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We derive and analyze the longitudinal and the anomalous Hall conductivity for a general momentum-block-
diagonal two-band model. This model captures a broad spectrum of physically very different systems including
Néel antiferromagnetic and spiral spin density waves as well as models that involve spin-orbit interaction and
are known to show topological properties. We present a complete microscopic derivation for finite temperature
and constant scattering rate � that is diagonal and equal, but arbitrarily large for both bands. We identify two
criteria that allow for a unique and physically motivated decomposition of the conductivities. On the one hand,
we distinguish intraband and interband contributions that are defined by the involved quasiparticle spectral
functions. On the other hand, we distinguish symmetric and antisymmetric contributions that are defined by
the symmetry under the exchange of the current and the electric field directions. The (symmetric) intraband
contributions generalize the formula of standard Boltzmann transport theory, which is valid only in the clean
limit (small �), whereas the interband contributions capture interband coherence effects beyond independent
quasiparticles. We show that the symmetric interband contribution is a correction only present for finite � and
is controlled by the quantum metric. The antisymmetric interband contributions generalize the formula of the
anomalous Hall conductivity in terms of the Berry curvature to finite �. We study the clean (small �) and
dirty (large �) limit analytically. The connection between the presented derivation and the Bastin and Streda
formalism is given. We apply our results to a Chern insulator, a ferromagnetic multi-d-orbital, and a spiral spin
density wave model.
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I. INTRODUCTION

The electrical conductivity is one of the fundamental
properties of solids and, therefore, of ongoing interest for
both theory and experiment. In recent years, advances in
experimental techniques revealed the need of reconsidering
theoretical descriptions of the conductivity including inter-
band coherence effects, that is going beyond independent
quasiparticles.

Hall measurements in very high magnetic fields have
led to new insights into the nonsuperconducting state of
high-temperature superconductors [1–4]. Although at high
magnetic field, the product of cyclotron frequency and life-
time was found to be small, ωcτ � 1, suggesting a sizable
scattering rate � = 1/2τ . Various theories assume the onset
of an emergent order parameter � to explain the experimental
findings [5–11]. Due to a nonzero �, it is questionable whether
the conductivity is correctly described if interband coherence
effects are neglected. Indeed, it was shown for spiral antiferro-
magnetic spin density waves that interband coherence effects
are negligible not due to a general argument comparing the
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energy scales of the scattering and the gap, �/�, but only by
numerical prefactors specific to the material in question [11].

Interband coherence effects are also the key to describe
the intrinsic anomalous Hall effect, that is a transverse cur-
rent without applied magnetic field that is not caused by
(skew) scattering. In the last decades, theoretical progress was
made in identifying basic mechanisms, improving theoretical
methods and revealing its deep relation to topology [12,13].
In recent years, there is an increasing interest in transport
properties of systems with topological properties in material
science [14–16], including Heusler compounds [17–19], Weyl
semimetals [20–22], and graphene [23,24], and in other fields
like in microcavities [25] and cold atoms [26].

The derivation of a formula for the conductivity of a
given model is challenging. The broadly used and intuitive
Boltzmann transport theory in its traditional formulation is
not able to capture interband coherence effects [27] and,
therefore, misses related phenomena. In order to describe the
anomalous Hall effect, the Boltzmann approach was mod-
ified by identifying further contributions like the so-called
anomalous velocity [28], which has led to a consistent theo-
retical description [29]. By contrast, microscopic approaches
give a systematic framework but are usually less transparent
and harder to interpret. The combination of both approaches,
which is a systematic microscopic derivation combined with a
Boltzmann-like physical interpretation, in order to find further
relevant contributions is still subject of recent research [30].
The established connection between the intrinsic anomalous
Hall conductivity and the Berry curvature [31–35] combined
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with ab initio band structure calculations [36,37] has become
a powerful tool for combining theoretical and experimental
results and is state-of-the-art in recent studies [14–26].

Common microscopic approaches to the anomalous Hall
conductivity are based on the work of Bastin et al. and Streda
[38–40]. Starting from Kubo’s linear response theory [27] in
a Matsubara Green’s function formalism, Bastin et al. [38]
expanded in the frequency ω of the external electric field
E(ω) after analytic continuation and obtained the DC con-
ductivity σαβ , where α, β = x, y, z are the directions of the
induced current and the electric field, respectively. Streda [39]
further decomposed this result into so-called Fermi-surface
and Fermi-sea contributions σαβ,I and σαβ,II that are defined
by containing the derivative of the Fermi function or the
Fermi function itself, respectively. This or similar decom-
positions are common starting points of further theoretical
investigations [12,30,40–54]. However, those decompositions
are usually not unique and a priori not motivated by stringent
mathematical or physical reasons.

In this paper, we present a complete microscopic derivation
of the longitudinal and the anomalous Hall conductivity for
a general momentum-block-diagonal two-band model within
a Matsubara Green’s function formalism. We allow for finite
temperature and a constant scattering rate � that is diag-
onal and equal, but arbitrarily large for both bands. Our
derivation is combined with a systematic analysis of the un-
derlying structure of the involved quantities, which allows
us to identify criteria for a unique and physically motivated
decomposition of the conductivity formulas into contributions
with distinct properties. In Sec. II, we define the model and its
coupling to electric and magnetic fields. In Sec. III, we present
the detailed derivation and close by giving final formulas of
the longitudinal and the anomalous Hall conductivity.

The key ingredient of the conductivity is the Bloch Hamil-
tonian matrix λp. Changing to the eigenbasis separates the
momentum derivative of λp, the generalized velocity, into
a diagonal quasivelocity matrix and an off-diagonal Berry-
connection-like matrix. The former one leads to the so-called
intraband contribution σ

αβ

intra that involves only quasiparticle
spectral functions of one band in each term. The latter one
mixes the quasiparticle spectral functions of both bands and
leads to the so-called interband contribution σ

αβ

inter, which
captures the interband coherence effects beyond independent
quasiparticles. The conductivity depends on the direction of
the current and the external electric field. We uniquely de-
compose the conductivity in its symmetric, σαβ,s = σβα,s, and
antisymmetric, σαβ,a = −σβα,a, part. The intraband contribu-
tion is symmetric, but the interband contribution splits into a
symmetric and antisymmetric part. We obtain

σαβ = σ
αβ

intra + σ
αβ,s
inter + σ

αβ,a
inter . (1)

The result of Boltzmann transport theory [27] is reobtained
by the intraband contribution. The symmetric interband con-
tribution is a correction only present for finite scattering rate
� and is shown to be controlled by the quantum metric.
The antisymmetric interband contribution involves the Berry
curvature and generalizes previous formulas of the anomalous
Hall conductivity [31–35] to finite scattering rate �. We show
that the effect of � is captured entirely by the product of quasi-

particle spectral functions specific for each contribution. For
the anomalous Hall conductivity, this combination of spec-
tral functions becomes independent of �, or “dissipationless”
[12], in the clean limit (small �).

In Sec. IV, we discuss the properties of the contributions
and several aspects of the derivation in detail. We rederive
the Bastin and Streda formula [38–40] within our notation
and give the relation to the decomposition presented above.
We show that our derivation provides a strategy to drastically
reduce the effort in performing the trace over the two sub-
systems, which otherwise may lead to numerous terms and,
thus, make an analytic treatment tedious. The scattering rate
� of arbitrary size allows us to perform a detailed analysis
of the clean and dirty limit. We draw the connection between
our derivation and concepts of quantum geometry, by which
we identify the interpretation of the interband contributions as
caused by the quantum geometric tensor. Finally, we comment
on the Berry curvature as an effective magnetic field, the
dependence on the coordinate system as well as the possibility
of quantization of the anomalous Hall conductivity [31–33].

In Sec. V, we apply our results to different examples.
Within a simple model of a Chern insulator, we discuss the
modification of the quantized Hall effect due to a finite scat-
tering rate �. We reconsider the ferromagnetic multi-d-orbital
model by Kontani et al. [44] to discuss the scaling behav-
ior of the scattering rate � in the dirty limit. The result is
both qualitatively and quantitatively in good agreement with
experimental results for ferromagnets (see Ref. [46] and ref-
erences therein). We discuss the spiral spin density wave on
a two-dimensional square lattice as an example of a model
with broken translation symmetry but combined symmetry in
translation and spin rotation, which is captured by our general
two-band system. In Sec. VI, we summarize our results. Some
of the detailed calculations are presented in Appendix.

II. GENERAL TWO-BAND SYSTEM

A. Model

We assume the quadratic momentum-block-diagonal tight-
binding Hamiltonian

H =
∑

p


†
pλp
p, (2)

where λp is a Hermitian 2 × 2 matrix, 
p is a fermionic
spinor, and 
†

p is its Hermitian conjugate. Without loss of
generality we parametrize λp as

λp =
(

εp,A �p

�∗
p εp,B

)
, (3)

where εp,σ are two arbitrary (real) bands of the subsystems
σ = A, B. The complex function �p describes the coupling
between A and B. The spinor 
p consists of the annihilation
operator cp,σ of the subsystems,


p =
(

cp+QA,A
cp+QB,B

)
, (4)

where Qσ are arbitrary but fixed offsets of the momentum.
The subsystems A and B can be further specified by a set
of spatial and/or nonspatial quantum numbers like spin or
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two atoms in one unit cell. We label the positions of the unit
cells via the Bravais lattice vector Ri. If needed, we denote
the spatial position of subsystem σ within a unit cell as ρσ .
The Fourier transformation of the annihilation operator from
momentum to real space and vice versa are given by

c j,σ = 1√
L

∑
p

cp,σ eip·(R j+ρσ ) , (5)

cp,σ = 1√
L

∑
j

c j,σ e−ip·(R j+ρσ ) , (6)

where L is the number of lattice sites. By choosing a unit of
length so that a single unit cell has volume 1, L is the volume
of the system. Note that we included the precise position Ri +
ρσ of the subsystem σ in the Fourier transformation [55,56].

The considered momentum-block-diagonal Hamiltonian
(2) is not necessarily (lattice-)translational invariant due to
the Qσ in Eq. (4). The translational invariance is present only
for QA = QB, that is no relative momentum difference within
the spinor. In the case QA �= QB, the Hamiltonian is invariant
under combined translation and rotation in spinor space. This
difference can be explicitly seen in the real space hoppings
presented in Appendix A. Using the corresponding symmetry
operator one can map a spatially motivated model to (2) and,
thus, obtain a physical interpretation of the parameters [57].

B. Coupling to electric and magnetic fields

We couple the Hamiltonian (2) to external electric and
magnetic fields E(r, t ) and B(r, t ) via the Peierls substitution,
that is a phase factor gained by spatial motion, and neglect
further couplings. The derivation in this and the following
subsection generalizes the derivation performed in the context
of spiral spin density waves [11,58]. We Fourier transform the
Hamiltonian (2) via (5) defining∑

p


†
pλp
p =

∑
j, j′



†
j λ j j′
 j′ , (7)

where the indices j indicate the unit cell coordinates R j . We
modify the entries of the real space hopping matrix λ j j′ =
(t j j′,σσ ′ ) by

t j j′,σσ ′ → t j j′,σσ ′ e
−ie

∫ R j +ρσ

R j′ +ρ
σ ′ A(r,t )·dr

. (8)

A(r, t ) is the vector potential. We have set the speed of light
c = 1 and have chosen the coupling charge to be the electron
charge q = −e. Note that we have included hopping inside
the unit cell by using the precise position R j + ρσ of the sub-
systems σ [55,56]. Neglecting ρσ would lead to unphysical
results (see Refs. [55,56] and the example in Sec. V A). The
coupling (8) does not include local processes induced by the
vector potential, for instance, via c†

j,Ac j,B if ρA = ρB. Using
the (incomplete) Weyl gauge such that the scalar potential is
chosen to vanish, the electric and magnetic fields are entirely
described by the vector potential via E(r, t ) = −∂t A(r, t ) and
B(r, t ) = ∇ × A(r, t ).

We are interested in the long-wavelength regime of the
external fields, especially in the DC conductivity. Assum-
ing that the vector potential A(r, t ) varies only slowly over
the hopping ranges defined by nonzero t j j′,σσ ′ allows us to

approximate the integral inside the exponential in Eq. (8). As
shown in Appendix A, we get

H[A] =
∑

p


†
pλp
p +

∑
p,p′


†
pVpp′
p′ . (9)

The first term is the unperturbed Hamiltonian (2). The second
term involves the electromagnetic vertex Vpp′ that captures the
effect of the vector potential and vanishes for zero potential,
that is Vpp′[A = 0] = 0. The Hamiltonian is no longer diago-
nal in momentum p due to the spatial modulation of the vector
potential. The vertex is given by

Vpp′ =
∞∑

n=1

en

n!

∑
q1, . . ., qn

α1, . . ., αn

λ
α1...αn
p+p′

2

Aα1
q1

(t ) . . . Aαn
qn

(t ) δ∑
m qm,p−p′ .

(10)

The nth order of the vertex is proportional to the product of n
modes Aq(t ) of the vector potential given by

A(r, t ) =
∑

q

Aq(t )eiq·r . (11)

Aα
q denotes the α = x, y, z component of the mode. The Dirac

delta function assures momentum conservation. Each order of
the vertex is weighted by the nth derivative of the bare Bloch
Hamiltonian (3), that is

λ
α1...αn
p+p′

2

= ∂α1 . . . ∂αnλp

∣∣
p= p+p′

2
, (12)

where ∂α = ∂/∂ pα is the momentum derivative in α direction.
Note that both the use of the precise position of the sub-
systems in the Fourier transformation [55,56] as well as the
momentum-block-diagonal Hamiltonian are crucial for this
result.

C. Current and conductivity

We derive the current of Hamiltonian (9) induced by the
vector potential within an imaginary-time path-integral for-
malism in order to assure consistency and establish notation.
We sketch the steps in the following. Details of the derivation
are given in Appendix B. We set kB = 1 and h̄ = 1. We rotate
the vector potential modes Aq(t ) in the vertex (10) to imagi-
nary time τ = it and Fourier transform Aq(τ ) via

Aq(τ ) =
∑

q0

Aqe−iq0τ , (13)

where q0 = 2nπT are bosonic Matsubara frequencies for
n ∈ Z and temperature T . We combine these frequencies
q0 and the momenta q in four vectors for shorter notation,
q = (iq0, q). The real frequency result will be recovered by
analytic continuation, iq0 → ω + i0+, at the end of the cal-
culation. After the steps above, the electromagnetic vertex
Vpp′ involving Matsubara frequencies p and p′ is of the same
form as (10) with momentum replaced by the four-vector. The
Dirac delta function assures both frequency and momentum
conservation. The (euclidean) action of (9) reads

S[
,
∗] = −
∑

p


∗
pG

−1
p 
p +

∑
p,p′


∗
pVpp′
p′ , (14)
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where 
p and 
∗
p are (complex) Grassmann fields. The in-

verse (bare) Green’s function is given by

G −1
p = ip0 + μ − λp + i� sign p0 . (15)

We include the chemical potential μ. p0 = (2n + 1)πT are
fermionic Matsubara frequencies for n ∈ Z and temperature
T . We assume the simplest possible current-relaxation scat-
tering rate � > 0 as a constant imaginary part proportional to
the identity matrix.

