

2t0ω0
, (5)

which characterizes the crossover from a large (λ < 1) to
a small (λ > 1) polaron. In this work, we focus on the in-
termediate regime and set λ = 1. For a discussion of other
parameter regimes, see Appendix A.

B. Thermodynamics

We first want to study the thermodynamics of the model.
The thermal expectation value of an observable Ô in the
canonical ensemble at temperature T is defined as

〈Ô〉T = Tr[ρ̂(T )Ô] , (6)

where ρ̂(T ) is the thermal density matrix at temperature T . In
the canonical ensemble,

ρ̂(T ) = 1

Z
e−βĤ , (7)

where we have set kB = 1 such that β = 1/T and Z is the
partition function. We will focus on four observables: the total
energy E (T ) = 〈Ĥ〉T , the kinetic energy Ekin(T ) = 〈Ĥkin〉T ,
the coupling energy Ee-ph(T ) = 〈Ĥe-ph〉T , and the phonon en-
ergy Eph(T ) = 〈Ĥph〉T .

C. Spectral functions

We are also interested in dynamical quantities by investi-
gating Green’s functions of operators acting on sites m and n.
We define the greater Green’s function

G>
T,0(m, n, t ) = −i〈ĉm(t )ĉ†

n(0)〉T,0 , (8)

where the subindices T, 0 indicate that the thermal expectation
value is calculated in the zero-electron sector. Since we use
open boundary conditions, we construct the Fourier transform
into quasimomentum space (see, e.g., Refs. [101,102]) as

ĉk =
√

2

L + 1

L∑
j=1

sin(k j)ĉ j , (9)

where k = πmk/(L + 1) and 1 � mk � L. The greater
Green’s function in k and ω space then becomes

G>
T,0(k, ω) = −i

∫ ∞

−∞
dteiωt−|t |ηGT,0(k, t ) , (10)

where η = 0+ is an artificial broadening. From the greater
Green’s function, we extract the electron spectral function

A(k, ω) = − 1

2π
Im[G>

T,0(k, ω)] . (11)

Since we are in the zero-electron sector, Eq. (11) contains all
the information about the spectrum.

Here, we extend previous studies [62,72] of the finite-
temperature Holstein polaron by also computing the lesser
Green’s function in the one-electron sector

G<
T,1(m, n, t ) = i〈ĉ†

m(0)ĉn(t )〉T,1 , (12)

which we use to obtain the electron emission spectrum

A+(k, ω) = − 1

2π
Im[−G<

T,1(k, ω)] . (13)

We are further interested in the greater Green’s function in the
phonon sector

D>
T,1(m, n, t ) = −i〈X̂m(t )X̂n(0)〉T,1 , (14)
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where X̂n = b̂n + b̂†
n is the phonon displacement. We use

Eq. (14) to calculate the phonon spectral function

B(k, ω) = − 1

2π
Im[D>

T,1(k, ω)] . (15)

III. METHODS

In this section, we first describe our main numerical
method, DMRG using purification and local basis optimiza-
tion. We next briefly review the finite-temperature Lanczos
method used in Ref. [72]. In order to guide the discussion of
the numerical results, we compute the three spectral functions
in the single-site limit.

A. Density-matrix renormalization group with purification

While the density-matrix renormalization group and
matrix-product states were originally developed to find
ground states [74–76], they have proven to be extremely use-
ful tools for calculating spectral functions [103–108], carrying
out the time evolution [76,87–90], and finite-temperature
calculations [83–85,109–116] as well. There are several
ways to utilize matrix-product states at finite temperatures.
These include, among others, minimally entangled typical
thermal state algorithms [117–119], purification algorithms
[84–86,120], or a mixture of both [121,122].

In this paper, we use the purification method [83] which
doubles the system by adding an auxiliary space to the phys-
ical Hilbert space HP → HP ⊗ HA. One can write down a
state in this doubled Hilbert space |ψ〉 ∈ HP ⊗ HA. If one
now traces out the auxiliary space, one can simulate a mixed
state in the physical Hilbert space with the density matrix

ρ̂P = TrA[|ψ〉 〈ψ |] . (16)

Since we are working with a fixed number of electrons, we
will use the notation where |ψn

β〉 represents a state at temper-
ature T with n electrons in the physical system. For example,
the state |ψ1

β=0〉 ∈ HP ⊗ HA can be expressed analytically.
This state can then be used to simulate the density matrix from
Eq. (7) for one electron at β = 0. The density matrix for β �= 0
is generated by the evolution in imaginary time of |ψn

β=0〉 as

|ψn
β〉 = e−Ĥβ/2 |ψn

β=0〉. The thermal expectation value of an
observable Ô can then be calculated as

〈Ô〉T,n =
〈
ψn

β

∣∣Ô∣∣ψn
β

〉
〈
ψn

β

∣∣ψn
β

〉 . (17)

Since we use thermal states with both one and zero elec-
trons we briefly illustrate how to generate both of them at β =
0. Since the Holstein model contains infinitely many local
phonon degrees of freedom, we first introduce a local cutoff
M which represents the maximal number of phonons on each
site. We furthermore define a local basis state |σi〉 = |ne

i , nph
i 〉

with electron occupation ne
i ∈ {0, 1} and phonon occupation

nph
i ∈ {0, . . . M}. This determines the local dimension d =

2(M + 1). We further write |	σ 〉 = |σ1, σ2, . . . , σL〉. The zero-
electron state |ψ0

β=0〉 becomes

∣∣ψ0
β=0

〉 =
∑
	σ P,	σ A

A
σ P

1 ,σ A
1

1 A
σ P

2 ,σ A
2

2 . . . Aσ P
L ,σ A

L
L |	σ P, 	σ A〉 , (18)

where each Aσ P
i ,σ A

i
i = δne,A

i ,0δne,P
i ,0δnph,P

i ,nph,A
i

is the local ten-
sor corresponding to maximum entanglement between the
physical site σ P

i and the auxiliary site σ A
i . To generate the one-

electron state |ψ1
β=0〉, we proceed in a similar fashion as in

Ref. [123]. We first write down the maximum entangled one-

electron tensor Ã
σ P

j ,σ A
j

j = δne,A
j ,1δne,P

j ,1δnph,A
j ,nph,P

j
. We then define

our wave function as the superposition of terms which all have

the one-electron tensor Ã
σ P

j ,σ A
j

j at a different site j. On the

sites i �= j, we just place the zero-electron tensors Aσ P
i ,σ A

i
i from

Eq. (18). The total wave function becomes

∣∣ψ1
β=0

〉 =
L∑

j=1

∑
	σ P,	σ A

A
σ1,σ

′
1

1 . . . Ã
σ j ,σ

′
j

j . . . AσL,σ ′
L

L |	σ P, 	σ A〉 . (19)

After constructing |ψn
β=0〉, one then generates the desired |ψn

β〉
by imaginary-time evolution.

