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A previous work [Joshi et al., Phys. Rev. X 10, 021033 (2020)] found a deconfined critical point at nonzero
doping in a t-J model with all-to-all and random hopping and spin exchange and argued for its relevance to
the phenomenology of the cuprates. We extend this model to include all-to-all and random density-density
interactions of mean-square strength K . In a fixed realization of the disorder, and for specific values of the
hopping, exchange, and density interactions, the model is supersymmetric, but we find no supersymmetry after
independent averages over the interactions. Using the previously developed renormalization group analysis, we
find a new fixed point at nonzero K . However, this fixed point is unstable toward the previously found fixed point
at K = 0 in our perturbative analysis. We compute the exponent characterizing local density fluctuations at both
fixed points: This exponent determines the spectrum of electron energy-loss spectroscopy.
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I. INTRODUCTION

The possibility of a quantum critical point underneath the
superconducting dome of high-temperature cuprate materials
has been a subject of intense study. Photoemission experi-
ments [1,2] and thermal Hall measurements [3] have given
strong evidence for a transformation in the Fermi surface
across a critical value of doping. Such a critical point, and
the corresponding critical theory, possibly holds the key to
understanding the enigmatic strange-metal phase at high tem-
peratures. The strange-metal phase is also characterized by an
absence of quasiparticles and thus one expects a continuum
response to many probes. It is challenging to investigate the
strange metal region with high-resolution measurements, but
remarkable progress has been made in this direction in the last
few years. Recently, an anomalous continuum was observed
in dynamic charge response measurements [4,5] on optimally
doped Bi2.1Sr1.9Ca1.0Cu2.0O8+x (Bi-2212) using momentum-
resolved electron energy-loss spectroscopy (M-EELS). The
dynamic charge response is directly related to the imaginary
part of density-density correlation. Similar measurements
have also revealed surprising results in the case of Sr2RuO4

[6]. These interesting set of experiments call for a quantitative
theoretical investigation of the density-density correlation.

Along with collaborators, we have recently proposed a mi-
croscopic model which hosts a finite doping quantum critical
point [7]. It was shown to be a deconfined critical point with
a Sachdev-Ye-Kitaev-like [8,9] local spin correlations, i.e.,
〈S(τ ) · S(0)〉 ∼ 1/|τ |, where τ is imaginary time. The model
considered in Ref. [7] has random and all-to-all hopping and
exchange interactions and was solved using a perturbative RG
which yielded some exponents to all orders. In this work,
we extend the model in Ref. [7] to include random and
all-to-all density-density interactions. Motivated by the above-
mentioned M-EELS measurements, we will also compute the
density-density correlation function in the model of Ref. [7]
and in the extended model. We find critical density-density
correlations characterized by an exponent ηn, as specified by

Eqs. (5.1)–(5.3) in Sec. V. A disordered Fermi liquid has
ηn = 2, while the “marginal” value ηn = 1 is observed in the
M-EELS experiments, showing a striking non-Fermi liquid
behavior with an anomalous enhancement of local density
flucutations. We will find a new fixed point in the extended
model where we establish that ηn = 1 to all orders in the
perturbative RG. To our knowledge, such a density correlation
has not been quantitatively calculated in a microscopic model
before, especially at a finite doping quantum critical point. We
note that throughout this work we will only deal with local (or
on-site) density fluctuations and density-density correlation.

As we will discuss in detail below, our perturbative RG
finds that the new fixed point is multi-critical and unstable
toward the fixed point found earlier in Ref. [7]. However, it
could well be that this is a feature of the one-loop RG and
that, at higher orders, the new fixed point is a conventional
critical point requiring only one tuning parameter. We will
also compute the value ηn at the fixed point of Ref. [7],
although we are only able to do this at the one-loop level.

The paper is organized as follows. In Sec. II we describe
our model and related algebra of the operators. In Sec. III we
discuss the mapping of our model to an impurity model, which
can be then studied using renormalization group as shown in
Sec. IV. In this section we also present the main result of
our work, i.e., the exponent ηn corresponding to the density
correlator, which characterizes the anomalous density fluctu-
ation. The RG analysis is performed at one-loop order. We
conclude in Sec. V and present an alternative RG calculation
in Appendix B. A discussion on possibility of supersymmetry
can be found in Appendix C.

II. MODEL

We consider the following Hamiltonian:

HtJK = 1√
N

∑
i j

ti jc
†
iαc jα + 1√

N

∑
i< j

Ji jSi · S j

+ 1√
N

∑
i< j

Ki j
nin j

4
− μ

∑
i

c†
iαciα, (2.1)
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where N is the number of sites, μ is the chemical potential, α

is the spin index (↑ or ↓), ni = c†
iαciα , and double occupancy

on each site is excluded, i.e., ni � 1. The complex hoppings
ti j , real exchange interactions Ji j , and real density-density
interactions Ki j are random numbers drawn from a Gaussian
probability distribution with zero mean value such that |ti j |2 =
t2, |Ji j |2 = J2, and |Ki j |2 = K2. Note that the density-density
interactions are present in the familiar derivation of the t-J
model from the Hubbard model and are usually ignored. We
include them here as independent random couplings, because
we are interested in their possible influence on the spectrum
of density fluctuations.