The assumed phenomenological scattering rate � is
momentum- and frequency-independent as well as diagonal
and equal for both subsystems σ = A, B. Such approxima-
tions on � are common in the literature of multiband systems
[6,7,11,44,47,54]. A microscopically derived scattering rate
�, for instance, due to interaction or impurity scattering
depends on details of the models, which we do not fur-
ther specify in our general two-band system. A microscopic
derivation can, for instance, be performed within a Born ap-
proximation [59], which then can be used to concretize the
range of validity. We are aware that each generalization of �

may effect parts of the following derivations and conclusions.
We do not assume that � is small and derive the current for �

of arbitrary size.
The current jαq in α direction that is induced by the external

electric and magnetic fields is given by the functional deriva-
tive of the grand canonical potential �[A] with respect to the
vector potential,

jαq = − 1

L

δ�[A]

δAα−q
. (16)

We expand the current up to first order in the vector potential
and define

jαq = jαpara −
∑

β

�αβ
q Aβ

q + · · · . (17)

jαpara is the paramagnetic current, that is a current without an
external field. It vanishes for E±(p) = E±(−p − p±), where
E±(p) are the two quasiparticle bands and p± are arbitrary but
fixed momenta [58]. Since this condition is usually fulfilled,
for instance due to an inversion symmetric dispersion, we omit
jαpara in the following. The polarization tensor reads

�αβ
q = e2 T

L

∑
p

tr
[
Gpλ

α
p+q/2Gp+qλ

β

p+q/2

]− (q =0), (18)

where the second term corresponds to the first term evaluated
at q = 0. We have �

αβ

q=0 = 0 as required by gauge invari-
ance of the vector potential. The matrix trace due to the two
subsystems is denoted by tr. Note that the matrices do not
commute in general. Thus the order of the Green’s functions
and vertices are important.

We assume that the electric field is constant in space and
the magnetic field is constant in time. Then, the vector po-
tential splits additive into two parts, A(r, t ) = AE (t ) + AB(r),
such that E(t ) = −∂t AE (t ) and B(r) = ∇ × AB(r). Perform-
ing the rotation to imaginary time and Fourier transformation
lead to

Aq = AE
iq0

δq,0 + AB
qδiq0,0, (19)

which allows for separation of effects by the electric and the
magnetic field. We are interested in the current induced by an
external electric field. Since we are not considering any exter-
nal magnetic field in the following, we omit the momentum
dependence q. In order to have a clear form of the relevant
entities for the further calculations, we introduce the compact
notation Tr[ · ] = e2T L−1 ∑

p tr[ · −(iq0 = 0)], which involve
the prefactors, the summation over p as well as the subtraction
of the argument at iq0 = 0. Then, the polarization tensor reads

�
αβ
iq0

= Tr
[
Gip0+iq0,pλ

β
pGip0,pλ

α
p

]
. (20)

We permuted the matrices by using the matrix trace, so that
the first Green’s function involves the external Matsubara
frequency iq0. We are interested in the conductivity tensor σαβ

ω

that is defined as the coefficient of the linear order contribution
to the current with respect to the external electric field, that is

jαω = σαβ
ω Eβ

ω + · · · . (21)

The polarization tensor and the conductivity are related via
analytic continuation,

σαβ (ω) = − 1

iω
�

αβ

iq0→ω+i0+ . (22)

The DC conductivity (tensor) is the zero-frequency limit of
the conductivity tensor, σαβ ≡ σαβ (ω → 0).

III. LONGITUDINAL AND ANOMALOUS
HALL CONDUCTIVITY

For given λp, μ, T , and � all quantities in the polarization
tensor �

αβ
iq0

in Eq. (20) are known, such that a numerical
evaluation is directly possible by performing the Matsubara
summation explicitly. Furthermore, analytic continuation is
straightforward leading to a conductivity formula at real fre-
quency ω. Here, we combine this analytic derivation with
an analysis of the underlying structure of �

αβ
iq0

in order to
identify criteria for physically and mathematically motivated
decompositions.

A. Spherical representation

The crucial quantity to evaluate (20) is the Bloch Hamilto-
nian matrix λp, both present in the Green’s function Gip0,p and
the vertex λα

p . The basic property of the 2 × 2 matrix λp is its
hermiticity allowing us to expand it in the identity matrix 1

and the three Pauli matrices

σx =
(0 1

1 0

)
, σy =

(0 −i
i 0

)
, σz =

(1 0
0 −1

)
, (23)

which we combine to the Pauli vector σ = (σx, σy, σz ). The
indexing x, y, z must not be confused with the spatial direc-
tions. We get the compact notation

λp = gp 1 + dp · σ (24)

with a momentum-dependent function gp and a momentum-
dependent vector field dp [25,60–63]. The Bloch Hamiltonian
λp can be understood as a four-dimensional vector field that
assigns (gp, dp) to each momentum p. In 2D, we can visualize
gp as a surface on top of which we indicate the vector dp
by its length and direction. An example is shown in Fig. 1.
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FIG. 1. We can represent the Bloch Hamiltonian λp by a number
gp and a vector dp. For a 2D system, we can visualize gp as a surface
on top of which we indicate the vector dp by its length rp (color
from purple to red) and direction given by the angles �p and ϕp.
The (generalized) velocity and, thus, the conductivity is given by
the modulation of these fields. Here, we show λp of the example in
Sec. V C.

The velocity, which is the momentum derivative of λp, is the
modulation of these fields.

It is very useful to represent the vector d via its length
r and the two angles � and ϕ in spherical coordinates, d =
(r cos ϕ sin �, r sin ϕ sin �, r cos �). The Bloch Hamiltonian
matrix λp in spherical coordinates reads

λp =
(

gp + rp cos �p rp sin �pe−iϕp

rp sin �peiϕp gp − rp cos �p

)
. (25)

Both (3) and (25) are equivalent and impose no restriction on
the Hamiltonian than hermiticity. In the following, we exclu-
sively use λp in spherical coordinates. The explicit mapping
between (3) and (25) is given in Appendix C.

The advantage of the spherical form (25) is its simplicity of
the eigenvalues and eigenvectors. We denote the eigensystem
at momentum p as ±p. The eigenenergies are

E±
p = gp ± rp (26)

with corresponding eigenvectors

|+p〉 = eiφ+
p

(
cos 1

2�p

eiϕp sin 1
2�p

)
, (27)

|−p〉 = eiφ−
p

(−e−iϕp sin 1
2�p

cos 1
2�p

)
. (28)

These eigenvectors are normalized and orthogonal,
〈+p|+p〉 = 〈−p|−p〉 = 1 and 〈+p|−p〉 = 〈−p|+p〉 = 0.
The two phases φ±

p reflect the freedom to choose a phase
of the normalized eigenvectors when diagonalizing at fixed
momentum p, that is a “local” U(1) gauge symmetry. We
include it explicitly for an easier comparison with other
gauge choices and to make gauge-dependent quantities more
obvious in the following calculations.

B. Interband coherence effects

The polarization tensor �
αβ
iq0

in Eq. (20) is the trace of
the product of Green’s function matrices and vertex matri-
ces. A trace is invariant under unitary transformations (or, in
general, similarity transformations) due to its cyclic property.
We transform all matrices by the 2 × 2 unitary transforma-
tion Up = (|+p〉 |−p〉), whose columns are composed of
the eigenvectors |±p〉. The matrix Up diagonalizes the Bloch
Hamiltonian matrix

Ep = U †
p λpUp =

(
E+

p 0

0 E−
p

)
, (29)

where we defined the quasiparticle band matrix Ep. We trans-
form the Green’s function matrix in Eq. (15) and get the
diagonal Green’s function

Gip0,p = U †
p Gip0,pUp = [ip0 + μ − Ep + i� signp0]−1.

(30)

Note that the assumptions of � to be proportional to the
identity matrix is crucial to obtain a diagonal Green’s function
matrix by this transformation.

In general, the vertex matrix λα
p will not be diagonal after

unitary transformation with Up, since it involves the momen-
tum derivative λα

p = ∂αλp, which does not commute with the
momentum-dependent Up. Expressing λp in terms of Ep, we
get

U †
p λα

pUp = U †
p [∂αλp]Up = U †

p [∂α (UpEpU †
p )]Up. (31)

The derivative of Ep leads to the eigenvelocities Eα
p = ∂αEp.

The two other terms from the derivative contain the mo-
mentum derivative of Up. Using the identity (∂αU †

p )Up =
−U †

p (∂αUp) of unitary matrices, we end up with

U †
p λα

pUp = Eα
p + Fα

p , (32)

where we defined Fα
p = −i[Aα

p, Ep] with

Aα
p = iU †

p (∂αUp). (33)

Since Fp involves the commutator with the diagonal matrix
Ep, Fα

p is a purely off-diagonal matrix. Thus we see already at
that stage that Fp causes the mixing of the two quasiparticle
bands and, thus, captures exclusively the interband coherence
effects. We refer to Fα

p as “(interband) coherence matrix.”
Let us have a closer look at Aα

p defined in Eq. (33). The
matrix Up consists of the eigenvectors |±p〉. Its complex con-
jugation U †

p consists of the corresponding 〈±p|. Thus we can
identify the diagonal elements of Aα

p as the Berry connection
of the eigenstates |±p〉, that is Aα,±

p = i〈±p|∂α±p〉, where
|∂α±p〉 = ∂α|±p〉 is the momentum derivative of the eigen-
state [64,65]. Aα

p is hermitian due to the unitarity of Up. This
allows us to express it in terms of the identity and the Pauli
matrices, Aα

p = Iα
p + X α

p + Yα
p + Zα

p , where

Iα
p = − 1

2

[
φ+,α

p + φ−,α
p

]
1, (34)

X α
p = − 1

2

[
ϕα

p sin �p cos ϕ̃p + �α
p sin ϕ̃p

]
σx, (35)

Yα
p = − 1

2

[
ϕα

p sin �p sin ϕ̃p − �α
p cos ϕ̃p

]
σy, (36)

Zα
p = − 1

2

[
φ+,α

p − φ−,α
p + ϕα

p (1 − cos �p)
]
σz, (37)
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and ϕ̃p = ϕp + φ+
p − φ−

p . We calculated the prefactors by us-
ing (27) and (28) and used the short notation �α

p = ∂α�p and
ϕα

p = ∂αϕp for the momentum derivative in α direction. Each
component of Ap is gauge dependent by involving φ±,α

p =
∂αφ±

p or ϕ̃p. The coherence matrix Fα
p involves only the off-

diagonal matrices X α
p and Yα

p , since the diagonal contributions
Ip and Zp vanish by the commutator with the diagonal matrix
Ep. We see that the coherence matrix Fα

p is gauge dependent

due to ϕ̃p. However, the product Fα
p F

β
p is gauge independent

as we can see by

Fα
p Fβ

p ∝ (
X α

p + Yα
p

)(
X β

p + Yβ
p

)
∝

(
0 e−iϕ̃p

eiϕ̃p 0

)(
0 e−iϕ̃p

eiϕ̃p 0

)
∝ 1 , (38)

where we dropped gauge-independent quantities in each step.
The quasiparticle velocity Eα

p is also gauge independent.

C. Decomposition

With these remarks we evaluate the polarization tensor
�

αβ
iq0

given in Eq. (20). The unitary transformation by the
eigenbasis |±p〉 leads to

�
αβ
iq0

= Tr
[
Gip0+iq0,p

(
Eβ

p + Fβ
p

)
Gip0,p

(
Eα

p + Fα
p

)]
. (39)

The Green’s function matrices (30) are diagonal, whereas
the vertices (32) contain the diagonal matrix Eα

p and the off-
diagonal matrix Fα

p . The matrix trace only gives nonzero
contribution if the product of the four matrices involves an
even number of off-diagonal matrices, that is zero or two
in this case. Thus the mixed terms involving both Eα

p and

Fα
p vanish. This leads to the decomposition of �

αβ
iq0

into an
intraband and an interband contribution:

�
αβ
iq0

= �
αβ

iq0,intra + �
αβ

iq0,inter . (40)

In the intraband contribution, the two eigensystems ±p are
not mixed, whereas they mix in the interband contribution
due to the interband coherence matrix Fα

p . The individual
contributions in Eq. (40) are gauge independent due to (38)
but not unique in a mathematical sense. For instance, we can
use any similarity transformation and perform similar steps
as discussed above. The sum of the contributions leads to the
same final result, but the individual contributions may have
less obvious physical interpretations. We discuss this point in
Sec. IV B in more detail.

The matrix trace tr is invariant under transposition. For the
product of several symmetric and antisymmetric (or skew-
symmetric) matrices A, B, C, D this leads to

tr(ABCD)= tr(DTCTBTAT)= (−1)n tr(DCBA) (41)

with AT being the transposed matrix of A, and so on, and n the
number of antisymmetric matrices involved. We refer to the
procedure in Eq. (41) via “trace transposition” or “reversing
the matrix order under the trace” in the following [11]. We call
the trace with a positive sign after trace transposition symmet-
ric and a trace with a negative sign after trace transposition
antisymmetric. Every trace of arbitrary square matrices can
be uniquely decomposed in this way. We analyze the intra-
and interband contribution in Eq. (40) with respect to their

behavior under trace transposition. The intraband contribution
involves the quasiparticle velocities Eα

p and the Green’s func-
tions, that is

�
αβ

iq0,intra = Tr
[
Gip0+iq0,pE

β
p Gip0,pE

α
p

]
. (42)

All matrices are diagonal and, thus, symmetric. We see that
the intraband contribution is symmetric under trace transpo-
sition. The interband contribution involves diagonal Green’s
functions and Fα

p , which is neither symmetric nor antisym-
metric. We decompose it into its symmetric and antisymmetric
part

Fα,s
p = 1

2

(
Fα

p + (
Fα

p

)T) = −i
[
Yα

p , Ep

]
, (43)

Fα,a
p = 1

2

(
Fα

p − (
Fα

p

)T) = −i
[
X α

p , Ep

]
. (44)

By this, the interband contribution decomposes into a
symmetric and antisymmetric contribution under trace trans-
position,

�
αβ

iq0, inter = �
αβ,s
iq0, inter + �

αβ,a
iq0, inter , (45)

where

�
αβ,s
iq0, inter = Tr

[
4r2

pGip0+iq0,pX
β
p Gip0,pX

α
p

]
+ Tr

[
4r2

pGip0+iq0,pY
β
p Gip0,pY

α
p

]
, (46)

�
αβ,a
iq0, inter = Tr

[
4r2

pGip0+iq0,pX
β
p Gip0,pY

α
p

]
+ Tr

[
4r2

pGip0+iq0,pY
β
p Gip0,pX

α
p

]
. (47)

We used Ep = gp + rpσz and performed the commutator ex-
plicitly. Interestingly, the symmetry under trace transposition,
which is due to the multiband character, is connected to the
symmetry of the polarization tensor or, equivalently, of the
conductivity tensor σ = (σαβ ) itself: Trace transposition of
(42), (46), and (47) is equal to the exchange of α ↔ β, the
directions of the current and the external electric field.

In Eq. (38), we showed that the product Fα
p F

β
p is gauge

independent. However, this product is neither symmetric nor
antisymmetric with respect to α ↔ β. Up to a prefactor its
symmetric and antisymmetric parts read

Fα
p Fβ

p + Fβ
p Fα

p ∝ {
X α

p ,X β
p

} + {
Yα

p ,Yβ
p

} = Cαβ
p , (48)

Fα
p Fβ

p − Fβ
p Fα

p ∝ [
X α

p ,Yβ
p

] + [
Yα

p ,X β
p

] = −i �αβ
p , (49)

which defines the symmetric function Cαβ
p and antisymmetric

function �
αβ
p , which are both real-valued diagonal matrices.