B. Time evolution with local basis optimization

Since we are interested in thermodynamics and spectral
functions at finite temperatures, we need to carry out both
imaginary and real-time evolution. This subsection explains
the procedure and its application to electron-phonon systems.
To calculate the time evolution we use tDMRG [87,88] com-
bined with local basis optimization (LBO) [91]. The idea of
the local basis optimization is to find a numerically efficient
representation of the phonon Hilbert space, thus reducing the
computational cost. This has already been combined with
exact diagonalization to study zero-temperature dynamical
properties of the Holstein model, e.g., by Zhang et al. in
Ref. [14], and with matrix-product states to calculate the real-
time evolution of pure states, e.g., by Brockt et al. [92] for
the polaron problem, by Stolpp et al. [37] for a charge density
wave, as well as in Refs. [35,93]. In this paper, we demonstrate
that the local basis optimization is computationally beneficial
for computing thermodynamics and real-time evolution at fi-
nite temperature for the Holstein polaron.

For the tDMRG method, we first write our Hamiltonian as
a sum of terms ĥl which act on the two neighboring sites l
and l + 1. For a time step dt (−idτ for imaginary-time evo-
lution) one can then carry out a second-order Trotter-Suzuki
decomposition into even and odd terms

e−idtĤ = e−idtĤeven/2e−idtĤodd e−idtĤeven/2 + O(dt3) . (20)

One can further write each exponential as the product of local
elements e−idtĤeven/2 = ∏

l:even e−idt ĥl /2. Since each physical
site is connected to an auxiliary site, one must first apply a
fermionic swap gate [118,124] to swap site σ P

l and σ A
l . One

then acts with the time evolution gate e−idt ĥl /2 followed by
another gate which swaps σ P

l and σ A
l back.

To illustrate how the local basis optimization works, we
assume that our MPS is already in an optimal local basis |σ̃ P〉
and that the local transformation matrices Rσ̃ P

i

σ P
i

transform the

physical index from the bare into the optimal basis. We then
first transform two of the legs from our time-evolution gate
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U
σ ′P

i ,σ ′P
i+1

σ P
i ,σ P

i+1
to

U
σ ′P

i ,σ ′P
i+1

σ̃ P
i ,σ̃ P

i+1
= Rσ P

i

σ̃ P
i
R

σ P
i+1

σ̃ P
i+1

U
σ ′P

i ,σ ′P
i+1

σ P
i ,σ P

i+1
. (21)

We then apply this gate to the two-site tensor M σ̃ P
i ,σ̃ P

i+1 =
Aσ̃ P

i Aσ̃ P
i+1 and get

φσ ′P
i ,σ ′P

i+1 = U
σ ′P

i ,σ ′P
i+1

σ̃ P
i ,σ̃ P

i+1
M σ̃ P

i ,σ̃ P
i+1 . (22)

We then generate the local reduced density matrix

ρ
σ ′P

i

σ P
i

= φ
†
σ P

i ,σ P
i+1

φσ ′P
i ,σ P

i+1 , (23)

which we diagonalize such that

ρ
σ ′P

i

σ P
i

= Rσ̃ P
i

σ P
i
Dσ̃ ′P

i

σ̃ P
i

R†σ ′P
i

σ̃ ′P
i

. (24)

The matrix Rσ̃ P
i

σ P
i

is now the updated transformation matrix

which rotates the site i into the adapted optimal basis. The
transformation matrices can then be applied to φσ ′

i ,σ
′
i+1 from

Eq. (22) before the following singular value decomposition.
If the optimal basis has dimension dLBO and the MPS has
a bond dimension χ , the cost of the SVD has then changed
from O(d3χ3) to O(d3

LBOχ3) [92]. The transformation is
only beneficial if we can truncate the optimal basis such
that dLBO � d , since the transformation itself has a cost of
O(d3χ2) for building the reduced-density matrix, O(d3) for
the diagonalization thereof, and O(d2dLBOχ2) for the basis
transformation [92]. To control the truncation, we discard the
smallest eigenvalues wα such that the truncation error is be-
low a threshold:

∑
α∈discarded wα/(

∑
all α wα ) < ρLBO. When

carrying out a regular singular-value decomposition in the
tDMRG algorithm, we discard all singular values such that∑

α∈discarded s2
α/(

∑
all α s2

α ) < ρbond.
To calculate a general correlation function CT,n(ω, k), such

as the Green’s functions in Eqs. (8), (12), and (14), we first
obtain the desired state |ψn

β〉 through imaginary-time evolu-
tion. In that process, we apply the LBO only to the physical
sites such that only these are in their optimal basis. Before
we start the real-time evolution, we first iterate through the
MPS and obtain the optimal basis for both the physical and
the auxiliary sites by creating the matrix Mσ P

i ,σ A
i and getting

the transformation matrices Rσ̃ P
i

σ P
i

and Rσ̃ A
i

σ A
i

. We then follow

Ref. [85] and compute the desired correlation functions

CT,n(m, l, t ) = 〈
ψn

β

∣∣Âm(t/2)B̂l (−t/2)
∣∣ψn

β

〉
, (25)

where Â, B̂ are general operators and

Âm(t ) = Û P†(t/2)Û A†(t/2)ÂmÛ P(t/2)U A(t/2) . (26)

In Eq. (26), Û P(t/2) = e−iĤPt/2 acts on the part of the state in
the physical Hilbert space and Û A(t/2) = eiĤAt/2 correspond-
ingly time evolves the part of the state in the auxiliary space in
the opposite direction. This is done to keep the entanglement
entropy low during the real-time evolution [111–115]. Even
though this procedure is not optimal [116], it provides a nat-
ural extension of the local basis optimization to the auxiliary
sites and allows us to keep them in an optimal basis during the
time evolution. We then obtain CT,n(k, ω) from CT,n(m, l, t )
by Fourier transformations in space and time.

We further use linear prediction [85,125,126] to access
larger times. Since we do the real-time evolution on states
|φn

β〉 = Âl |ψn
β〉, which are not normalized, e.g., 〈φn

β |φn
β〉 �=

1, we do not renormalize the state after applying the time-
evolution gate. We observe that the norm of |φn

β〉 is still of
O(1), so that we can apply the same truncation criteria as if we
worked with normalized states. For all imaginary-time evo-
lutions, we use dτω0 = 0.1 and for the real-time evolution,
we use dtω0 = 0.01. The real-time evolution is done up to a
maximum time tmaxω0. The accessible tmaxω0 depends on the
observable and model parameters and is determined by the
computational resources available. All DMRG calculations
are carried out using Ref. [127].