Using (35) and (36), we get

Cαβ
p = 1

2

(
�α

p�β
p + ϕα

p ϕβ
p sin2 �p

)
1 , (50)

�αβ
p = 1

2

(
ϕα

p �β
p − ϕβ

p �α
p

)
sin �p σz . (51)

We see explicitly that Cαβ
p and �

αβ
p are gauge independent.

Note that Cαβ
p involves equal contributions for both quasipar-

ticle bands, whereas �
αβ
p involves contributions of opposite

sign for the two quasiparticle bands. Furthermore, we can
check explicitly that �

αβ
p = ∂αZβ

p − ∂βZα
p . Thus �

αβ
p is the

Berry curvature of the eigenbasis |±p〉.
In Sec. IV D, we will show that the product Fα

p F
β
p is pro-

portional to the quantum geometric tensor T αβ,n
p . The Berry
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curvature is proportional to the imaginary part of T αβ,n
p and

the real part of T αβ,n
p is the quantum metric [63,66–69].

We will show that the two components of Cαβ
p in Eq. (50)

are twice the quantum metric of the eigenbasis |±p〉, that is
Cαβ,±

p = 2 gαβ,±
p , which are equal gαβ,+

p = gαβ,−
p in our two-

band system. This provides a new interpretation of Cαβ
p ≡

Cαβ,±
p , which has been labeled “coherence term” previously

[58] and has been studied in detail in the context of the longi-
tudinal conductivity for spiral spin-density waves [11] without
noticing this relation. We will refer to Cαβ

p as “quantum metric
factor” in the following.

D. Matsubara summation

We continue by performing the Matsubara summations and
analytic continuation. The Matsubara sum in Eqs. (42), (46),
and (47) is of the form

Iiq0 ≡ T
∑

p0

tr[(Giq0 − G)M1GM2] (52)

with two matrices M1 and M2 that are symmetric and/or
antisymmetric. We omit the momentum dependence for sim-
plicity in this paragraph. We further shorten the notation of
the Green’s functions G ≡ Gip0 and G±iq0 ≡ Gip0±iq0 . If Iiq0 is
symmetric under trace transposition, that is, for the intraband
and the symmetric interband contribution, we split (52) into
two equal parts. In the second part, we reverse the matrix
order under the trace and change the Matsubara summation
ip0 → ip0 − iq0. We get

Is
iq0

≡ T

2

∑
p0

tr
[((

Giq0 − G
) + (

G−iq0 − G
))

M1GM2
]
. (53)

If Iiq0 is antisymmetric, that is for the antisymmetric interband
contribution, we obtain after the same steps

Ia
iq0

≡ T

2

∑
p0

tr
[(
Giq0 − G−iq0

)
M1GM2

]
. (54)

We perform the Matsubara summation and analytic continu-
ation iq0 → ω + i0+ of the external frequency leading to Is

ω

and Ia
ω. We are interested in the DC limit. The detailed Mat-

subara summation and the zero-frequency limit are performed
in Appendix D. We end up with

lim
ω→0

Is
ω

iω
= π

2

∫
dε f ′

ε tr[AεM1AεM2 + AεM2AεM1], (55)

lim
ω→0

Ia
ω

iω
= −i

∫
dε fε tr[P′

εM1AεM2 −P′
εM2AεM1], (56)

where fε = (eε/T + 1)−1 is the Fermi function and f ′
ε its

derivative. Furthermore, it involves the spectral function
matrix Aε = −(GR

ε − GA
ε )/2π i and the derivative of the

principle-value function matrix P′
ε = ∂ε (GR

ε + GA
ε )/2.

In Eqs. (55) and (56), we exclusively used the spectral
function Aε and the principle-value function Pε , which are
both real-valued functions, and avoided the complex-valued
retarded or advanced Green’s functions. As we have a real-
valued DC conductivity, the combination of M1 and M2 has
to be purely real in Eq. (55) and complex in Eq. (56). The

symmetric part (55) involves the derivative of the Fermi func-
tion f ′

ε , whereas the antisymmetric part (56) involves the
Fermi function fε . This suggests to call the latter one the
Fermi-surface contribution and the former one the Fermi-sea
contribution. However, this distinction is not unique, since we
can perform partial integration in the internal frequency ε.
For instance, the decomposition proposed by Streda [39] is
different. We will discuss this aspect in Sec. IV A.

Using the explicit form of the Green’s function in Eq. (30),
the spectral function matrix reads

Aε =
(A+

ε

A−
ε

)
(57)

with the spectral functions of the two quasiparticle bands

A±
ε = �/π

(ε + μ − E±
p )2 + �2

. (58)

For our specific choice of � the spectral function is a
Lorentzian function, that peaks at E±

p − μ for small �. Using
(58) the derivative of the principle-value function P′

ε can be
rewritten in terms of the spectral function as

P′
ε = 2π2A2

ε − π

�
Aε . (59)

When inserting this into (56) the second, linear term drops
out. We see that (55) and (56) can be completely expressed
by combinations of quasiparticle spectral functions. Note that
(59) is valid only for a scattering rate � that is frequency-
independent as well as proportional to the identity matrix.

We apply the result of the Matsubara summation (55) and
(56) to the symmetric and antisymmetric interband contri-
butions (46) and (47). Since M1 and M2 are off-diagonal
matrices in both cases, the commutation with the diagonal
spectral function matrix Aε simply flips its diagonal entries,
that is MiAε = AεMi where Aε is given by (57) with A+

ε ↔ A−
ε

exchanged. We collect the product of involved matrices and
identify

Aε (X βX α+X αX β+YβYα+YαYβ )Aε = AεC
αβAε, (60)

A2
ε (X βYα−YαX β+YβX α−X αYβ )Aε = iA2

ε�
αβAε, (61)

where Cαβ and �αβ were defined in Eqs. (50) and (51).

E. Formulas of the conductivity tensor

As the final step we combine all our results. The con-
ductivity and the polarization tensor are related via (22). We
write out the trace over the eigenstates explicitly. The DC
conductivity σαβ decomposes into five different contributions:

σαβ = σ
αβ

intra,+ + σ
αβ

intra,−

+ σ
αβ,s
inter

+ σ
αβ,a
inter,+ + σ

αβ,a
inter,−. (62)

These contributions are distinct by three categories: (a) intra-
and interband, (b) symmetric and antisymmetric with respect
to α ↔ β (or, equivalently, with respect to trace transpo-
sition), and (c) quasiparticle band ±. As the symmetric
interband contribution σ

αβ,s
inter is shown to be symmetric in

+ ↔ − for our two-band model, we dropped the band index
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for simplicity. Each contribution consists of three essential
parts: (i) the Fermi function f (ε) or its derivative f ′(ε), (ii)
a spectral weighting factor involving a specific combination
of the quasiparticle spectral functions An

p(ε) with n = ±, that
is,

wn
p,intra(ε) = π

(
An

p(ε)
)2

, (63)

ws
p,inter(ε) = 4π r2

p A+
p (ε) A−

p (ε) , (64)

wa,n
p,inter(ε) = 8π2 r2

p

(
An

p(ε)
)2

A−n
p (ε) , (65)

and (iii) a momentum-dependent weighting factor involving
the changes in the scalar field gp and vector field dp in a
specific form, that is the quasiparticle velocities E±,α

p , the

quantum metric factor Cαβ
p and the Berry curvatures �

αβ,±
p

given as

E±,α
p = gα

p ± rα
p , (66)

Cαβ
p = 1

2

(
�α

p�β
p + ϕα

p ϕβ
p sin2 �p

)
, (67)

�αβ,±
p = ± 1

2

(
ϕα

p �β
p − ϕβ

p �α
p

)
sin �p , (68)

where gα
p = ∂αgp, rα

p = ∂αrp, �α
p = ∂α�p, and ϕα

p = ∂αϕp
with the momentum derivative in α direction ∂α = ∂/∂ pα . We
write the conductivity in units of the conductance quantum
2πσ0 = e2/h̄ = e2 for h̄ = 1 and perform the thermodynamic
limit by replacing L−1 ∑

p → ∫ dd p
(2π )d , where d is the dimen-

sion of the system. We end up with

σ
αβ

intra,n = −e2

h̄

∫
dd p

(2π )d

∫
dε f ′(ε)wn

p,intra(ε)En,α
p En,β

p , (69)

σ
αβ,s
inter = −e2

h̄

∫
dd p

(2π )d

∫
dε f ′(ε)ws

p,inter(ε)Cαβ
p , (70)

σ
αβ,a
inter,n = −e2

h̄

∫
dd p

(2π )d

∫
dε f (ε) wa,n

p,inter(ε) �αβ,n
p . (71)

If we restore SI units, the conductivity has units 1/� md−2

for dimension d . Note that we have σαβ ∝ e2/h in a
two-dimensional system and σαβ ∝ e2/ha in a stacked quasi-
two-dimensional system, where a is the interlayer distance.
For given λp, μ, T and � the evaluation of (69)–(71) is
straightforward. The mapping of λp to spherical coordinates
is given in Eqs. (C1)–(C4). The spectral function A±

p (ε) is
defined in Eq. (58).

IV. DISCUSSION

A. Relation to Bastin and Streda formula

Microscopic approaches to the anomalous Hall conductiv-
ity are frequently based on the formulas of Bastin et al. [38]
and Streda [39]. A modern derivation is given by Crépieux
et al. [40]. We present a rederivation in our notation and
discuss the relation to our results. We omit the momentum
dependence for a simpler notation in this section.

We start with the polarization tensor �
αβ
iq0

in Eq. (20) be-
fore analytic continuation. In contrast to our discussion, we
perform the Matsubara sum and the analytic continuation in

Eq. (22) immediately and get

σαβ
ω = − 1

iω
Trε,p

[
fε

(
Aελ

βG A
ε−ωλα + G R

ε+ωλβAελ
α

−Aελ
βPελ

α − Pελ
βAελ

α
)]

. (72)

We combined the prefactors, the summation over momenta
and the frequency integration as well as the matrix trace in the
short notation Trε,p[ · ] = e2L−1 ∑

p

∫
dε tr[ · ]. The first and

second line are obtained by the argument explicitly given in
Eq. (20) and its (iq0 = 0) contribution, respectively. Details
of the Matsubara summation and the analytic continuation are
given in Appendix D. G R

ε and G A
ε are the retarded and ad-

vanced Green’s function of (15), respectively. Aε = −(G R
ε −

G A
ε )/2π i is the spectral function matrix and Pε = (G R

ε +
G A

ε )/2 is the principle-value function matrix. fε is the Fermi
function.

We derive the DC limit by expanding σαβ
ω in the frequency

ω of the external electric field E(ω). The diverging term ∝
1/ω vanishes, which can be checked by using G R

ε = Pε −
iπAε and G A

ε = Pε + iπAε . The constant term is

σ
αβ

Bastin = i Trε,p
[

fε
( − Aελ

β
(
G A

ε

)′
λα + (

G R
ε

)′
λβAελ

α
)]

,

(73)

which was derived by Bastin et al. [38]. The derivative with
respect to the internal frequency ε is denoted by ( · )

′
. The

expression in Eq. (73) is written in the subsystem basis, in
which we expressed the Bloch Hamiltonian λp in Eq. (2). Due
to the matrix trace, we can change to the diagonal basis via
(30) and (32).

In Sec. III, we identified the symmetry under α ↔ β as
a good criterion for a decomposition. The Bastin formula is
neither symmetric nor antisymmetric in α ↔ β. When we
decompose σ

αβ

Bastin into its symmetric and antisymmetric part,
we can easily identify our result (62), that is,

1
2

(
σ

αβ

Bastin + σ
βα

Bastin

) = σ
αβ

intra,+ + σ
αβ

intra,− + σ
αβ,s
inter , (74)

1
2

(
σ

αβ

Bastin − σ
βα

Bastin

) = σ
αβ,a
inter,+ + σ

αβ,a
inter,−. (75)

This identification is expected as the decomposition into the
symmetric and antisymmetric part is unique. We note that this
separation naturally leads to Fermi-surface (74) and Fermi-
sea contributions (75) in the same form that we defined in
Sec. III. Based on our derivation we argue that we should
see the symmetry under α ↔ β as the fundamental difference
between (74) and (75) instead of the property involving fε or
f ′
ε .

The Bastin formula (73) is the starting point for the deriva-
tion of the Streda formula [39,40]. We split σ

αβ

Bastin into two
equal parts and perform partial integration in ε on the latter
one. We obtain

σ
αβ

Bastin = i

2
Trε,p

[
fε

( − Aελ
β
(
G A

ε

)′
λα + (

G R
ε

)′
λβAελ

α
)]

− i

2
Trε,p

[
f ′
ε

( − Aελ
βG A

ε λα + G R
ε λβAελ

α
)]

− i

2
Trε,p

[
fε

( − A ′
ε λ

βG A
ε λα + G R

ε λβA ′
ε λ

α
)]

. (76)

We replace the spectral function by its definition Aε =
−(G R

ε − G A
ε )/2π i and sort by fε and f ′

ε . By doing so the
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Streda formula decomposes into two contributions, histori-
cally labeled as

σ
αβ

Streda = σ
αβ,I
Streda + σ

αβ,II
Streda (77)

with the “Fermi-surface contribution”

σ
αβ,I
Streda = 1

4π
Trε,p

[
f ′
ε

( − (
G R

ε − G A
ε

)
λβG A

ε λα

+ GR
ε λβ

(
G R

ε − G A
ε

)
λα

)]
, (78)

and the “Fermi-sea contribution”

σ
αβ,II
Streda = − 1

4π
Trε,p

[
fε

(
G A

ε λβ
(
G A

ε

)′
λα − (

G A
ε

)′
λβG A

ε λα

+ (
G R

ε

)′
λβG R

ε λα − G R
ε λβ

(
G R

ε

)′
λα

)]
. (79)

The decomposition (77) explicitly shows the ambiguity in
the definition of Fermi-sea and Fermi-surface contributions
due to the possibility of partial integration in the internal
frequency ε. Following our distinction by the symmetry with
respect to α ↔ β, we notice that the second contribution (79)
is antisymmetric, whereas the first contribution (78) is neither
symmetric nor antisymmetric. If we decompose (78) into its
symmetric and antisymmetric part and combine the latter one
with (79), we recover our findings

1
2

(
σ

αβ,I
Streda + σ

βα,I
Streda

) = σ
αβ

intra,+ + σ
αβ

intra,− + σ
αβ,s
inter , (80)

1
2

(
σ

αβ,I
Streda − σ

βα,I
Streda

) + σ
αβ,II
Streda = σ

αβ,a
inter,+ +σ

αβ,a
inter,−, (81)

as expected by the uniqueness of this decomposition. We
see that the antisymmetric interband contribution, which is
responsible for the anomalous Hall effect, is given by parts of
Streda’s Fermi-surface and Fermi-sea contributions combined
[53]. In the literature different parts of (78) and (79) are
identified to be relevant when treating disorder effects via
quasiparticle lifetime broadening or beyond [12,30,40–54].
Due to the mathematical uniqueness and the clear physical
interpretation, we propose (75) or, equivalently, (81) as a
good starting point for further studies on the anomalous Hall
conductivity.

B. Basis choice and subsystem basis

The polarization tensor �
αβ
iq0

in Eq. (20) is the trace of a
matrix and is, thus, invariant under unitary (or, more general,
similarity) transformations of this matrix. In other words,
the conductivities can be expressed within a different basis
than the eigenbasis, which we used for the final formulas
in Eqs. (69)–(71) in Sec. III. The obvious advantage of the
eigenbasis is that we can easily identify terms with clear
physical interpretation like the quasiparticle spectral functions
A±

p (ε), the quasiparticle velocities E±,α
p , the quantum metric

factor Cαβ
p and the Berry curvature �

αβ,±
p .

In general, we can use any invertible matrix Up and per-
form similar steps as we did in our derivation: In analogy
to (29) and (30), we obtain a transformed Bloch Hamil-
tonian matrix λ̃p = U −1

p λpUp and a corresponding Green’s
function matrix. Reconsidering the steps in Eq. (31), we ob-
tain a new decomposition (32) of the velocity matrix with
an analog of the Berry-connection-like matrix in Eq. (33).
We see that the following steps of decomposing the Berry-

connection-like matrix, separating the involved matrices of
the polarization tensor into their diagonal and off-diagonal
parts and splitting the off-diagonal matrices into their sym-
metric and antisymmetric components under transposition are
possible but lengthy.

A special case is Up = 1, by which we express the con-
ductivity in the subsystem basis, in which we defined the
Bloch Hamiltonian λp in Eq. (3). Following the derivation in
Sec. IV A, we obtain Eq. (73), which we further decompose
into the symmetric and antisymmetric part with respect to
α ↔ β, σαβ = σαβ,s + σαβ,a. We obtain

σαβ,s = −π Trε,p[ f ′
εAελ

βAελ
α], (82)

σαβ,a = 2π2 Trε,p
[

fε
(
A 2

ε λβAελ
α − Aελ

βA 2
ε λα

)]
. (83)

We replaced P ′
ε by using (59). These expressions still involve

the matrix trace. Obviously, an immediate evaluation of this
trace without any further simplifications would produce very
lengthy expressions.

A mayor reduction of the effort to perform the matrix
trace is the decomposition into symmetric and antisymmetric
parts with respect to trace transposition, which was defined
in Eq. (41). We expand Aε , λα , and λβ into their diagonal
and off-diagonal components, which we further decompose
into parts proportional to σx and σy. For instance, in Eq. (82),
we obtain 81 combinations, where several combinations van-
ish by tracing an off-diagonal matrix. We get symmetric as
well as antisymmetric contributions under trace transposition.
However, the latter ones will eventually vanish due to the an-
tisymmetry in α ↔ β. Similarly, the symmetric contributions
under trace transposition will drop out in Eq. (83).

By this analysis, we explicitly see that our approach dis-
cussed in Sec. III does not only lead to a physically motivated
decomposition but also reduces the effort of performing the
matrix trace drastically and, thus, can be seen as a potential
strategy to treat multiband systems beyond our two-band sys-
tem analytically.

C. Limit of small and large scattering rate � and the low
temperature limit

In our derivation in Sec. III we did not assume any restric-
tions on the size of the scattering rate �. Thus the formulas
(69)–(71) are valid for a scattering rate � of arbitrary size.
In the following, we discuss both the clean limit (small �)
and the dirty limit (large �) analytically. We are not only
interested in the limiting behavior of the full conductivity
σαβ in Eq. (62), but also in the behavior of the individual
contributions (69)–(71). The dependence on � is completely
captured by the three different spectral weighting factors
wn

p,intra, ws
p,inter, and wa,n

p,inter, which involve a specific prod-
uct of quasiparticle spectral functions and are defined in
Eqs. (63)–(65). Parts of the clean limit were already discussed
by the author and Metzner elsewhere [11]. We review it here
for consistency and a complete overview within our notation.
We further discuss the zero temperature limit.

The spectral weighting factor of the intraband conductiv-
ities wn

p,intra in Eq. (63) involves the square of the spectral

function of the same band, (An
p(ε))

2
, and, thus, peaks at the

corresponding quasiparticle Fermi surface defined by En
p −
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FIG. 2. The spectral weighting factors ws
p,inter (top) and wa,+

p,inter

(bottom, solid), and its primitive W a,+
p,inter (bottom, dashed) for differ-

ent choices of �.

μ = 0 for small �. If � is so small that the quasiparticle
velocities E±,α

p are almost constant in a momentum range in
which the variation of E±

p is of order �, we can approximate

wn
p,intra(ε) ≈ 1

2�
δ
(
ε + μ − En

p

) ∼ O(�−1). (84)

Thus the intraband conductivities σ
αβ

intra,± diverge as 1/�, con-
sistent with Boltzmann transport theory [27].

The spectral weighting factor of the symmetric interband
conductivity ws

p,inter in Eq. (64) is the product of the spectral
functions of the two bands, A+

p (ε)A−
p (ε). For small �, ws

p,inter
peaks equally at the Fermi surface of both bands. For increas-
ing �, the gap starts to fill up until the peaks merge and form
one broad peak at (E+

p + E−
p )/2 − μ = gp − μ. It decreases

further for even larger �. Since each spectral function An
p(ε)

has half width of � at half the maximum value, the relevant
scale for the crossover is 2� = E+

p − E−
p = 2rp. We sketch

ws
p,inter in Fig. 2 for several choices of �. If the quantum metric

factor Cαβ
p is almost constant in a momentum range in which

the variation of E±
p is of order � and, furthermore, if � � rp

we can approximate

ws
p,inter(ε) ≈ �

∑
n=±

δ
(
ε + μ − En

p

) ∼ O(�1). (85)

We see that the symmetric interband conductivity σ
αβ,s
inter scales

linearly in � and is suppressed by a factor �2 compared to the
intraband conductivities.

The spectral weighting factor of the antisymmetric inter-
band conductivities wa,n

p,inter in Eq. (65) is the square of the
spectral function of one band multiplied by the spectral func-

tion of the other band, (An
p(ε))

2
A−n

p (ε). In the clean limit, it
is dominated by a peak at En

p − μ. For increasing �, the peak
becomes asymmetric due to the contribution of the spectral
function of the other band at E−n

p − μ and develops a shoul-
der. For 2� � E+

p − E−
p = 2rp, it eventually becomes one

broad peak close to (E+
p + E−

p )/2 − μ = gp − μ. We sketch
wa,+

inter in Fig. 2 for several choices of �. If the Berry curvature
�

αβ,n
p is almost constant in a momentum range in which the

variation of En
p is of order � and, furthermore, if � � rp, we

can approximate

wn,a
p,inter(ε) ≈ δ

(
ε + μ − En

p

) ∼ O(�0). (86)

Thus the antisymmetric interband conductivities σ
αβ,a
inter,± be-

come � independent, or “dissipationless” [12]. The symmetric
interband conductivity is suppressed by a factor � compared
to the antisymmetric interband conductivities. The antisym-
metric interband conductivities are suppressed by a factor �

compared to the intraband conductivities. However, note that
the leading order might vanish, for instance, when integrating
over momenta or due to zero Berry curvature.

Using (84)–(86), we see that the intraband conductivities
and the symmetric interband conductivity are proportional to
− f ′(E±

p − μ), whereas the antisymmetric interband conduc-
tivities involve the Fermi function f (E±

p − μ) in the clean
limit. Thus the former ones are restricted to the vicinity of
the Fermi surface at low temperature kBT � 1. In contrast,
all occupied states contribute to the antisymmetric interband
conductivities. The consistency with the Landau Fermi liquid
picture was discussed by Haldane [70].

The Fermi function f (ε) and its derivative f ′(ε) capture the
temperature broadening effect in the different contributions
(69)–(71) of the conductivity. In the following, we have a
closer look at the low temperature limit. Since f ′(ε) → −δ(ε)
for kBT � 1 the spectral weighting factors of the intraband
and the symmetric interband conductivity read −wn

p,intra(0)
and −ws

p,inter(0), respectively, after frequency integration over
ε. The antisymmetric interband conductivities involve the
Fermi function, which results in the Heaviside step function
for kBT � 1, that is f (ε) → �(−ε). Thus the frequency
integration has still to be performed from −∞ to 0. In
order to circumvent this complication, we define the prim-
itive (W n,a

p,inter(ε))′ = wn,a
p,inter(ε) with the boundary condition

W n,a
p,inter(−∞) = 0. The zero temperature limit is then per-

formed after partial integration in ε by∫
dε f (ε) wn,a

p,inter(ε) = −
∫

dε f ′(ε)W n,a
p,inter(ε)

≈ W n,a
p,inter(0) . (87)

In Fig. 2, we sketch W n,a
p,inter(ε) for � = 0.3 rp. At finite

�, it is a crossover from zero to approximately one,
that eventually approaches a step function at En

p − μ

for small �. At low temperature kBT � 1, the occupied
states with En

p − μ < 0 contribute significantly to the
antisymmetric interband conductivities as expected. Note that∫

dε wn,a
p,inter(ε) = r2

p(r2
p + 3�2)/(r2

p + �2)2 ≈ 1 + �2/r2
p, so

that a step function of height 1 is only approached in the limit
� → 0.
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In the following, we discuss the limiting cases of the spec-
tral weighting factors wn

p,intra(0), ws
p,inter(0), and W n,a

p,inter(0),
that is in the low temperature limit. We start with the case
of a band insulator in the clean limit and assume a chemical
potential below, above or in between the two quasiparticle
bands as well as a scattering rate much smaller than the
gap, � � |En

p − μ|. Within this limit, we find very distinct
behavior of the spectral weighting factors of the intraband
conductivities and of the symmetric interband conductivity
on the one hand and the spectral weighting factor of the
antisymmetric interband conductivities on the other hand. The
former ones scale like

wn
p,intra(0) ≈ �2

π
(
μ − En

p

)4 ∼ O(�2), (88)

ws
p,inter(0) ≈ 4r2

p�
2

π (μ − E+
p )2(μ − E−

p )2
∼ O(�2). (89)

We see that the intraband and the symmetric interband con-
ductivity for filled or empty bands are only present due to
a finite scattering rate. The spectral weighting factor of the
antisymmetric interband conductivities has a different behav-
ior whether the bands are all empty, all filled or the chemical
potential is in between both bands. By expanding W n,a

p,inter(0)
we get

W n,a
p,inter(0) = 1

2

[
1 + sgn

(
μ − En

p

)]

+
[

2 +
∑
ν=±

sgn
(
μ − E ν

p

)] �2

4r2
p

+ O(�3). (90)

Note that a direct expansion of wn,a
p,inter(ε) followed by the inte-

gration over ε from −∞ to 0 is not capable to capture the case
of fully occupied bands, which shows that the regularization
by a finite � is crucial to avoid divergent integrals in the low
temperature limit. For completely filled bands μ > E+

p , E−
p ,

we have W n,a
p,inter(0) ≈ 1 + �2/r2

p in agreement with the dis-
cussion above. For completely empty bands μ < E+

p , E−
p we

have W n,a
p,inter(0) ∝ �3. If the chemical potential lies in between

both bands E−
p < μ < E+

p we have W −,a
p,inter(0) = 1 + �2/2r2

p

and W +,a
p,inter(0) = �2/2r2

p. The antisymmetric interband con-
ductivities involve the Berry curvature, which is equal for
both bands up to a different sign, �αβ,+ = −�αβ,−. Thus
the antisymmetric interband conductivity summed over both
bands involves

W +,a
p,inter(0) − W −,a

p,inter(0)

= 1

2
[sgn(μ−E+

p )−sgn(μ−E−
p )]

− 16r3
p�

3

3π (μ − E+
p )3(μ − E−

p )3
+ O(�5). (91)

We see that a scattering-independent or “dissipationless” term
is only present for a chemical potential in between the two
bands. The next order in � is at least cubic. Note that different
orders can vanish in the conductivities after the integration
over momenta.

Our formulas (69)–(71) are valid for an arbitrarily large
scattering rate �. We study the dirty limit (large �) in the
following. In contrast to the clean limit, it is crucial to
distinct the two following cases: fixed chemical potential
and fixed particle number. The latter condition leads to a
scattering-dependent chemical potential μ(�), which modi-
fies the scaling of the spectral weighting factors. To see this,
we calculate the total particle number per unit cell at small
temperature and get

n =
∑
ν=±

∫
dε

∫
dd p

(2π )d
Aν

p(ε) f (ε)

≈ 1 −
∑
ν=±

1

π

∫
dd p

(2π )d
arctan

E ν
p − μ

�

≈ 1 − 2

π
arctan

c − μ

�
. (92)

In the last step, we assumed that � is much larger than the
band width (E+

max − E−
min)/2 = W � �, where E+

max is the
maximum of the upper band and E−

min is the minimum of
the lower band. We denote the center of the bands as c =
(E+

max + E−
min)/2. Solving for the chemical potential gives the

linear dependence on �, μ(�) = c + μ∞� with

μ∞ = − tan
(1 − n)π

2
. (93)

Note that at half filling, n = 1, the chemical potential be-
comes scattering independent, μ∞ = 0. At n = 0, 2 we have
μ∞ = ∓∞. We assume a scattering rate much larger than the
bandwidth W � � in the following.

In a first step, we consider the case of fixed particle number.
We discuss the limiting cases of the spectral weighting factors
wn

p,intra(0), ws
p,inter(0), and W n,a

p,inter(0) by expanding up to sev-
eral orders in 1/�. The expansion of the spectral weighting
factor of the intraband conductivities wn

p,intra(0) in Eq. (63)
reads

wn
intra(0) ≈ 1(

1 + μ2∞
)2

1

π�2
+ 4μ∞(

1 + μ2∞
)3

En
p − c

π�3

− 2
(
1 − 5μ2

∞
)

(
1 + μ2∞

)4

(
En

p − c
)2

π�4
. (94)

The prefactors involve μ∞ at each order and an additional
momentum-dependent prefactor at cubic and quartic order.
The expansion of the spectral weighting factor of the sym-
metric interband conductivity ws

p,inter(0) in Eq. (64) reads

ws
inter(0) ≈ 4(

1 + μ2∞
)2

r2
p

π�2
+ 16μ∞(

1 + μ2∞
)3

r2
p(gp − c)

π�3

−
[

8
(
1 − 5μ2

∞
)

(
1 + μ2∞

)4

r2
p(gp − c)2

π�4
+ 8

(
1 − μ2

∞
)

(
1 + μ2∞

)4

r4
p

π�4

]
.

(95)

Note that all orders involve a momentum-dependent prefactor.
In both wn

intra(0) and ws
inter(0), the cubic order vanishes at half

filling by μ∞ = 0. The expansion of the spectral weighting
factor of the antisymmetric interband conductivities W n,a

p,inter(0)
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in Eq. (65) reads

W a,±
inter (0) ≈

[
3π

2
+3 arctan μ∞+ μ∞

(
5 + 3μ2

∞
)

(
1 + μ2∞

)2

]
r2

p

π�2

− 8

3
(
1 + μ2∞

)3

3r2
p(gp − c) ± r3

p

π�3
. (96)

Note that the expansion of wa,±
inter(ε) with subsequent frequency

integration from −∞ to 0 leads to divergences and predicts
a wrong lowest order behavior. Due to the property of the
Berry curvature, �

αβ,+
p = −�

αβ,−
p , the quadratic order drops

out of the antisymmetric interband conductivity summed over
the two bands, leading to

W a,+
inter (0) − W a,−

inter (0)

≈ − 16

3
(
1 + μ2∞

)3

r3
p

π�3
− 32μ∞(

1 + μ2∞
)4

r3
p(gp − c)

π�4

+
[

16
(
1 − 7μ2

∞
)

(
1 + μ2∞

)5

r3
p(gp − c)2

π�5
+ 16

(
3 − 5μ2

∞
)

5
(
1 + μ2∞

)5

r5
p

π�5

]
.