C. Finite-temperature Lanczos method

We now proceed by introducing alternative methods used
as benchmarks. The thermodynamic quantities will be com-
pared to exact diagonalization (ED) and the spectral function
from Eq. (11) will be compared to the finite-temperature
Lanczos method [128,129] (FTLM).

The finite-temperature Lanczos method data used here is
obtained from Ref. [72]. The electron spectral function is
expressed as

A(k, ω) = Z−1
R∑

r=1

M∑
j=1

N∑
n=1

e−βε0
n 〈 r0

∣∣φ0
n

〉 〈
φ0

n

∣∣ĉk|ψ j〉

× 〈ψ j |ĉ†
k |r0〉δ(ω − ε j + ε0

n

)
, (27)

where Z is the partition function, |r0〉 are random states in the
zero-electron basis, |φ0

n〉 are the zero-electron eigenstates, and
|ψ j〉 are the Lanczos vectors from the one-electron subspace
with the corresponding energy ε j . The variational Hilbert
space [13,18] is used together with twisted boundary condi-
tions [130–132] to limit finite-size effects.

D. Single-site spectral function and emission spectrum

In order to gain a better understanding of the emission
spectrum at low temperatures, we derive an analytical expres-
sion for the single-site system. This is done for the spectral
function in Ref. [133] and a detailed derivation is presented in
Ref. [72]. This section is a simple extension of that work but
is included for self consistency and to guide the discussion.
The single-site Hamiltonian is

Ĥs = γ n̂(b̂† + b̂) + ω0b̂†b̂. (28)

The solution for the case of a single electron is given by the
well-known coherent states

|0s〉 = e−g̃2/2
∞∑

m=0

(−g̃)m

√
m!

|m〉 , (29)

where g̃ = γ /ω0 and |m〉 are bare phonon modes. The ground
state |0〉s has the energy E0,s = −ω0g̃2. The excited states |m〉s
have an energy Em,s = −ω0g̃2 + mω0 and are given by

|ms〉 = (b† + g̃)m

√
m!

|0s〉 . (30)
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FIG. 1. (a) Single-site spectral function As(ω) from Eq. (31).
(b) Single-site emission spectrum A+

s (ω) from Eq. (32). (c) Single-
site phonon spectral function B+

s (ω) from Eq. (36). We set γ /ω0 =√
2 and use a Lorentzian for the delta function with half width at half

maximum (HWHM) η = 0.05.

The single-site spectral function As(ω), derived in Ref. [72],
is

As(ω) = 1

Z

∞∑
n,m=0

e−βω0n|〈ms|n〉|2δ(ω + En − Em,s), (31)

where |n〉 are the bare phonon modes and En the correspond-
ing energies. We show As(ω) in Fig. 1(a) for λ = 1.

The electron emission spectrum is

A+
s (ω) = 1

Z

∞∑
n,m=0

e−βEm,s |〈n|ms〉|2δ(ω + En − Em,s). (32)

The overlap between the coherent state and the normal mode
is given by

〈n|ms〉 = e−g̃2/2
min{m,n}∑

l=0

(−1)n−l g̃n+m−2l

√
m!n!

l!(m − l )!(n − l )!
.

(33)
If we send T/ω0 → 0, only the m = 0 term contributes in
Eq. (32). This gives

〈n|0s〉 = e−g̃2/2(−1)ng̃n

√
n!

n!
. (34)

The emission spectrum then takes the form

A+
s (ω) =

∞∑
n=0

e−g̃2
g̃2n 1

n!
δ(ω + nω0 + ω0g̃2), (35)

which has a polaron peak for n = 0 at ωpol/ω0 = −ω0g̃2. The
spectrum further has peaks at negative ω, which are separated
by ω0. It is also clear that at larger temperatures, peaks at ω >

−ω0g̃2 will appear.
In Fig 1(b), we show the single-site emission spectrum

A+
s (ω). There, the peaks at ω < ω0g̃ are visible. One can also

observe the peaks at ω > ω0g̃ appearing for larger tempera-
tures.

E. Single-site phonon spectral function

The single-site phonon spectral function is

Bs(ω) = 1

Z

∞∑
n,m=0

e−βEm,s |〈ns|b̂ + b̂†|ms〉|2

× δ(ω + Em,s − En,s). (36)

We use that

b̂ |0s〉 = −g̃ |0s〉 , (37)

and

b̂ |ms〉 = √
m |(m − 1)s〉 − g̃ |ms〉 , (38)

to obtain

〈ns|b̂ + b̂†|ms〉 = √
n 〈(n − 1)s |ms〉 + √

m 〈ns |(m − 1)s〉
− 2g̃ 〈ns |ms〉 . (39)

At T/ω0 = 0, the spectral function becomes

Bs(ω) = 4g̃2δ(ω) + δ(ω − ω0). (40)

Bs(ω) is shown for different T/ω0 in Fig. 1(c). We observe
two peaks separated by ω0 at the lowest temperatures as
predicted in Eq. (40). This is the polaron peak and the free-
phonon peak. When the temperature is increased, a smaller
free-phonon peak starts to appear at −ω0.

IV. DMRG RESULTS FOR THERMODYNAMICS

In this section, we show the results for the thermody-
namic quantities introduced in Sec. II B. Thermodynamics
for electron-phonon models has already been studied with
Monte Carlo methods, see, e.g., Refs. [134–137] for results
for two-dimensional lattices. As explained in Sec. III A, the
DMRG purification method starts at T = ∞. Finite temper-
atures are then obtained by imaginary-time evolution. For
the Holstein-polaron model with a local phonon cutoff M,
we have 〈Ĥ〉T =∞/(ω0L) = M/2, such that depending on the
phonon number truncation, the imaginary-time evolution will
start at a different energy. Additionally, starting points with
a finite M are artificial since they do not represent the true
T = ∞ limit of the system. For this reason, we first want to
investigate whether there is a range of temperatures where we
can produce states with expectation values that are indepen-
dent of M for the polaron in the crossover regime λ = 1. Since
the results become M dependent and unphysical for large
T/ω0, we choose to focus on 0.1 � T/ω0 � 0.4. Secondly,
we want to investigate how the optimal local basis is affected
by the imaginary-time evolution.