(97)

The antisymmetric interband conductivity summed over the
two bands is at least cubic in 1/� in contrast to the intraband
and the symmetric interband conductivity, which are at least
quadratic. The integration over momenta in the conductivities
can cause the cancellation of some orders or can reduce the
numerical prefactor drastically, so that the crossover to lower
orders take place far beyond the scale that is numerically
or physically approachable. By giving the exact prefactors
above, this can be checked not only qualitatively but also
quantitatively for a given model. If needed, the expansion to
even higher orders is straightforward.

The dirty limit for fixed chemical potential does not involve
orders due to the scattering dependence of μ(�), however
modifies the prefactor due to a constant μ. The corresponding
expansion of the different spectral weighting factors can be
obtained simply by setting μ∞ = 0 and c = μ in Eqs. (94)–
(97).

The scaling behavior σ xx ∼ �−2 of the longitudinal con-
ductivity and σ xy ∼ �−3 of the anomalous Hall conductivity
(for zero σ

xy
intra,±) is consistent with Kontani et al. [44] and

Tanaka et al. [47]. We emphasize, however, that a scattering
dependence of μ and the integration over momenta may mod-
ify the upper scalings. Thus the scaling relation σ xy ∝ (σ xx )ν

useful in the analysis of experimental results (see, for instance,
Ref. [46]) is not necessarily ν = 1.5 in the limit W � � [47].
We will show an example in Sec. V C.

D. Quantum geometric tensor

Beside the Green’s function, the generalized velocity is
the other key ingredient in the polarization tensor (20). We
showed that the phase gained by spatial motion in an elec-
tric field leads to a generalized velocity, which is given by
the momentum derivative of the Bloch Hamiltonian matrix
expressed in the subsystem basis. The momentum derivative
of the Bloch Hamiltonian in another basis does not capture all
relevant contributions and leads to incomplete or inconsistent

results (see, for instance, Refs. [55,56] and the example in
Sec. V A). We presented the procedure how to derive those
additional contributions after basis change in Sec. III. As a
consequence of the momentum dependence of the eigenbasis
|±p〉 we derived the coherence matrix Fα

p , which involves
the Berry connection and, thus, suggests a deeper connection
to topological and quantum geometrical concepts. We review
these concepts and relate them to our results in a broader and
more general perspective in the following.

Expressing the velocity operator given by ∂αλ̂p of a general
multiband (and not necessarily two-band) Bloch Hamiltonian
λ̂p in its orthogonal and normalized eigenbasis |np〉 with
eigenvalues En

p naturally leads to intraband and interband
contributions via

〈np|(∂αλ̂p)|mp〉 = δnm En,α
p + i

(
En

p − Em
p

)
Aα,nm

p (98)

after treating the momentum derivative and the momentum
dependence of the eigenbasis carefully. The first line involves
the quasiparticle velocities En,α

p = ∂αEn
p and is only present

for n = m. The second line involves the Berry connection
Aα,nm

p = i〈np|∂αmp〉, where |∂αmp〉 is the momentum deriva-
tive of the eigenstate |mp〉 [64,65], and is only present for
n �= m. In our two band model, the first term corresponds to
Eα

p in Eq. (29), the second term to Fα
p in Eq. (32) and the Aα,nm

p
are the elements of the matrix Ap in Eq. (33) with n, m = ±,
that is

Ap = iU †
p ∂αUp =

( Aα,+
p Aα,+−

p

Aα,−+
p Aα,−

p

)
. (99)

We omitted the second n of the diagonal elements Aα,nn
p

for shorter notation. The diagonal elements Aα,+
p and Aα,−

p
correspond to Iα

p + Zα
p in Eqs. (34) and (37). The off-

diagonal elements Aα,+−
p and Aα,−+

p correspond to X α
p + Yα

p
in Eqs. (35) and (36).

The Berry connection Aα,nm
p is not invariant under the

“local” U(1) gauge transformation |np〉 → eiφn
p |np〉 and, thus,

should not show up in physical quantities like the conductiv-
ity. In other words, not the Hilbert space but the projective
Hilbert space is physically relevant [66–69]. For our two band
model, we discussed this aspect by allowing the phases φ±

p in
Eqs. (27) and (28) explicitly. In general, the transformation of
the Berry connection with respect to the gauge transformation
above reads

Aα,n
p → Aα,n

p − φn,α
p , (100)

Aα,nm
p → Aα,nm

p e−i(φn
p−φm

p ), (101)

with φn,α
p = ∂αφn

p. Obviously, the combination

T αβ,n
p =

∑
m �=n

Aα,nm
p Aβ,mn

p (102)

is gauge independent. In our two-band model, we used the
same argument in Eq. (38). We rewrite (102) by using
〈np|∂αmp〉 = −〈∂αnp|mp〉 and

∑
m �=n |mp〉〈mp| = 1 − |np〉〈np|

and obtain

T αβ,n
p = 〈∂αnp|∂βnp〉 − 〈∂αnp|np〉〈np|∂βnp〉 . (103)

We have recovered the quantum geometric tensor, which
is the Fubini-Study metric of the projective Hilbert space
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[63,66–69]. In our two-band model, the (diagonal) elements of
the product Fα

p F
β
p are proportional to the quantum geometric

tensor T αβ,±
p .

Since the interband contribution (45), which we decom-
posed into its symmetric and antisymmetric part with respect
to α ↔ β, is controlled by the quantum geometric tensor, this
suggests to split T αβ,n

p into its symmetric and antisymmetric
part as well. Using the property of the Berry connection under
complex conjugation in Eq. (102), we see that the symmetric
part is the real part and the antisymmetric part is the imaginary
part of T αβ,n

p , respectively. We define the real-valued quanti-
ties Cαβ,n

p and �
αβ,n
p via

T αβ,n
p = 1

2

(
Cαβ,n

p − i�αβ,n
p

)
(104)

with Cαβ,n
p = Cβα,n

p and �
αβ,n
p = −�

βα,n
p . We have recovered

the Berry curvature

�αβ,n
p = −2 ImT αβ,n

p = ∂αAβ,n
p − ∂βAα,n

p . (105)

The Berry curvature is the curl of the Berry connection. Using
(102) one can show that

∑
n �

αβ,n
p = 0. In order to understand

the meaning of the symmetric part Cαβ,n
p , we consider the

squared distance function

D(|np〉, |np′ 〉)2 = 1 − |〈np|np′ 〉|2, (106)

where |np〉 and |np′ 〉 are two normalized eigenstates of the
same band En

p at different momentum [63,66–69]. The dis-
tance function is invariant under the gauge transformations
|np〉 → eiφn

p |np〉. It is maximal, if the two states are orthogo-
nal, and zero, if they differ only by a phase. We can understand
the function in Eq. (106) as the distance of the projective
Hilbert space in the same manner as ||np〉 − |np′ 〉| is the
natural distance in the Hilbert space, which is, in contrast,
not invariant under the upper gauge transformation [66]. If
we expand the distance between the two eigenstates |np〉 and
|np+dp〉, whose momenta differ only by an infinitesimal mo-
mentum dp, up to second order, we find a metric tensor gαβ,n

p
that is given by the real part of the quantum geometric tensor.
We see that

Cαβ,n
p = 2 gαβ,n

p = 2 ReT αβ,n
p . (107)

In our two-band system, the metrics of the two subsystems are
equal, that is gαβ,+

p = gαβ,−
p , and so is Cαβ

p ≡ Cαβ,±
p .

We see that the interband conductivities σ
αβ,s
inter and σ

αβ,a
inter,n

in Eqs. (70) and (71) are controlled by the quantum geometric
tensor T αβ,n and, thus, caused by a nontrivial geometry of
the Bloch state manifold {|np〉}. We can specify this further
by noticing that the symmetric interband conductivity (70) is
related to the quantum metric and the antisymmetric interband
conductivities (71) are related to the Berry curvature. σ

αβ,s
inter

was studied in detail recently in the context of spiral magnetic
order in application to Hall experiments on high-temperature
superconductors [11,99]. By the upper analysis, we provide a
new interpretation of these results. In order to highlight the
connection to the quantum metric, we refer to the expression
Cαβ,n

p via “quantum metric factor”, which is more precise than
“coherence term” [58].

Recently, there is increasing interest in the quantum ge-
ometric tensor and the quantum metric in very different

fields [25,63,71–77] including corrections to semiclassical
equations of motion in the context of the anomalous Hall
conductivity [78,79] and the effect on the effective mass [80].
Based on our microscopic derivation we emphasize that the
precise way, in which the quantum geometric tensor has to be
included in transport phenomena, is nontrivial.

E. Anomalous Hall effect, anisotropic longitudinal
conductivity and quantization

The Berry curvature tensor �
αβ,n
p is antisymmetric in

α ↔ β and, thus, has three independent components in a
three-dimensional system, which can be mapped to a Berry
curvature vector �n

p = (�yz,n
p , −�xz,n

p , �
xy,n
p ). In order to

use the same notation in a two-dimensional system we set the
corresponding elements in �n

p to zero, for instance, �
yz,n
p =

�xz,n
p = 0 for a system in the x-y plane. By using the definition

of the conductivity and our result (71) of the antisymmetric
interband contribution we can write the current vector ja

n of
band n = ± induced by �n

p as

ja
n =−e2

h̄

∫
dd p

(2π )d

∫
dε f (ε) wa,n

p,inter(ε) E × �n
p. (108)

The Berry curvature vector �n
p acts like an effective magnetic

field [12,13] in analogy to the Hall effect induced by an exter-
nal magnetic field B. We see that the antisymmetric interband
contribution of the conductivity in Eq. (71) is responsible
for the intrinsic anomalous Hall effect, that is a Hall current
without an external magnetic field that is not caused by (skew)
scattering.

In a d-dimensional system, the conductivity tensor is a
d × d matrix σ = (σαβ ). Beside its antisymmetric part, which
describes the anomalous Hall effect, it does also involve a
symmetric part σsym due to the intraband and the symmetric
interband contributions (69) and (70). We can diagonalize
the, in general, nondiagonal matrix σsym by a rotation R of
the coordinate system, which we fixed to an orthogonal basis
ex, ey, ez when labeling α and β in Eq. (17). If the rotation
R is chosen such that RT σsymR is diagonal, the antisym-
metric part in the rotated basis is described by the rotated
Berry curvature vector RT �n

p. We see that a rotation within
the plane of a two-dimensional system does not effect �n

p,
which highlights the expected isotropy of the anomalous Hall
effect consistent with the interpretation of �n

p as an effective
magnetic field perpendicular to the plane. The possibility to
diagonalize the symmetric part σsym shows that the diagonal
and off-diagonal intraband and symmetric interband contri-
butions in Eqs. (69) and (70) are part of the (anisotropic)
longitudinal conductivity in a rotated coordinate system.

Finally, we discuss the possibility of quantization of
the anomalous Hall conductivity. Let us assume a two-
dimensional system that is lying in the x-y plane without loss
of generality. The Chern number of band n is given by

Cn = − 1

2π

∫
BZ

�n
p · dS = −2π

∫
d2p

(2π )2
�xy,n

p (109)

and is quantized to integer numbers [12,13,31]. We can define
a generalized Chern number dependent on the temperature,
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the scattering rate and the chemical potential as

Cn(T, �, μ)=−2π

∫
d2p

(2π )2

∫
dε f (ε) wa,n

p,inter(ε) �xy,n
p ,

(110)

which is weighted by the Fermi function as well as by the
spectral weighting factor wa,n

p,inter(ε) defined in Eq. (65). Thus
we include the effect of band occupation, temperature and fi-
nite scattering rate. The antisymmetric interband conductivity,
that is, the anomalous Hall conductivity, then reads

σ
xy,a
inter,n = e2

h
Cn(T, �, μ) . (111)

In the clean limit � � 1, we recover the broadly used result
of Onoda et al. [34] and Jungwirth et al. [35]. If we further
assume zero temperature kBT � 1 and a completely filled
band n, we recover the famous TKNN formula for the quan-
tized anomalous Hall effect [31], where the anomalous Hall
conductivity is quantized to e2

h ν due to the quantized integer
Chern number ν = Cn. Note that finite temperature, finite �

and partially filled bands break the quantization.
Furthermore, we may be able to relate the antisymmet-

ric interband conductivity to topological charges and, thus,
obtain a quantized anomalous Hall conductivity. The Berry
curvature �n

p is the curl of the Berry connection An
p =

(Ax,n
p , Ay,n

p , Az,n
p ), see (105). Via Stokes’ theorem, the

integral over a two-dimensional surface within the Brillouin
zone can be related to a closed line integral. This line integral
may define a quantized topological charge, which leads to a
quantized value of σ

αβ,a
inter,n integrated over this surface. For in-

stance, this causes a quantized radial component of the current
in a PT -symmetric Dirac nodal-line semimetal [81].

V. EXAMPLES

We discuss several examples in the following section. Each
example includes a short physical motivation that leads to a
Hamiltonian of the form (2) with specified quantum numbers
A and B of the two subsystems. We emphasize that this step is
necessary for a transparent justification of the coupling of the
electric field to the physical system.

A. Artificial doubling of the unit cell

In this short example, we emphasized the importance to use
the precise position Ri + ρσ of the subsystem σ = A, B in the
Peierls substitution in Sec. II B in order to obtain physically
consistent results [55,56]. We compare the conductivity of a
linear chain of atoms with interatomic distance 1 and nearest-
neighbor hopping t with the conductivity that we calculate
in an artificially doubled unit cell. We denote the (one-
dimensional) momentum as p. The dispersion is εp = 2t cos p
with Brillouin zone p = (−π, π ]. We artificially double the
unit cell with sites A and B. Thus the distance between the unit
cells j and j′ is 2. The subsystems are at position ρA = 0 and
ρB = 1 within a unit cell. The corresponding Brillouin zone is
p = (−π/2, π/2] and the Bloch Hamiltonian reads

λp =
( 0 2t cos p

2t cos p 0

)
. (112)

When mapping λp to the spherical representation (25) using
Appendix C we have gp = hp = 0 and the two angles are
�p = π/2 and ϕp = 0. The two bands are E±

p = ±2t | cos p|.
Since the angles are momentum-independent, we see that
the interband contributions vanish, that is σ xx,s

inter = σ xx,a
inter,+ =

σ xx,a
inter,− = 0, where x labels the direction of the chain. The

(intraband) conductivity is equal to the undoubled case like
physically expected. Note that a coupling between the two
subsystems A and B do not necessarily lead to interband
contributions of the conductivity.

B. Wilson fermion model

We discuss the Wilson fermion model, a two-dimensional
lattice model of a Chern insulator [82]. We mainly focus on
the quantized anomalous Hall effect due to a finite Chern
number of the fully occupied band in order to illustrate our
discussion in Sec. IV E. We motivate the Wilson fermion
model via a tight-binding model presented by Nagaosa et al.
[12]. We assume a two-dimensional square lattice with three
orbitals s, px, py, and spin σ . The three orbitals are located at
the same lattice site. We include hopping between these sites
and a simplified spin-orbit interaction between the z compo-
nent of the spin and the orbital moment. We assume to be
in the ferromagnetic state with spin ↑ only. Due to spin-orbit
interaction the p orbitals are split into px ± ipy. The effective
two-band low-energy model is of the form (2). We identify
the two subsystems as A = (s,↑) and B = (px − ipy,↑). We
have ρA = ρB = 0 and QA = QB = 0. The Bloch Hamiltonian
reads

λp =
(

εs −2ts(cos px +cos py)
√

2tsp(i sin px +sin py)√
2t∗

sp(−i sin px +sin py) εp+tp(cos px +cos py)

)
,

(113)

where εs and εp are the energy levels of the two orbitals.
ts and tp describes the hopping within one orbital and tsp

describes the hopping between the two orbitals. We refer for
a more detailed motivation to Nagaosa et al. [12]. In the
following, we further reduce the number of parameters by
setting ts = t , tp/t = 2, tsp/t = 1/

√
2 and εs/t = −εp/t = m.

We recover the two-dimensional Wilson fermion model [82]
with only one free dimensionless parameter m. We discuss the
conductivity of this model as a function of m and the chemical
potential μ.

We give some basic properties of the model. The quasipar-
ticle dispersions are

E±
p /t = ±

√
(m−2 cos px −2 cos py)2 +sin2 px +sin2 py .

(114)

The gap closes in form of a Dirac point at (px, py) =
(±π,±π ) for m = −4, at (0,±π ) and (±π, 0) for m = 0 and
at (0,0) for m = 4. For instance, the linearized Hamiltonian
for m = 4 near the gap reads λp/t = pyσx − pxσy. The Chern
number of the lower band calculated by (109) is C− = −1 for
−4 < m < 0, C− = 1 for 0 < m < 4 and C− = 0 for |m| > 4.
As expected, C+ = −C−. The bandwidth is W/t = 4 + |m|.

We calculate the diagonal conductivity σ xx and off-
diagonal conductivity σ xy by using (69)–(71) in the zero
temperature limit. The intraband and the symmetric interband
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FIG. 3. The longitudinal conductivity σ xx and anomalous Hall
conductivity σ xy for different �/t = 0.1, 0.5, 1 at μ = 0 and T = 0.
The vertical lines indicate the gap closings at m = ±4 and m = 0.

contribution to the off-diagonal conductivity vanish after in-
tegrating over momenta, so that σ xx = σ yy is the longitudinal
conductivity and σ xy is the (antisymmetric) anomalous Hall
conductivity. In Fig. 3, we plot σ xx = σ xx

intra,+ + σ xx
intra,− + σ xx,s

inter
(upper figure) and σ xy = σ

xy,a
inter,+ + σ

xy,a
inter,− (lower figure) as a

function of the parameter m at half filling, μ = 0. For small
scattering rate � = 0.1 t we find peaks of high longitudinal
conductivity (blue) only when the gap closes at m = ±4
and m = 0, indicated by the vertical lines. For increasing
scattering rate � = 0.5 t (orange) the peaks are broaden and
the conductivity inside the gap is nonzero. For even higher
scattering rate � = 1 t (green), the peak structure eventually
disappears and a broad range of finite conductivity is present.
The anomalous Hall conductivity σ xy is quantized to e2/h due
to a nonzero Chern number of the fully occupied lower band
for low scattering rate � = 0.1 t (blue). At higher scattering
rate � = 0.5 t (orange) and � = 1 t (green) the quantization
is no longer present most prominent for m = ±4 and m = 0,
where the gap closes.

In Fig. 4, we show the different contributions to the longi-
tudinal and anomalous Hall conductivity as a function of the
chemical potential μ for m = 2 and � = 0.5 t . The lower and
upper band end at μ/t = ±6, respectively, and we have a gap
of size 2 t between μ/t = ±1, both indicated by vertical lines.
In the upper figure, we show the longitudinal conductivity σ xx

(blue) and its three contributions, the intraband conductivity
of the lower band σ xx

intra,− (green), the intraband conductivity of
the upper band σ xx

intra,+ (orange) and the symmetric interband
conductivity σ xx,s

inter (red). We see that for −6 < μ/t < −1 the

FIG. 4. The different contributions to σ xx and σ xy as a function
of the chemical potential μ for m = 2, � = 0.5 t , and T = 0. The
vertical lines indicate the upper and lower end of the bands at μ/t =
±6 and the gap between μ/t = ±1.

conductivity is dominated by the lower band, whereas it is
dominated by the upper band for 1 < μ/t < 6. Inside the gap
−1 < μ/t < 1, the main contribution is due to the symmetric
interband conductivity. We further see smearing effects at
μ/t = ±6 and μ/t = ±1. In the lower figure, we show the
anomalous Hall conductivity σ xy (blue) as well as their two
contributions, the antisymmetric interband conductivity of the
lower band σ

xy,a
inter,− (green) and the upper band σ

xy,a
inter,+ (or-

ange). Both contributions are essentially zero for μ/t < −1.
Inside the gap −1 < μ/t < 1, only the contribution of the
lower band rises to approximately e2/h, whereas the contribu-
tion of the upper band remains close to zero. Thus we obtain
a nonzero anomalous Hall conductivity. Above μ/t > 1 the
contribution of the upper band compensates the contribution
of the lower band. Due to this cancellation, a large anomalous
Hall effect is only present for a chemical potential inside the
band gap. We see that a finite scattering rate � leads to a
maximal value of the anomalous Hall conductivity of the two
individual bands that is larger than e2/h as shown in Sec. IV C.
Inside the gap the total anomalous Hall conductivity is re-
duced due to the nonzero contribution of the upper band.
Around μ/t = ±1 we see smearing effects.

C. Ferromagnetic multi-d-orbital model

We discuss a quasi-two-dimensional ferromagnetic multi-
d-orbital model with spin-orbit coupling based on the work
of Kontani et al. [44]. Similar to the previous example this
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FIG. 5. The (negative) chemical potential μ as a function of
the scattering rate � for t ′/t = 0.1 and λ/t = 0.2 at n = 0.4. The
chemical potential μ is scattering independent below �/t � 0.2
and scales linearly μ = μ∞� above �/t � 2.2 with μ∞ = −1.376
(dashed lines).

model involves a nonzero Berry curvature and we expect a
nonzero anomalous Hall conductivity, which is, by contrast,
not quantized. We mainly focus on the scaling dependence
with respect to the scattering rate � of the different contri-
butions using our results of Sec. IV C. We comment on the
consequences when analyzing experimental results in the dirty
limit by determining the scaling behavior σ xy ∝ (σ xx )ν .

We consider a square lattice tight-binding model with on-
site dxz and dyz orbitals. We assume nearest-neighbor hopping
t between the dxz orbitals in x direction and between the dyz or-
bitals in y direction. Next-nearest-neighbor hopping t ′ couples
both types of orbitals. We assume a ferromagnetic material
with magnetic moments in z direction that is completely spin-
polarized in the spin ↓ direction. The Hamiltonian is of the
form (2), when we identify the two subsystems with quantum
numbers A = (dxz,↓) and B = (dyz,↓). We have ρA = ρB =
0 and QA = QB = 0. The Bloch Hamiltonian reads

λp =
( −2t cos px 4t ′ sin px sin py + iλ

4t ′ sin px sin py − iλ −2t cos py

)
. (115)

We included spin-orbit coupling λ. Further details and phys-
ical motivations can be found in Kontani et al. [44]. We take
the same set of parameters setting t ′/t = 0.1 and λ/t = 0.2 as
in Ref. [44]. We fix the particle density per unit cell to n = 0.4
and adapt the chemical potential adequately. We consider
temperature zero.

The chemical potential μ becomes a function of the scatter-
ing rate for fixed particle number n according to (92). Whereas
constant in the clean limit, the linear dependence on � in
the dirty limit is crucial and has to be taken into account
carefully via a nonzero μ∞ = − tan(1 − n)π/2 ≈ −1.376 for
n = 0.4. We have c = (E+

max + E−
min)/2 = 0. In Fig. 5, we

plot the chemical potential μ/t as a function of �/t obtained
by inverting n(μ,�) = 0.4 numerically for fixed �. We find
the expected limiting behavior in the clean and dirty limit
indicated by dashed lines. The vertical lines are at those �/t ,
where �/t is equal to the spin-orbit coupling λ/t = 0.2, which
is the minimal gap between the lower and the upper band
E±

p , and the band width W/t = 2.2. Both scales give a rough

FIG. 6. The longitudinal (top) and anomalous Hall (bottom)
conductivity and their nonzero contributions as a function of the
scattering rate �/t for t ′/t = 0.1 and λ/t = 0.2 at n = 0.4. For
�/t � 0.2, we find the scaling of the clean limit given by (84)–(86)
(dashed lines). For �/t � 2.2, we find the scaling of the dirty limit
given by (94)–(97) with vanishing lowest order for σ xy (dashed
lines). For 0.2 < �/t < 2.2, we have a crossover regime.

estimate for the crossover region between constant and linear
chemical potential.

We discuss the diagonal conductivity σ xx = σ yy and off-
diagonal conductivity σ xy as a function of the scattering
rate �/t . The off-diagonal symmetric contributions σ

xy
intra,n

and σ
xy,s
inter vanish by integration over momenta. We calculate

the longitudinal conductivity σ xx = σ xx
intra,+ + σ xx

intra,− + σ xx,s
inter

and the (antisymmetric) anomalous Hall conductivity σ xy =
σ

xy,a
inter,+ + σ

xy,a
inter,− by using (69)–(71) at zero temperature. In a

stacked quasi-two-dimensional system, the conductivities are
proportional to e2/ha, where a is the interlayer distance. When
choosing a ≈ 4 Å, we have e2/ha ≈ 103 �−1 cm−1. In this
chapter, we express the conductivities in SI units 1/� cm for a
simple comparison with experimental results on ferromagnets
(see Ref. [46] and references therein).

In Fig. 6, we plot the longitudinal (top) and the anoma-
lous Hall (bottom) conductivity (blue lines) and their nonzero
contributions as a function of the scattering rate �/t . In the
clean limit, �/t � 0.2, we obtain the expected scaling (84)–
(86) indicated by dashed lines. The intraband contributions
(orange and green lines in the upper figure) scale as 1/�,
whereas the symmetric intraband contribution (red line) scales
like �. The anomalous Hall conductivity becomes scattering
independent �0 in the clean limit. In absolute scales both the
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FIG. 7. The anomalous Hall conductivity σ xy as a function of
the longitudinal conductivity σ xx for t ′/t = 0.1 and λ/t = 0.2 at
n = 0.4. The vertical and horizontal lines indicate the corresponding
value at �/t = 0.2 and 2.2 in Fig. 6. In the clean and dirty limit, we
find σ xy ∝ (σ xx )0 and σ xy ∝ (σ xx )2, respectively, in agreement with
the individual scaling in � (gray dashed lines). The crossover regime
can be approximated by a scaling σ xy ∝ (σ xx )1.6 (red dashed line).

longitudinal and anomalous Hall conductivity are dominated
by the lower band E−

p (green lines), consistent with a fill-
ing of n = 0.4. In the dirty limit, �/t � 2.2, the intraband
and the symmetric interband contributions of the longitudinal
conductivity scale as �−2, which is the lowest order in the
expansions (94) and (95). The anomalous Hall conductivities
σ

xy,a
inter,± scale as �−3 in agreement with (96). The lowest order

�−2 in Eq. (96) vanishes after integration over momenta. We
have σ

xy,a
inter,+ = −σ

xy,a
inter,− that leads to a �−4-dependence of the

anomalous Hall conductivity summed over both bands, which
is different than expected previously [44,47]. The dashed lines
in the dirty limit are explicitly calculated via our results in
Sec. IV C. In the intermediate range 0.2 < � < 2.2 we find
a crossover between the different scalings. We could only
reproduce results consistent with those of Kontani et al. [44]
by assuming a constant chemical potential that is fixed to its
value in the clean limit, that is if we neglect the scattering
dependence of the chemical potential (92) for fixed particle
number n = 0.4 within our calculation.

In Fig. 7, we plot the anomalous Hall conductivity as a
function of the longitudinal conductivity. The representation
is useful for comparison with experimental results, where the
scattering dependence is not known explicitly. The result is
both qualitatively and quantitatively in good agreement with
experimental results for ferromagnets (see Ref. [46] and ref-
erences therein). We find three regimes: In the clean regime,
we get σ xy ∝ (σ xx )0, since the anomalous Hall conductivity
becomes scattering independent. In the dirty regime, we have
σ xy ∝ (σ xx )2, which can be easily understood by the scal-
ing behavior shown in Fig. 6. The black dashed lines are
calculated explicitly via (94)–(97). We indicated the regime
boundaries by gray lines that correspond to the conductiv-
ities at �/t = 0.2 and 2.2. In the intermediate regime that
corresponds to the crossover between the different scalings in
Fig. 6, we get a good agreement with a scaling σ xy ∝ (σ xx )1.6

(red dashed line).
The scaling behavior σ xy ∝ (σ xx )1.6 is observed experi-

mentally and discussed theoretically in various publications

FIG. 8. The logarithmic derivative of the anomalous Hall con-
ductivity σ xy as a function of the longitudinal conductivity σ xx for
different particle numbers n and next-nearest neighbor hopping t ′/t
and spin-orbit coupling λ/t . In between σ xx = 10–3 × 104 (� cm)−1

(red lines) we have a crossover regime between the scaling σ xy ∝
(σ xx )0 in the clean limit and σ xy ∝ (σ xx )2 in the dirty limit (gray
lines). The range is insensitive to parameters over a broad range.

in the recent years (see Refs. [42,46,48,83–87] and references
therein). Within our theory we clearly identify the inter-
mediate regime, σ xx ≈ 100–5000 (� cm)−1, as a crossover
regime not related to a (proper) scaling behavior. This is
most prominent when we show the logarithmic derivative
of the anomalous Hall conductivity as a function of the
longitudinal conductivity in Fig. 8 for different particle num-
bers n = 0.2, 0.4, 0.6, next-nearest neighbor hoppings t ′/t =
0.1, 0.2 and spin-orbit couplings λ/t = 0.1, 0.2. We see a
clear crossover from σ xy ∝ (σ xx )0 to σ xy ∝ (σ xx )2 in a range
of σ xx = 10–30 000 (� cm)−1 (red vertical lines), which is
even larger than estimated by the scales � = λ = 0.2 t and
� = W = 2.2 t indicated by the gray lines in Fig. 7. This
crossover regime is insensitive to parameters over a broad
range. Interestingly, various experimental results are found
within the range 10–30 000 (� cm)−1 (see Fig. 12 in Ref. [46]
for a summary). We have checked that a smooth crossover
similar to the presented curve in Fig. 7 qualitatively agrees
with these experimental results within their uncertainty.

Following the seminal work of Onoda et al. [42,46], which
treated intrinsic and extrinsic contributions on equal footing,
the experimental and theoretical investigation of the scaling
including, for instance, vertex correction, electron localization
and quantum corrections from Coulomb interaction is still
ongoing research [48,84–87] and is beyond the scope of this
paper.