We first verify that the purification method reproduces
values calculated with ED. In Fig. 2, we compare the results
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FIG. 2. Expectation values for different observables for γ /ω0 =√
2, t0/ω0 = 1, L = 5 and M = 3, 4, 5. The solid lines are obtained

with ED and the symbols with DMRG. We show (a) the total energy,
(b) the electron kinetic energy, (c) the phonon energy, and (d) the
coupling energy. Many points overlap almost completely, and there-
fore, not all lines and points are visible. For clarity, we only show
every fourth point of the DMRG data.

to ED for L = 5 and different M. We show the four observ-
ables defined in Sec. II B as a function of temperature T/ω0.
One sees that the finite-temperature DMRG method (symbols)
reproduces the ED (solid lines) for the corresponding M.
The clear dependence of the observables on M suggests that
the local Hilbert space is not chosen large enough to yield the
correct low-temperature physics for these parameters. Most
importantly, the DMRG method reproduces the ED results for
the accessible system sizes.

We proceed by comparing the expectation values for dif-
ferent system sizes L. The results are shown in Fig. 3. Notice
that the ground-state energy is intensive in the single-electron
problem. Therefore, E/(ω0L) should approach zero in the
thermodynamic limit. This can be observed in Fig. 3(a). The
figure also serves as a consistency check by showing that the
imaginary-time evolution approaches the ground-state energy
calculated with ground-state DMRG [74–76] (solid lines).
Both the total energy E and the phonon energy Eph are ex-
tensive at finite temperature, and therefore, we divide both of
these expectation values by the system size L to get a quantity
that only depends on temperature for sufficiently large L. The
observables Ekin and Ee-ph [Figs. 3(b) and 3(d)] are automati-
cally intensive since there is only one electron in the system.
Figure 3 therefore illustrates that the purification method gives
access to thermodynamic quantities in systems with very large
local Hilbert spaces.

We next demonstrate that the DMRG method can ac-
cess values of M large enough to obtain cutoff-independent
results in the low-temperature regime. In Fig. 4, we show
the same observables as in Fig. 2 with L = 21 and M =
20, 30 calculated with DMRG. We find that even though the
two initial states start at two completely different energies
〈Ĥ〉T =∞/(ω0L), they still converge to the same expectation
value up to an accuracy of O(10−5) below T/ω0 � 0.5. We

FIG. 3. Expectation values for different observables for γ /ω0 =√
2, t0/ω0 = 1, M = 20 and different L. We show (a) the total en-

ergy, (b) the electron kinetic energy, (c) the phonon energy, and
(d) the coupling energy. The solid lines show the ground-state values
calculated with ground-state DMRG. They sometimes overlap, and
therefore, some lines are not always visible. For clarity, we only show
every fourth data point.

thus conclude that we correctly reproduce results for the real
phonon limit M → ∞ below a certain temperature if M is
chosen large enough. Therefore, the method gives access to
thermodynamics at temperatures for system sizes and phonon
numbers unavailable to ED and regular Lanczos methods. For
the rest of this paper, we choose M = 20.

To demonstrate that the imaginary-time evolution results
are converged in the low-temperature limit, we vary ρbond and

FIG. 4. Expectation values for different observables for γ /ω0 =√
2, t0/ω0 = 1, L = 21 and M = 20, 30. We show (a) the total en-

ergy, (b) the electron kinetic energy, (c) the phonon energy, and
(d) the coupling energy. The solid lines show the ground-state values
calculated with ground-state DMRG for M = 20. The points lie on
top of each other such that the M = 20 data is not always clearly
visible. For clarity, we only show every fourth point of the data.
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FIG. 5. Electron kinetic energy from Eq. (2) for different ρbond

(a) and ρLBO (c). We show results for γ /ω0 = √
2, t0/ω0 = 1, L = 21

and M = 20. In (a), we set ρLBO = 10−9 and in (c), we set ρbond =
10−9. (b) The maximum local optimal dimension max(dLBO) of the
system for the same parameters as (a). (d) max(dLBO) for the same
parameters as in (a), but with ρbond = 10−9, M = 20 and M = 30.
The black solid lines in (b) and (d) show T/ω0 = 1.0. For clarity, we
only show every fourth point of the data in (a) and (c).

ρLBO. As explained in Sec. III, the truncation of the bond
dimension is controlled by ρbond whereas ρLBO controls the
truncation of the optimal local basis of the MPS. In Figs. 5(a)
and 5(c), we illustrate how Ekin is affected by changes in ρbond

and ρLBO. The change is significant if one of the discarded
weights is chosen too large. If ρbond is too large, the expecta-
tion values lie above the converged value. In the other case, for
ρLBO too large, we start to get fluctuating expectation values.
We do this test for all terms in the Hamiltonian in Eq. (1)
and find that they are all converged for ρbond = 10−7 and
ρLBO = 10−5 to an accuracy of O(10−3). However, exactly
how they behave for a too small cutoff is observable- and
system-size dependent. Since the expectation values already
have converged for both ρbond and ρLBO = 10−7 [red triangles
in Figs. 5(a) and 5(c)], the 10−9 markers (blue circles) are
barely visible.

In Figs. 5(b) and 5(d), we analyze the maximum dimension
max(dLBO) of the optimal basis of the physical Hilbert space.
One clearly sees that this becomes equal to the local bare basis
dimension 2(M + 1) for large T/ω0. This is expected since
all the phonon modes become equally probable at T/ω0 = ∞.
However, max(dLBO) starts to decrease rapidly below a certain
temperature and the rotation into the optimal basis becomes
computationally beneficial for a given truncation error. This
means that the eigenvalues of the reduced-density matrix first
do not decay at all until a certain temperature is reached.
After that, they start decreasing rapidly as a function of T/ω0.
Figure 5(d) shows that this trend becomes more pronounced
for larger M. Furthermore, it illustrates that as M is increased,
the rotation into the optimal basis becomes beneficial at higher
T/ω0.

The accurate evaluation of thermal expectation values
also serves as an important test for the spectral function

FIG. 6. Imaginary part of G>
T,0(m, n, t ) in Eq. (8). We set n =

m = 11, γ /ω0 = √
2, t0/ω0 = 1 and L = 21. (a) T/ω0 = 0.1 and

fixed ρLBO = 10−8 for different ρbond. (b) T/ω0 = 0.4 and fixed
ρLBO = 10−8 for different ρbond. (c) T/ω0 = 0.1 and fixed ρbond =
10−8 for different ρLBO. For the symbols, we only show every 50th
point for clarity. The insets show the absolute error err [see Eq. (41)],
defined as the difference between the data with the smallest trunca-
tion error 10−9 and either 10−8 (red) or 10−7 (blue).

calculations in Sec. V. In Appendix C, we show that the first
temperature-dependent moments can be calculated by either
integrating the spectral function or by computing thermal
expectation values. We verify the accuracy of the spectral
function by comparing both methods. For the rest of this
work, we set ρLBO = ρbond = 10−9 during the imaginary-time
evolution.