D. Spiral magnetic order

A finite momentum difference Q = QA − QB between the
two subsystems in the spinor (4) described by quantum num-
bers σ = A, B breaks the lattice-translation invariance of the
Hamiltonian (2). However, the Hamiltonian is still invariant
under a combined translation and rotation inside the subsys-
tems A and B [57]. We discuss spiral spin density waves
as a physical realization [6,11,88–99]. We assume a two-
dimensional tight-binding model on a square lattice with spin.
The two subsystems are the two spin degrees of freedom,
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FIG. 9. The magnetization patterns 〈Si〉 ∝ ni for different or-
dering vectors (a) Q = (π, π ), (b) Q = (0.95π, π ), (c) Q =
(π/2, π/2), and (d) Q = (π/

√
2, π/

√
2) on a square lattice.

that is A = ↑ and B = ↓ located at the lattice sites Ri with
ρA = ρB = 0. We set QA = Q and QB = 0 and assume a
Bloch Hamiltonian

λp =
(

εp+Q −�

−� εp

)
, (116)

where εp = −2t (cos px + cos py) − 4t ′ cos px cos py, which
includes nearest- and next-nearest-neighbor hopping t and t ′,
respectively. We assume a real onsite coupling � between
|p + Q,↑〉 and |p,↓〉. This coupling leads to a nonzero onsite
magnetic moment 〈Si〉 = 1

2

∑
σ,σ ′ 〈c†

i,σ σσσ ′ci,σ ′ 〉 = m ni. The
direction ni lies in the x-y plane and is given by

ni =
⎛
⎝ cos(Q · Ri )

− sin(Q · Ri )
0

⎞
⎠ . (117)

The magnetization amplitude m is uniform and controlled by
the coupling via

m = −�

L

∑
p

∫
dε f (ε)

A+
p (ε) − A−

p (ε)

E+
p − E−

p
, (118)

where En
p are the two quasiparticle bands and An

p(ε) are the
quasiparticle spectral functions. In Fig. 9, we show magneti-
zation patterns 〈Si〉 for different Q on a square lattice.

The magnetic moment of the form 〈Si〉 = m ni is the defin-
ing character of a spiral spin density wave in contrast to
collinear spin density waves with magnetic moments of the
form 〈Si〉 = mi n, where the direction remains constant but
the length is modulated. Collinear spin density waves are not
invariant under combined translation and spin-rotation. The
two special cases Q = (0, 0) and Q = (π, π ) correspond to
ferromagnetic and Néel-antiferromagnetic order, respectively.

Otherwise, we refer to the order as purely spiral. For instance,
Q = (π/2, π/2) describes a 90◦ rotation per lattice site in
both x and y direction as shown in Fig. 9(c). Due to the
invariance under combined translational and spin rotation,
this case can be described via (116) without considering a
four-times larger unit cell. The above form of the Hamiltonian
also captures Q that are incommensurate with the underlying
lattice, when enlarging the unit cell to any size does not restore
translation symmetry [57]. In Fig. 9(d), we show such an
incommensurate order with Q = (π/

√
2, π/

√
2). Spiral order

with Q = (π − 2πη, π ) or symmetry related with η > 0 is
found in the two-dimensional t − J model [88,89] and in the
two-dimensional Hubbard model [90–99] by various theoret-
ical methods. A visualization of the magnetization pattern
for η = 0 and η = 0.025 are shown in Figs. 9(a) and 9(b),
respectively.

The real and constant coupling � in Eq. (116) results in
an angle ϕp = π of the spherical representation (25), which is
momentum independent. As a consequence the Berry curva-
ture (68) and, thus, the antisymmetric interband contributions
(71) are identically zero. We calculate the diagonal and
the (symmetric) off-diagonal conductivities σαβ = σ

αβ

intra,+ +
σ

αβ

intra,− + σ
αβ,s
inter with α, β = x, y in an orthogonal basis ex and

ey aligned with the underlying square lattice (see Fig. 9). We
calculate the different contributions via (69) and (70) at zero
temperature.

The formulas of the conductivity and (ordinary) Hall con-
ductivity of Hamiltonian (116) under the same assumptions on
the scattering rate � were derived by the author and Metzner
recently [11]. They discussed the relevance of the symmetric
interband contribution σ xx,s

inter and σ
yy,s
inter of the longitudinal con-

ductivity in the context of high-temperature superconductors,
where spiral magnetic order of the form Q = (π − 2πη, π )
and symmetry related may explain experimental findings
[1–3]. In this specific application, the interband contributions,
which are beyond the standard Boltzmann transport theory,
are irrelevant not due to a general argument comparing en-
ergy scales, �/�, but due to the numerical prefactors of the
material in question. The off-diagonal conductivity σ xy for
Q = (π − 2πη, π ) vanishes after integration over momenta.

We have a closer look at the condition, under which the
off-diagonal conductivity σ xy vanishes. The off-diagonal in-
terband conductivity σ

xy
intra,n of the band n = ± involves the

product of the two quasiparticle velocities Ex,n
p Ey,n

p in x and y
directions. Beside the trivial case of a constant quasiparticle
band, we expect a nonzero product for almost all momenta.
Thus, in general, σ

xy
intra,n only vanishes by integration over

momenta. Let us consider the special cases Q = (Q, 0) and
Q = (Q, π ), where we fixed the y component to 0 or π . The
x component is arbitrary. The following arguments also holds
for fixed x and arbitrary y component. Those two special cases
include ferromagnetic (0,0), Néel antiferromagnetic (π, π )
and the order (π − 2πη, π ) found in the Hubbard model. For
the upper Q, the two quasiparticle bands En

p are symmetric un-
der reflection on the x axis, that is En(px,−py) = En(px, py).
Thus the momentum components of the off-diagonal con-
ductivity are antisymmetric, σ xy(px,−py ) = −σ xy(px, py),
which leads to a zero off-diagonal conductivity when integrat-
ing over momenta.
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FIG. 10. The relative angle between the principle axis and the
ordering vector Q ∝ (cos �Q, sin �Q) as a function of �Q for t ′/t =
0.1, �/t = 1, �/t = 0.05, n = 0.2 and different lengths |Q|. Both
axes are aligned for 0◦, ±90◦ and ±180◦, since σ xy vanishes, as well
as for ±45◦ and ±135◦, since σ xx = σ yy are equal (vertical lines).

As discussed in Sec. IV E, a nondiagonal symmetric
conductivity matrix σ = (σαβ ) due to nonzero off-diagonal
conductivities σ xy = σ yx can be diagonalized by a rotation of
the coordinate system. For instance, we considered the basis
vectors ex and ey aligned with the underlying square lattice
(see Fig. 9). In our two-dimensional case we describe the
rotation of the basis by an angle �. In Fig. 10, we plot the
difference between the rotation angle �axis that diagonalizes
the conductivity matrix σ and the direction of the ordering
vector Q ∝ (cos �Q, sin �Q) as a function of �Q for t ′/t =
0.1, �/t = 1, �/t = 0.05 and n = 0.2 at different lengths |Q|.
The chemical potential is adapted adequately. We see that both
directions are close to each other but not necessarily equal
with a maximal deviation of a few degrees. The angles �Q =
0◦, ±90◦, ±180◦ corresponds to the case of vanishing σ xy

discussed above, so that the rotated basis axes are parallel to
the original ex and ey axes. At the angles �Q = ±45◦, ±135◦
the ordering vector Q is of the form (Q, Q). Thus the x and
y direction are equivalent, which results in equal diagonal
conductivities σ xx = σ yy. A 2 × 2 conductivity matrix σ with
equal diagonal elements is diagonalized by rotations with
angles �axis = ±45◦, ±135◦ independent of the precise value
of the entries and, thus, independent on the length of Q. These
angles are indicated by vertical lines.

In the following, we focus on the special case of order-
ing vector Q = (Q, Q). The conductivity matrix is diagonal
within the basis (ex ± ey)/

√
2, which corresponds to both

diagonal directions in Fig. 9. The longitudinal conductivities
are σ xx ± σ xy with σ xx = σ yy. Thus the presence of spiral
magnetic order results in an anisotropy (or “nematicity”)
of the longitudinal conductivity as pointed out previously
[11,99]. The strength of the anisotropy is given by 2σ xy for
Q = (Q, Q).

In Fig 11, we show σ xy as a function of Q = (Q, Q)
for t ′/t = 0.1, �/t = 1, �/t = 0.05 and different particle
numbers n = 0.1, 0.2, and 0.3. The chemical potential is
adapted adequately. The values |(π/

√
2, π/

√
2)| = π and

|(π/2, π/2)| = π/
√

2 correspond to the cases presented in
Fig. 10. We see that the anisotropy vanishes for ferromagnetic
(0,0) and Néel-antiferromagnetic (π, π ) order as expected.

FIG. 11. The off-diagonal conductivity σ xy as a function of Q =
(Q, Q) for t ′/t = 0.1, �/t = 1, �/t = 0.05 and different particle
numbers n = 0.1, 0.2, and 0.3.

The largest anisotropy for the presented set of parameters is
close to (π/2, π/2). In Figs. 9(a), 9(c), and 9(d), we show the
corresponding magnetization patterns.

In Fig. 12, we show the off-diagonal conductivity, that
is the anisotropy, and its three different contributions as a
function of the chemical potential μ/t for t ′/t = 0.1, Q =
(π/

√
2, π/

√
2), �/t = 2, and �/t = 1. The overall size is

reduced compared to the previous examples by approximately
one order of magnitude as expected by the scaling σ xy ∝ 1/�.
As we vary the chemical potential, we get nonzero conduc-
tivity within the bandwidth given by approximately −4.9 t
to 4.2 t . Both the off-diagonal conductivity and its different
contributions take positive and negative values in contrast to
the diagonal conductivities. For �/t = 2, we have a band gap
between −0.3 t and 0.1 t with nonzero conductivities due to
the large value of �. We see that for negative and positive
chemical potential outside the gap, σ xy is mainly given by the
contribution of the lower band σ

xy
intra,− or upper band σ

xy
intra,+,

respectively. Inside the gap, we have both contributions of the
two bands due to smearing effects and the symmetric inter-
band contribution σ

xy,s
inter, which are all comparable in size. The

overall behavior is very similar to the diagonal conductivity

FIG. 12. The off-diagonal conductivity σ xy and its nonzero con-
tributions as a function of the chemical potential μ/t for t ′/t = 0.1,
Q = (π/

√
2, π/

√
2), �/t = 2, and �/t = 1. The vertical lines indi-

cate the bandwidth and the band gap.
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FIG. 13. The diagonal (blue) and off-diagonal (orange) con-
ductivity as a function of �/t for t ′/t = 0.1, �/t = 1 and Q =
(π/2, π/2) at n = 0.2. The calculated limiting behaviors in the clean
and dirty limit are indicated by dashed lines.

presented in Fig. 4 for another model as both results have
the same origin in the intraband and the symmetric interband
contributions of the conductivity.

In Fig. 13, we show the diagonal (blue) and off-diagonal
(orange) conductivity as a function of the scattering rate �/t
for t ′/t = 0.1, �/t = 1 and Q = (π/2, π/2) at n = 0.2. We
fixed the particle number by calculating the chemical po-
tential at each �. In the clean limit both σ xx and σ xy scale
like 1/� as expected for intraband contributions (84) (dashed
lines). In Sec. IV C, we showed that both the diagonal and
the off-diagonal conductivities scale like �−2 in first order
due to their intraband character. However, for the considered
parameters, the diagonal conductivity σ xx scales like �−2,
whereas the off-diagonal conductivity σ xy scales like �−4. The
dashed lines are calculated via (94) for the respective order.
The off-diagonal conductivity eventually scales like �−2 for
� far beyond the numerically accessible range due to very
small prefactors in the expansion. We explicitly see that a
precise analysis of the individual prefactors of the expansion
in the dirty limit as discussed in Sec. IV C is useful in order to
understand this unexpected scaling behavior.

VI. CONCLUSION

We presented a complete microscopic derivation of the lon-
gitudinal conductivity and the anomalous Hall conductivity
for a general momentum-block-diagonal two-band model. We
performed our derivation for finite temperature and a constant
scattering rate � that is diagonal and equal, but arbitrarily
large for both bands. The derivation was combined with a
systematic analysis of the underlying structure of the involved
quantities, which led to the identification of two fundamental
criteria for a unique and physically motivated decomposi-
tion of the conductivity formulas. Intraband and interband
contributions are defined by the involved quasiparticle spec-
tral functions of one or both bands, respectively. Symmetric
and antisymmetric contributions are defined by the symmetry
under the exchange of the current and the electric field direc-
tions.

We showed that the different contributions have distinct
physical interpretations. The (symmetric) intraband contri-
butions of the lower and the upper band (69) capture the

conductivity due to independent quasiparticles, which reduces
to the result of standard Boltzmann transport theory [27] in
the clean (small �) limit. Interband coherence effects beyond
independent quasiparticles are described by the interband con-
tributions. The symmetric interband contribution (70) is a
correction due to finite � and caused by a nontrivial quan-
tum metric. The antisymmetric interband contributions of the
lower and the upper band (71) are caused by the Berry cur-
vature and describe the intrinsic anomalous Hall effect. They
generalize the broadly used formula by Onoda et al. [42] and
Jungwirth et al. [35] to finite �.

We found that the interband contributions are controlled
by the quantum geometric tensor of the underlying eigenbasis
manifold. Thus we provided the geometric interpretation of
the symmetric interband contribution, which was analyzed in
detail in the context of spiral magnetic order [11] but whose
connection to the quantum metric was not noticed before. It
might be an interesting question how those or further concepts
of quantum geometry can be connected to transport phenom-
ena. Our microscopic derivation suggests that the precise way,
in which those concepts have to be included in other transport
quantities, is nontrivial.

By performing a derivation for � of arbitrary size, we
were able to discuss the clean (small �) and dirty limit (large
�) analytically. The dependence on � of each contribution
was shown to be captured entirely by a specific product of
the quasiparticle spectral functions of the lower and upper
band. In the clean limit, we recovered the expected 1/� scal-
ing [27] of the intraband conductivities and the constant (or
“dissipationless” [12]) limit of the intrinsic anomalous Hall
conductivity. For large �, we showed that some orders of
the conductivity contributions might vanish or be strongly
suppressed when integrating over momenta. We provided the
precise prefactors of the expansion, which might be helpful
for the analysis of unexpected scaling behaviors.

We suggested a different definition of the Fermi-sea and
Fermi-surface contributions of the conductivity than previ-
ously proposed by Streda [39]. We based our definition on the
symmetry under exchange of the current and the electric field
directions. We found that the symmetric parts (69) and (70)
and antisymmetric part (71) of the conductivity involve the
derivative of the Fermi function and the Fermi function itself,
respectively, when entirely expressed in terms of quasiparticle
spectral functions. The same decomposition naturally arises
when decomposing the Bastin formula [38] into its symmetric
and antisymmetric part. The symmetry under exchange of the
current and the electric field directions might also help to iden-
tify useful decompositions of the conductivity with distinct
physical interpretation and properties beyond the scope of this
paper.

During the derivation, the conductivity involves the matrix
trace over the two subsystems of the two-band model. In gen-
eral, the evaluation of this matrix trace may lead to numerous
terms and, thus, may make an analytical treatment tedious. We
presented the analysis of the involved matrices with respect
to their behavior under transposition as a useful strategy to
reduce this computational effort. Thus our derivation strategy
may be useful for an analytical treatment of multiband sys-
tems beyond our two-band system or for higher expansions in
electric and magnetic fields. For instance, it might provide the
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possibility to clarify the impact of interband coherence effects
on the Hall conductivity for a broader class of models, which
was previously studied only for spiral magnetic order [11].