V. SPECTRAL FUNCTIONS

A. Real-time evolution

We now proceed by calculating dynamical properties of
our model. We first check that the real-time evolution con-
verges with respect to ρbond and ρLBO. This is illustrated in
Fig. 6. There, we show the imaginary part of G>

T,0(m, n, t )
from Eq. (8) with m = n = 11. From Figs. 6(a) and 6(b), it
becomes apparent that as ρbond is decreased, the results are
indiscernible on the scale of the figure. A similar behavior is
also seen with respect to ρLBO [see Fig. 6(c)]. In the insets of
Fig. 6, we show the absolute error

err = |Im[G>
T,0(m, n, t)]ρi − Im[G>

T,0(m, n, t)]ρj |, (41)

with i �= j and ρi being set by ρbond or ρLBO. For the data
shown in the inset, we fix ρi = 10−9 and subtract the remain-
ing two datasets. We can also report a large increase in the
bond dimension as the temperature is increased (for details,
see Appendix A). This is the reason why the time evolution
for certain values of ρbond in Fig. 6(b) is stopped earlier. The
reachable time for the smallest truncation also determines
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JANSEN, BONČA, AND HEIDRICH-MEISNER PHYSICAL REVIEW B 102, 165155 (2020)

FIG. 7. Electron spectral function A(k, ω) from Eq. (11) for
γ /ω0 = √

2, t0/ω0 = 1, L = 21, M = 20, η = 0.05 and tmaxω0 =
18.0. We show T/ω0 = 0.1 in (a) and (b) and T/ω0 = 0.4 in (c) and
(d). For the DMRG data (red line), we show kmin = π/(L + 1) and
kmax = πL/(L + 1). For the FTLM data (blue dashed line), L = 12
and we show kmin = 0 in (a) and (c) and kmax = π in (b) and (d). The
insets show I (k, ω) defined in Eq. (42).

tmax, such that the convergence is tested for the whole time
interval used for the Fourier transformation. The limitation in
accessible times also constrains the energy resolution of the
spectral function.

As explained in Sec. III, we additionally apply linear pre-
diction. The spectral functions tend to oscillate around zero
away from the peaks as a result of the finite time interval.
By applying linear prediction, the oscillation amplitude goes
from order 10−1 to 10−5 without changing the peak position
or height in the spectrum. However, the exact decrease of
the amplitude is spectral-function and temperature dependent.
Due to the oscillations, we always show the absolute values of
the spectral functions in the normalized log-scaled plots. The
real-time evolution for all the following spectral functions is
done with ρbond = ρLBO = 10−8.

To test the accuracy of the method, we also derive the first
temperature-dependent moment of the spectral functions and
compare the thermal expectation values to our numerical data.
The results in Appendix C show good agreement. We further
want to emphasize that in the zero-electron sector, it is trivial
to obtain the finite-temperature initial state for the real-time
evolution since it only contains noninteracting local harmonic
oscillators. For this reason, we compare results using both the
trivially obtained thermal states and those obtained with the
imaginary-time evolution algorithm to verify its correctness.

B. Electron spectral function and comparison to the FTLM

In Fig. 7, we show the electron spectral function A(k, ω)
and compare it to results obtained with FTLM. We show the
results for T/ω0 = 0.1 in Figs. 7(a) and 7(b) and T/ω0 = 0.4

FIG. 8. Electron spectral function A(k, ω) from Eq. (11) for
γ /ω0 = √

2, t0/ω0 = 1, M = 20, η = 0.05 and tmaxω0 = 18.0. We
show T/ω0 = 0.1 in (a) and (b) and T/ω0 = 0.4 in (c) and (d).
For L = 21, we show kmin = π/(L + 1) and kmax = πL/(L + 1). The
L = 101 data (blue dashed lines) is calculated with the simplified
Fourier transform (see the text for details) and kmin = 0 and kmax =
π . The insets show I (k, ω) defined in Eq. (42).

in Figs. 7(c) and 7(d). Our method can resolve the same peak
positions as the FTLM. One can identify the polaron peak at
ωpol/ω0 ≈ −3.0 and the peaks corresponding to the polaron
with additional phonons separated by nω0 in the incoherent
part of the spectrum. We also observe a significant decrease
of the quasiparticle weight for kmin compared to kmax. This
has already been reported in Ref. [72] and is consistent with
other ground-state approaches [16,19,138–140].

In the inset, we show

I (k, ω) =
∫ ω

−∞
dω′A(k, ω′). (42)

There are only small differences between the FTLM and the
DMRG data. The amplitude of the polaron peak exhibits small
temperature-dependent differences between the two methods.
For larger values of k, we also observe some different weight
distribution in the incoherent part of the spectrum. The re-
sults for I (k, ω) still almost completely overlap. We want to
emphasize that we show results for two different k values
for the methods due to the difference in boundary conditions.
For the DMRG method, we choose kmin = π/(L + 1), kmax =
πL/(L + 1) and for the FTLM method, we select kmin =
0, kmax = π . We conclude that despite these differences, the
DMRG and FTLM method show a very good quantitative
agreement.

Alternatively to computing the complete correlation func-
tion, one can calculate G>

T,0(m, n, t ) for a fixed n = L/2 and
m � n. This gives access to much larger system sizes, as
illustrated in Fig. 8. There, we calculate the spectral function
for L = 101. We first fix n = 51 and set G>

T,0(n + m, n, t ) =
G>

T,0(n − m, n, t ). We then compute the Fourier transform
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FIG. 9. Electron spectral function A(k, ω) obtained with
DMRG. We set γ /ω0 = √

2, t0/ω0 = 1, L = 21, M = 20, η = 0.05
and tmaxω0 = 18.0. (a) T/ω0 = 0.1 and (b) T/ω0 = 0.4.

into k space as G>
T,0(k, t ) = 1

L

∑L
m=1 ei(m−n)kG>

T,0(m, n, t ).
Here, we use periodic boundary-condition quasimomenta
with k = 2πm/L and − L

2 � m � L
2 . This is often done (e.g.,

in Refs. [86,141]) and the method works well here since
the noninteracting harmonic oscillators are homogeneously
distributed in the initial state and there is no electron in
the system. In Fig. 8, we show comparison between data
produced with periodic-boundary condition momenta (L =
101) with results for open-boundary momenta (L = 21).
Only small changes in the largest peaks [see Figs. 8(a)
and 8(c)] can be seen even though the L = 101 data use
kmin = 0, kmax = π while the L = 21 data use kmin = π/(L +
1), kmax = πL/(L + 1). This is, however, not the case for
the other spectral functions studied in this work since the
one-electron state has an inhomogeneous electron distribu-
tion. The previously described approach does, therefore, not
fulfill the sum rules in those cases. Moreover, we mention that
the calculations with the periodic boundary-condition Fourier
transformation is more sensible to the choice of parameters
for the linear prediction for our data. For a more quantitative
discussion of the error of the methods, see Appendix B.

In Fig. 9, we show A(k, ω) as a function of ω for all k.
Here, the spectral weight at ω < ωpol [see Fig. 7(a)] becomes
visible at larger T/ω0. This has been reported in Ref. [72]
and corresponds to the electron absorbing a thermal phonon.
One can also see that the polaron band structure is shifted
downwards and renormalized compared to the free-fermion
case which would have its ground-state energy at ω/ω0 = −2
and a bandwidth of 4t0. In all cases, we confirm that the sum
rule

∫ ∞
−∞ dωA(k, ω) = 1 is fulfilled up to 10−5.

C. Electron emission spectrum

We next discuss A+(k, ω), defined in Eq. (13). Computa-
tionally, this function is the easiest to obtain with our method
since the most demanding part of the calculation, namely the
real-time evolution, is done without an electron in the phys-
ical system. In Fig. 10, we show A+(k, ω) for two different
temperatures. At low T/ω0, Fig. 10(b) unveils the presence
of several peaks that are separated by ω0. The peaks can be
understood by inspecting the single-site emission spectrum at
low temperatures from Eq. (35). There, one clearly sees a peak
at −γ 2/ω0. Furthermore, there are several peaks at negative

FIG. 10. (a) Momentum distribution nk calculated with γ /ω0 =√
2, t0/ω0 = 1, M = 20, tmaxω0 = 18.0, η = 0.05 for different sys-

tem sizes at different temperatures. The symbols show nk extracted
from the Fourier transformed data [see Eq. (43)] and the solid lines
were obtained by calculating the expectation value 〈n̂k〉T at T/ω0 =
0.1. (b) and (c) show the electron emission spectrum A+(k, ω) de-
fined in Eq. (13) for the same parameters as in (a) for T/ω0 = 0.1,
T/ω0 = 0.4, and k = π/(L + 1). We show L = 11 (red solid line)
and L = 21 (black dashed line).

ω separated with ω0. In Fig. 10(b), we have one main peak
at the ground-state energy ωpol/ω0 ≈ −3. This peak is also
robust against an increase in temperature [see Fig. 10(c)]. The
peaks at lower ω, however, acquire more structure at elevated
T/ω0. We also observe a peak at ωpol/ω0 + 1 which is com-
pletely suppressed at T/ω0 = 0.1. In Fig. 11, the complete
function A+(k, ω) is plotted as a function of k and ω. At

FIG. 11. Electron emission spectrum A+(k, ω) defined in
Eq. (13) obtained with DMRG. The parameters are γ /ω0 =√

2, t0/ω0 = 1, L = 21, M = 20, η = 0.05 and tmaxω0 = 18.0 for
(a) T/ω0 = 0.1 and (b) T/ω0 = 0.4. The solid lines show ω/ω0 =
−3 and ω/ω0 = −2. The dashed lines show ω/ω0 = −3 + 4e−g̃2

and
ω/ω0 = −2 + 4e−g̃2

.
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T/ω0 = 0.4 [Fig. 11(b)], we see two clear polaron bands start-
ing at ω/ω0 = −3 and ω/ω0 = −2. Both have a bandwidth
of D ≈ e−g̃2

4 ≈ 0.54, which is illustrated by the black dashed
and solid lines. The peaks at lower frequencies also seem to
shift towards higher frequencies and additional peaks appear
to emerge at approximately D away from the already existing
ones at ω/ω0 < −3.

In Fig. 10(a), we show the electron momentum distribution
calculated for different system sizes. This quantity can be
calculated directly as the thermal expectation value 〈nk〉T or
extracted from the lesser Green’s function

nk =
∫ ∞

−∞
dωA+(k, ω) . (43)

As a consistency check, we show both. Figure 10(a) illustrates
that some finite-size effects exist for small L, but as L is
increased, nkL converges. Note that with increasing L, the
number of k points also increases, however,

∑
k nk = 1. This

is, of course, different for the spectral function discussed in
Sec. V B, where ∫ ∞

−∞
dωA(k, ω) = 1 (44)

for all k and L. We thus conclude that already at the low
temperatures studied here, nk starts to flatten out and the dif-
ference in amplitude between the polaron peak and the other
peaks decrease.

D. Phonon spectral function

We now move on to the phonon spectral function. Its
ground-state properties have already been studied thoroughly
(see, e.g., Refs. [27,60]). In Ref. [60], Loos et al. used analytic
and numerical methods to study this spectral function in a
variety of parameter regimes. They found that the dominating
features of the phonon spectral function are a free-phonon
line and a renormalized band dispersion with an additional
structure appearing for intermediate electron-phonon cou-
pling. Vidmar et al. [27] studied the low-energy spectrum
and identified several bound and antibound states in different
parameter regimes.

Here, we are interested in this function at finite tempera-
ture and in Fig. 12, we display B(k, ω) for T/ω0 = 0.1 and
0.4 for different k. At T/ω0 = 0.1, which is close to the
ground state, we clearly recognize two distinct peaks, one
at ω/ω0 = 1 and another one that gets shifted with k. The
peak at ω/ω0 = 1 originates from the free phonon, whereas
the other peak originates from the phonon being coupled
to the electron. When temperature is increased, the phonon
spectral function changes dramatically. For k = Lπ/(L + 1),
the peaks get significantly broader and the polaron and the
free-phonon peaks are almost completely merged. We also see
structure appearing at ω/ω0 < 0 which is suppressed at low
temperatures, exactly as is the case for the single-site phonon
spectral function in Sec. III E.

In Fig. 13, we show the complete B(k, ω). Here, the po-
laron band structure with a width of D ≈ 4e−g̃2

is visible.
It also becomes clear that whereas we only observe the ap-
pearance of a free-phonon peak at negative frequencies in the
single-site case, here, there is a complete reflected polaron

FIG. 12. Phonon spectral function B(k, ω) from Eq. (15) ob-
tained with DMRG. The parameters are γ /ω0 = √

2, t0/ω0 = 1, L =
21, M = 20, η = 0.05 and tmaxω0 = 15.8. (a) and (b) show T/ω0 =
0.1 with k = π/(L + 1) and k = Lπ/(L + 1). (c) and (d) show the
same k values for T/ω0 = 0.4.

band appearing for T/ω0 = 0.4 at ω/ω0 < 0 [see Fig. 13(b)].
This is similar to what we find for the emission spectrum in
Fig. 11.