We presented different examples capturing the broad appli-
cation range of our general model. We discussed the quantized
anomalous Hall conductivity for a Chern insulator at finite
� and showed that the quantization is no longer present for
large � due to the contribution of the former unoccupied band.
We analyzed the scaling behavior of the anomalous Hall con-
ductivity with respect to the longitudinal conductivity σ xy ∝
(σ xx )ν for a ferromagnetic multi-d-orbital model. Our results
are qualitatively and quantitatively in good agreement with ex-
perimental findings (see Ref. [46] for an overview). Whereas
there is a proper scaling of the anomalous Hall conductivity of
ν = 0 and 2 in the clean and dirty limit, respectively, we iden-
tified a crossover regime without a proper scaling behavior
for intermediate conductivities σ xx = 10–30 000 (� cm)−1,
in which various ferromagnets were found. The treatment of
intrinsic and extrinsic contributions on equal footing as well
as the experimental and theoretical investigation of the scaling
including, for instance, vertex correction, electron localization
and quantum corrections from Coulomb interaction is still
ongoing research [42,46,48,84–87] and beyond the scope of
this paper. We discussed spiral spin density waves as an exam-
ple of a system with broken lattice-translation but combined
lattice-translation and spin-rotation symmetry, which is cap-
tured by our general model. We showed that the presence of
spiral magnetic order can lead to a (symmetric) off-diagonal
conductivity in spite of the underlying square lattice, which
results in an anisotropic longitudinal conductivity in a rotated
coordinate system.
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APPENDIX A: PEIERLS SUBSTITUTION

1. Hopping in real space

The Peierls substitution adds a phase factor to the hop-
pings in real space. Thus, in order to apply (8), we Fourier
transform the diagonal elements εp,σ of the two subsystems
σ = A, B and the coupling between these two systems �p of
Hamiltonian (2) to real space. The Fourier transformation of
the creation operator ci,σ and cp,σ were defined in Eqs. (5) and
(6). The intraband hopping t j j′,σ ≡ t j j′,σσ of one subsystem,
which is defined by∑

p

c†
p+Qσ ,σ

εp,σ cp+Qσ ,σ =
∑
j, j′

c†
j,σ t j j′,σ c j′,σ , (A1)

is given by

t j j′,σ =
(

1

L

∑
p

εp,σ eir j j′ ·p
)

eir j j′ ·Qσ . (A2)

We see that the intraband hopping is only a function of the
difference between unit cells r j j′ = R j − R j′ . The fixed off-
set Qσ leads to a phase shift. The interband hopping t j j′,AB

between the two subsystems, which is defined by∑
p

c†
p+QA,A�pcp+QB,B =

∑
j, j′

c†
j,At j j′,ABc j′,B , (A3)

is given by

t j j′,AB =
(

1

L

∑
p

�p eip·(r j j′ +ρA−ρB )

)
eir j j′ ·(QA+QB )/2

× eiR j j′ ·(QA−QB ) ei(ρA·QA−ρB·QB ). (A4)

We see that it is both a function of r j j′ and the mean po-
sition between unit cells R j j′ = (R j + R j′ )/2, which breaks
translational invariance and is linked to nonequal QA �= QB.
Similar to (A2), we have different phase shifts due to ρσ and
Qσ . Those phases are necessary to obtain a consistent result
in the following.

2. Derivation of electromagnetic vertex Vpp′

We derive the Hamiltonian H[A] given in Eq. (9) after
Peierls substitution. We omit the time dependence of the
vector potential A[r] ≡ A(r, t ) for a shorter notation in this
section. The Peierls substitution (8) of the diagonal and off-
diagonal elements of λ j j′ defined in Eq. (7) and calculated in
Eqs. (A2) and (A4) in the long-wavelength regime read

t j j′,σ → t j j′,σ e−ieA[R j j′ +ρσ ]·r j j′ , (A5)

t j j′,AB → t j j′,AB e−ieA[R j j′ + ρA+ρB
2 ]·(r j j′+ρA−ρB ). (A6)

In a first step, we consider the diagonal elements. We expand
the exponential of the hopping tA

j j′,σ after Peierls substitution
(A5) and Fourier transform the product of vector potentials
(A[R j j′ + ρσ ] · r j j′ )

n
via (11). We get

tA
j j′,σ =

∑
n

(−ie)n

n!

∑
q1,...,qn

t j j′,σ ei
∑

m qm·(R j j′ +ρσ )
n∏
m

r j j′ · Aqm .

(A7)

After insertion of the hopping (A2), we Fourier transform
tA

j j′,σ back to momentum space defining εA
pp′,σ via∑

j, j′
c†

j,σ tA
j j′,σ c j′,σ =

∑
p,p′

c†
p+Qσ ,σ εA

pp′,σ cp′+Qσ ,σ . (A8)

The summation over R j j′ leads to momentum conservation.
The phase factor proportional to the position ρσ inside the
unit cell cancels. During the calculation, we can identify

− i

L

∑
p

∑
r j j′

εp,σ eir j j′ ·(p−p0 ) (r j j′ · Aq)

=
∑

α=x,y,z

∂εp,σ

∂ pα

∣∣∣∣
p=p0

Aα
q (A9)

as the derivative of the band εp,σ at p0 = (p + p′)/2. We con-
tinue with the off-diagonal element. The derivation of �A

pp′ is
analog to the derivation above. The phase factors in Eq. (A4)
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assure that we can identify the derivative of the interband
coupling �p via

− i

L

∑
p

∑
r j j′

�p ei(r j j′ +ρA−ρB )·(p−p0 )(r j j′ + ρA − ρB) · Aq

=
∑

α=x,y,z

∂�p

∂ pα

∣∣∣∣
p=p0

Aα
q . (A10)

As in the diagonal case, the summation over R j j′ leads to
momentum conservation and additional phase factors drop.
Finally, we write the result in matrix form and separate the
zeroth element of the exponential expansion. We end up with
(9) and electromagnetic vertex Vpp′ given in Eq. (10).

APPENDIX B: CURRENT

1. Derivation

Since the action S[
,
∗] in Eq. (14) is quadratic in
the Grassmann fields 
 and 
∗, the Gaussian path integral
leads to the partition function Z = det (G −1 − V ), where the
Green’s function G and the electromagnetic vertex V are
understood as matrices of both Matsubara frequencies and
momenta. The grand canonical potential � is related to the
partition function via � = −T ln Z with temperature T and
kB = 1. We factor out the part that is independent of the
vector potential, that is �0 = −T Tr ln G −1, and expand the
logarithm ln(1 − x) = −∑

n xn/n of the remaining part. We
obtain

�[A] = �0 + T
∞∑

n=1

1

n
Tr(G V )n. (B1)

Using the definition of the Green’s function and the vertex in
Eqs. (10) and (15), one can check explicitly that �[A] is real
at every order in n. The current jαq in direction α = x, y, z and
Matsubara frequency and momentum q = (iq0, q) is given
as functional derivative of the grand canonical potential with
respect to the vector potential, jαq = −1/L δ�[A]/δAα

−q. The
Green’s function G has no dependence on the vector potential.
We denote the derivative of the electromagnetic vertex, the
current vertex, as V̇ α

q = −1/L δV /δAα
−q. We expand �[A] in

Eq. (B1) up to second order and obtain

jαq = T Tr
(
G V̇ α

q

) + T Tr
(
G V̇ α

q G V
) + · · · , (B2)

where we used the cyclic property of the trace to recombine
the terms of second order. Both the electromagnetic vertex V
and the current vertex V̇ α

q are a series of the vector potential.
We expand the current up to first order in the vector potential.
The expansion of the electromagnetic vertex V is given in
Eq. (10). The expansion of the current vertex reads

V̇ α
q,pp′ = − e

L

∞∑
n=0

en

n!

∑
q1, . . . , qn

α1, . . . , αn

λ
αα1...αn
p+p′

2

Aα1
q1

. . . Aαn
qn

δ∑
m qm,p−p′+q .

(B3)

Note that the current vertex V̇ α
q,pp′ has a zeroth order, which is

independent of the vector potential, whereas the electromag-
netic vertex Vpp′ is at least linear in the vector potential. Thus

the first contribution in Eq. (B2) leads to two contributions
that are

Tr
(
G V̇ α

q

) = − e
T

L

∑
p

tr
[
Gpλ

α
p

]
δq,0

−
∑

β

e2 T

L

∑
p

tr
[
Gpλ

αβ
p

]
Aβ

q . (B4)

The first term is known as paramagnetic current, which is
a current without any external field. The second term is
known as diamagnetic contribution. The second contribution
in Eq. (B2) up to linear order in the vector potential gives

Tr
(
G V̇ α

q G V
) = −e2

∑
β

T

L

∑
p

tr
[
Gpλ

α
p+ q

2
Gp+qλ

β

p+ q
2

]
Aβ

q .

(B5)
This term is known as paramagnetic contribution. In a last
step we combine the diamagnetic and paramagnetic contri-
bution. In Eq. (B4), we use the definition λ

αβ
p = ∂αλ

β
p in

Eq. (12) and perform partial integration in the momentum in-
tegration. The derivative of the Green’s function is ∂αGip0,p =
Gip0,p λα

p Gip0,p, which follows by (15). We see that the dia-
magnetic contribution is the q = 0 contribution of (B5). By
defining �αβ

q in Eq. (17), we can read of (18).

2. Absence of the paramagnetic current

The first term of (B4) is independent of the vector potential
and, thus, a paramagnetic current

jαpara = −e
T

L

∑
p

tr
[
Gpλ

α
p

]
δq,0 (B6)

without any external source. We perform the Matsubara
summation and diagonalize the Bloch Hamiltonian λp. The
paramagnetic current reads

jαpara = − e

L

∑
p

∫
dε f (ε)

∑
n=±

An
p(ε)En,α

p , (B7)

involving the Fermi function f (ε), the quasiparticle ve-
locities En,α

p = ∂αEn
p of the two quasiparticle bands E±

p =
1
2 (εp,A + εp,B) ±

√
1
4 (εp,A − εp,B)2 + |�p|2 and the spectral

functions A±
p (ε) = �/π [(ε − E±

p )2 + �2]−1. In general, the
different contributions at fixed momentum p are nonzero. If
the quasiparticle bands fulfill E±(p) = E±(−p − p±) for a
fixed momentum p±, we have E±,α (p) = −E±,α (−p − p±).
Thus the paramagnetic current jαpara vanishes by integrating
over momenta [58].

APPENDIX C: MAPPING BETWEEN (3) AND (25)

For given εp,A, εp,B and �p in Eq. (3) the construction
of (25) is straightforward. We give the relations explicitly,
since they may provide a better intuitive understanding of the
involved quantities. We define the two functions gp and hp by

gp = 1
2 (εp,A + εp,B) , hp = 1

2 (εp,A − εp,B). (C1)

The radius rp is given by hp and the absolute value of �p via

rp =
√

h2
p + |�p|2 . (C2)
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The angle �p describes the ratio between hp and |�p|. The
angle ϕp is equal to the negative phase of �p. They are given
by

cos �p = hp

rp
, sin �p = |�p|

rp
, (C3)

cos ϕp = Re
�p

|�p| , sin ϕp = −Im
�p

|�p| . (C4)

APPENDIX D: MATSUBARA SUMMATION

In this section, we omit the momentum dependence for
shorter notation. We can represent any Matsubara Green’s
function matrix Gip0 in the spectral representation as

Gip0 =
∫

dε
A(ε)

ip0 − ε
(D1)

with corresponding spectral function matrix A(ε) ≡ Aε . The
retarded and advanced Green’s function matrices are

GR
ε =

∫
dε′ A(ε′)

ε − ε′ + i0+ , (D2)

GA
ε =

∫
dε′ A(ε′)

ε − ε′ − i0+ . (D3)

We define the principle-value matrix P(ε) ≡ Pε via

P(ε) = P.V.

∫
dε′ A(ε′)

ε − ε′ , (D4)

where P.V. denotes the principle value of the integral. Us-
ing the integral identity 1

ε−ε′±i0+ = P.V. 1
ε−ε′ ∓ iπ δ(ε − ε′) we

have

Aε = − 1

π
Im GR

ε ≡ − 1

2π i

(
GR

ε − GA
ε

)
, (D5)

Pε = Re GR
ε ≡ 1

2

(
GR

ε + GA
ε

)
. (D6)

Note that Aε and Pε are hermitian matrices. We preform the
Matsubara summation of (53) and (54): We replace each Mat-
subara Green’s function by its spectral representation (D1).
We perform the Matsubara summation on the product of sin-
gle poles via the residue theorem by introducing the Fermi
function f (ε) ≡ fε and perform analytic continuation of the
bosonic Matsubara frequency iq0 → ω + i0+. Finally, one
integration is performed by identifying GR

ε+ω, GR
ε−ω or Pε . A

more general application with a detailed description of this
procedure can be found in Ref. [11]. In our application, we
have three distinct cases. The first case involves the Green’s
function matrix Gip0+iq0 leading to

T
∑

p0

tr
[
Gip0+iq0 M1Gip0 M2

]∣∣
iq0→ω+i0+

=
∫

dε fε tr
[
AεM1GA

ε−ωM2 + GR
ε+ωM1AεM2

]
. (D7)

The second case involves the Green’s function matrix Gip0−iq0

leading to

T
∑

p0

tr
[
Gip0−iq0 M1Gip0 M2

]∣∣
iq0→ω+i0+

=
∫

dε fε tr
[
AεM1GR

ε+ωM2 + GA
ε−ωM1AεM2

]
. (D8)

The third case involves no bosonic Matsubara frequency iq0

and is given by

T
∑

p0

tr
[
Gip0 M1Gip0 M2

]∣∣
iq0→ω+i0+

=
∫

dε fε tr[AεM1PεM2 + PεM1AεM2] . (D9)

We can rewrite these three cases by using

GR
ε = Pε − iπAε , (D10)

GA
ε = Pε + iπAε , (D11)

in order to express all results only by the hermitian matrices
Aε and Pε . The Matsubara summation of (53) after analytic
continuation reads

Is
ω = 1

2

∫
dε fε tr[AεM1{(Pε+ω −Pε )+ (Pε−ω −Pε )}M2

+ {(Pε+ω −Pε )+ (Pε−ω −Pε )}M1AεM2

− iπAεM1{(Aε+ω −Aε )− (Aε−ω −Aε )}M2

− iπ{(Aε+ω −Aε )− (Aε−ω −Aε )}M1AεM2]. (D12)

We divide by iω and perform the zero-frequency limit lead-
ing to the frequency derivatives limω→0(Pε±ω − Pε )/ω = ±P′

ε

and limω→0(Aε±ω − Aε )/ω = ±A′
ε , which we denote by (·)′.

The first two lines of the sum vanish. We get

lim
ω→0

Is
ω

iω
= −π

∫
dε fε tr[AεM1A′

εM2 +A′
εM1AεM2]. (D13)

We can apply the product rule and partial integration in ε

and end up with (55). The Matsubara summation of (54) after
analytic continuation is

Ia
ω = 1

2

∫
dε fε tr[−AεM1{(Pε+ω −Pε )− (Pε−ω −Pε )}M2

+ {(Pε+ω −Pε )− (Pε−ω −Pε )}M1AεM2

+ iπAεM1{(Aε+ω −Aε )+ (Aε−ω −Aε )}M2

− iπ{(Aε+ω −Aε )+ (Aε−ω −Aε )}M1AεM2]. (D14)

We divide by iω and perform the zero-frequency limit. The
last two lines of the summation drop. We end up with (56).
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