VI. SUMMARY

We have generalized the DMRG method combined with
purification and local basis optimization to efficiently com-
pute static as well as dynamic properties of the Holstein
polaron in the intermediate coupling regime at finite tem-
peratures. We first showed that the method enabled us
to generate thermal states at a finite temperature by per-
forming imaginary-time evolution. We then computed the
electron spectral function and showed that our results quanti-
tatively agree with those obtained using the finite-temperature

FIG. 13. Phonon spectral function B(k, ω) from Eq. (15) ob-
tained with DMRG. The parameters are γ /ω0 = √

2, t0/ω0 = 1, L =
21, M = 20, η = 0.05 and tmaxω0 = 15.8. (a) shows T/ω0 = 0.1 and
(b) shows T/ω0 = 0.4. The solid lines show ω/ω0 = 0 and the
dashed lines show ω/ω0 = ±4e−g̃2

.
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Lanczos method of Ref. [72]. We also analyzed the electron
emission spectrum and found that the difference between the
amplitude of the polaron peak and the other peaks decreased
and that nk flattened out with increasing temperature. In ad-
dition, we observed an additional band appearing at larger ω.
Regarding the phonon spectral function, our work unveils that
with increasing temperature, the spectrum broadens at larger
momentum accompanied by the emergence of a mirrored im-
age at ω < 0.

We propose a number of future applications of the method
introduced in this work. A natural extension would be to
compare the results presented in this work to similar calcu-
lations done with minimally entangled typical thermal state
algorithms [117–119,142–144]. Another direction would be
to combine the local basis optimization with other time-
evolution methods [145–149]. A further possible area of
application is to calculate thermal expectation values com-
bined with quench dynamics [35,37,54,92,93,150–153] to
test the predictions of the eigenstate thermalization hypothe-
sis [56,64–66,68,70,71,154]. The proposed method can also
be generalized to investigate heterojunctions containing vi-
brational degrees of freedom [137,155–160] and to study
the evolution of polaron states in manganites [161–164].
Further challenging continuations could involve the numer-
ical study of time-dependent spectral functions (see, e.g.,
Refs. [81,141]) relevant to time-dependent ARPES experi-
ments [78,79,165,166] or to compute the optical conductivity
at finite temperatures (see, e.g., Refs. [29,167,168]).
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APPENDIX A: BOND AND LBO DIMENSION IN
REAL-TIME EVOLUTION

In Fig. 14, we show the maximum bond dimension
[Fig. 14(a) and Fig. 14(b)] and maximum local optimal ba-
sis dimension [Fig. 14(c)] as a function of time. The bond
dimension is clearly dependent on the temperature and on
the specific Greens’s function. It increases a lot faster for
the G>

T,0(t, m, n) (red) and D>
T,1(t, m, n) (blue). For these

Greens’s functions, the real-time evolution is done with an
electron in the physical system which causes the large increase
in the bond dimension. One also sees that as temperature
is increased, the computations become much more costly.
This is especially true for the phonon Green’s function
D>

T,1(t, m, n). The drop at tω0 = 0 comes from the fact that the
imaginary-time evolution is carried out with ρLBO = ρbond =
10−9, whereas the real-time evolution is done with ρLBO =
ρbond = 10−8. This leads to some states getting truncated away

FIG. 14. (a) Maximum bond dimensions used in the MPS
representations of D>

T,1(m, n, t ) (blue), G>
T,0(m, n, t ) (red), and

G<
T,1(m, n, t ) (green) [see Eqs. (14), (8), (12)] at T/ω0 = 0.1. The

parameters are γ /ω0 = √
2, t0/ω0 = 1, L = 21, M = 20 and fixed

m = n = 11. (b) Same as in (a) but at T/ω0 = 0.4. (c) Maximum lo-
cal optimal basis dimension for T/ω0 = 0.1 (symbols) and T/ω0 =
0.4 (solid lines). We only show every 100th point for the symbols in
(c) for clarity.

right at the beginning. This is not the case for the red curve that
shows G>

T,0(m, n, t ). There, the insertion of the electron into
the system directly leads to a much larger bond dimension.
We also observe that the maximum dimension of the local
optimal basis remains approximately constant during the real-
time evolution for the Green’s functions in the one-electron
sector. The dimension clearly increases for larger temperature
[T/ω0 = 0.1 (symbols) and T/ω0 = 0.4 (solid lines)] but it
is, in both cases, clearly beneficial. This does, of course, not
imply that the modes in the optimal basis remain the same.
When the Green’s function is calculated in the zero-electron
sector, inserting the electron clearly leads to an increase in
max(dLBO).

We want to explore the performance of our method away
from the intermediate coupling regime. The strength and pur-
pose of our DMRG method is to access the crossover regime,
whereas perturbation theory [169] can be used to address the
small hopping limit. This is illustrated in Fig. 15, where we
show the results for different choices of γ and ω0.

Figure 15(a) shows the electron spectral function [see
Eq. (11)] for t0/ω0 = 0.2 and γ /ω0 = √

2. This is close to
the atomic limit and is in good agreement with the single-site
spectral function presented in Fig. 1. In Fig. 15(c), the same
quantity is shown for γ /ω0 = 1 and t0/ω0 = 1.

The limiting factors for the performance are displayed in
Figs. 15(b) and 15(d). Figure 15(b) shows the maximum bond
dimension of the matrix-product state for different parameters
as a function of time. For both a large coupling and small
frequencies, the bond dimension grows more rapidly than
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FIG. 15. (a) Electron spectral function [see Eq. (11)], for
γ /ω0 = √

2, t0/ω0 = 0.2, L = 21, M = 20, η = 0.05, T/ω0 = 0.4,

k = π/(L + 1) and tmaxω0 = 18.0. (c) Same as (a) but with
γ /ω0 = 1, t0/ω0 = 1. (b) Maximum bond dimension of G>

T,0(m, n, t )
for different parameters at T/ω0 = 0.4. (d) Maximum local
dimension of G>

T,0(m, n, t ) for different parameters at T/ω0 = 0.4.
In (b) and (d), we only show every 100th point for clarity.

for the parameters used in the main text. This makes the
real-time evolution significantly more difficult. Furthermore,
Fig. 15(d) shows the maximum LBO dimension. This quantity
also increases more rapidly in both previously mentioned
cases, rendering the use of LBO more costly. A sufficient
number of bare phonons M is clearly not included in those
simulations. To make accurate computations in these param-
eter regimes, the convergence with increased M would have
to be monitored. This can be done adaptively in DMRG-LBO
simulations as was demonstrated by Brockt in Ref. [170].

FIG. 16. Difference between DMRG data at different system
sizes defined in Eq. (B1). The parameters are the same as in Fig. 8.

Intuitively, one would think that LBO works better in the
strong-coupling limit, since in the Lang-Firsov limit, one
should be able to describe the system with only two local
states at T/ω0 = 0. As expected, this is the case for t0/ω0 =
0.2. In Fig. 15(d), we see that we need ∼O(10) states at later
times in this regime. Further, the single-site polaron ground
state has a phonon occupation Nph = γ 2/ω2

0. This would, for
example, give Nph = 16 for the λ = 8 curve in Fig. 15(d), such
that the optimal basis for the distribution is out of reach for the
M = 20 bare-phonon truncation used here.

For the data shown here, we start the time evolution in the
trivially obtained zero-electron state. In the process of gen-
erating the one-electron state with imaginary time evolution,
the particle might jump to the ancilla sites at low temperatures
in extreme parameter regimes. This can be overcome with
standard solutions, see Refs. [120,123]. One possibility is to
generate matrix-product states with particle-number conser-
vation in the physical and ancilla system separately.

APPENDIX B: ERROR OF THE ELECTRON
SPECTRAL FUNCTION

In Fig. 16, we show the difference between the integrated
[see Eq. (42)] DMRG data with L = 21 and L = 101

errDMRG = |I (k, ω)L=21 − I (k, ω)L=101|
max {I (k, ω)L=21} . (B1)

The data is obtained with different Fourier transformations,
see Sec. V B for details.

FIG. 17. Temperature dependent moments. The symbols are cal-
culated by numerically integrating the moments as in Eq. (C1) and
the solid lines correspond to the thermal expectation values thereof.
For all data, we use a Gaussian regularization and η = 0.05/(6π ).
(a) Second moment of the electron spectral function for the same
parameters as in Fig. 9. (b) First moment of the electron emission
spectrum for the same parameters as in Fig. 11. (c) Second moment
of the phonon spectral function for the same parameters as in Fig. 13.
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APPENDIX C: MOMENTS

To validate that the method captures the correct finite-
temperature behavior we compute the first temperature-
dependent moment for each spectral function. The moments
are defined for the corresponding spectral function [here only
shown for A(k, ω)] as

Mm,A(k) =
∫ ∞

−∞
ωmA(k, ω)dω . (C1)

For A(k, ω), the first two moments (see Refs. [72,139,171])
become

M1,A(k) = ε(k), (C2)

M2,A = ε2(k) + γ 2(2nph + 1), (C3)

where nph = 1/(exp(ω0/T ) − 1), ε(k) = −2t0 cos(k) with
the quasimomenta for open-boundary conditions used in this
paper. For A+(k, ω), the first moment is already temperature
dependent

M1,A+ (k) = 2

L + 1

∑
i, j

sin(ki) sin(k j)

× 〈ĉ†
j ĉi(ε(k) + γ X̂i )〉T , (C4)

and for B(k, ω) we obtain

M1,B(k) = ω0, (C5)

M2,B(k) = ω0
2

L + 1

∑
i, j

sin(ik) sin( jk)

× 〈ω0(X̂iX̂ j ) + 2γ n̂iX̂ j〉T . (C6)

The results for the temperature-dependent moments are shown
in Fig. 17. We see that they can be calculated quite accurately
with our method. The mean differences for both temperatures
are of the order O(10−5) for all the first moments and O(10−2)
for the second moments. In contrast to the rest of the paper,
we here use a Gaussian regularization for the spectral func-
tion. The moments show a dependence on the regularization
parameter η. One must find a compromise between allowing
for unphysical oscillations in the spectral function and the
accuracy of the moments. We choose η = 0.05/(6π ). For the
second moments, we further limit the integration to ωmin ≈
−10ω0 < ω < ωmax ≈ 10ω0. We found that the results for the
Gaussian regularization are much more robust against changes
in ωmin and ωmax than the Lorentzian regularization.
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[13] J. Bonča, S. A. Trugman, and I. Batistić, Holstein polaron,
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effects on the Holstein polaron, Phys. Rev. B 65, 174306
(2002).

[19] M. Hohenadler, M. Aichhorn, and W. von der Linden, Spectral
function of electron-phonon models by cluster perturbation
theory, Phys. Rev. B 68, 184304 (2003).

165155-13

https://doi.org/10.1103/PhysRevLett.105.257001
https://doi.org/10.1038/ncomms6112
https://doi.org/10.1038/nphys3265
https://doi.org/10.1080/00018732.2016.1194044
https://doi.org/10.1209/0295-5075/126/57001
https://doi.org/10.1103/RevModPhys.83.471
https://doi.org/10.1063/PT.3.1717
https://doi.org/10.1016/0003-4916(59)90002-8
https://doi.org/10.1103/PhysRevB.27.4302
https://doi.org/10.1103/PhysRevB.53.9666
https://doi.org/10.1103/PhysRevB.56.4513
https://doi.org/10.1103/PhysRevB.58.6208
https://doi.org/10.1103/PhysRevB.60.1633
https://doi.org/10.1103/PhysRevB.60.14092
https://doi.org/10.1103/PhysRevB.62.R747
https://doi.org/10.1103/PhysRevB.61.8016
https://doi.org/10.1103/PhysRevB.65.174306
https://doi.org/10.1103/PhysRevB.68.184304


JANSEN, BONČA, AND HEIDRICH-MEISNER PHYSICAL REVIEW B 102, 165155 (2020)

[20] M. Hohenadler, H. G. Evertz, and W. von der Linden, Quan-
tum Monte Carlo and variational approaches to the Holstein
model, Phys. Rev. B 69, 024301 (2004).

[21] M. Hohenadler, D. Neuber, W. von der Linden, G. Wellein, J.
Loos, and H. Fehske, Photoemission spectra of many-polaron
systems, Phys. Rev. B 71, 245111 (2005).

[22] H. Fehske and S. A. Trugman, Numerical solution of the
Holstein polaron problem, Polarons in Advanced Materials,
Vol. 103 of Springer Series in Materials Science (Springer
Netherlands, Dordrecht, 2007), pp. 393–461.

[23] L.-C. Ku and S. A. Trugman, Quantum dynamics of polaron
formation, Phys. Rev. B 75, 014307 (2007).
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