To account for the double occupancy constraint, we frac-
tionalize the electron on each site into a bosonic holon (b) and
fermionic spinon ( fα) degrees of freedom such that

cα = fαb†, Sa = f †
α

σ a
αβ

2
fβ,

V = 1

2
f †
α fα + b†b, n = f †

α fα. (2.2)

The Hilbert-space constraint of no double occupancy now
takes the form f †

α fα + b†b = 1. Note that Vi = 1 − ni/2.
On each site i, the operators c, S, and V (dropping site

indices) define a superalgebra SU(1|2) as follows:

{cα, cβ} = 0, {cα, c†
β} = δαβV + σ a

αβSa,

[Sa, cα] = −1

2
σ a

αβcβ, [Sa, c†
α] = 1

2
σ a

βαc†
β,

[Sa, Sb] = iεabcSc, [Sa,V ] = 0,

[V, cα] = 1

2
cα, [V, c†

α] = −1

2
c†
α. (2.3)

As an aside, note that one can also work with an alternative
equivalent representation with a bosonic spinon and fermionic
holon, which form a SU(2|1) superalgebra [7].

The Hamiltonian HtJK clearly commutes with total spin,∑
i Sa

i , and total density
∑

i Vi. For the remaining generator,∑
i ciα , of the SU(1|2) superalgebra, the commutator is simple

for for ti j = Ki j/2 = −Ji j/2, when we find[∑
i

ciα, HtJK

]
= −μ

∑
i

ciα, (2.4)

which connects the energy eigenvalues at different particle
number. The nonrandom supersymmetric t − J model has
been studied in the past in one dimension, for instance see
Refs. [10–15].

III. LARGE-N LIMIT AND IMPURITY HAMILTONIAN

We can now make progress by resorting to the replica
trick and taking the large-volume limit, N → ∞. Within this
approach one first introduces field replicas, and the random
coupling constants (here ti j , Ji j , and Ki j) are averaged over. In
many situations, such as in the spin-glass phase, the replica
structure plays an important role. However, in our case we
will be working at criticality, and we do not expect the replica
structure to play a significant role. Therefore we do not write
the replica indices in the subsequent discussion. Now taking

the large-volume limit we obtain the following single-site
action:

Z =
∫

Dcα (τ )e−S−S∞

S =
∫

dτ

[
c†
α (τ )

(
∂

∂τ
− μ

)
cα (τ )

]
+ t2

∫
dτdτ ′R(τ − τ ′)c†

α (τ )cα (τ ′)

− J2

2

∫
dτdτ ′Q(τ − τ ′)S(τ ) · S(τ ′)

− K2

2

∫
dτdτ ′P(τ − τ ′)n(τ )n(τ ′), (3.1)

where the fields R, Q, and P have to be determined self-
consistently via

R(τ − τ ′) = −〈cα (τ )c†
α (τ ′)〉Z ,

Q(τ − τ ′) = 1
3 〈S(τ ) · S(τ ′)〉Z ,

P(τ − τ ′) = 〈n(τ )n(τ ′)〉Z . (3.2)

Here 〈. . . 〉Z means expectation value with respect to the par-
tition function defined in Eq. (3.1).

To set-up our RG, let us ignore the self-consistency for
now. We shall come back to it later. Let us assume that at
the criticality the fields have the following power-law decay
in imaginary time:

P(τ ) ∼ 1

|τ |d ′−1
, Q(τ ) ∼ 1

|τ |d−1
, R(τ ) ∼ sgn(τ )

|τ |r+1
.

(3.3)
Now we introduce fermionic and bosonic fields in the same
spirit as in Ref. [7] in order to obtain an impurity Hamiltonian.
Such an impurity action has been studied in different limits in
Refs. [16–23]. In our case we can map the above Hamiltonian
to the following impurity and bath Hamiltonians:

Himp = (s0 + λ) f †
α fα + λb†b + g0[ f †

α bψα (0) + H.c.]

+ γ0 f †
α

σ a
αβ

2
fβφa(0) + v0( f †

α fα − n f )ζ (0)

Hbath =
∫

|k|rdk k ψ
†
kα

ψkα + 1

2

∫
dd x

[
π2

a + (∂xφa)2
]

+ 1

2

∫
dd ′

x[π̃2 + (∂xζ )2], (3.4)

where λ → ∞ is introduced to handle the constraint f †
α fα +

b†b = 1, and n f = 〈 f †
α fα〉. We have introduced fermionic bath

ψkα , as well as bosonic baths φa and ζ , which on integrating
out gives us the original Hamiltonian. Also, φa(0) ≡ φa(x =
0), ζ (0) ≡ ζ (x = 0), and ψα (0) ≡ ∫

dk|k|rψkα .
The Hamiltonian Himp + Hbath is our representation of the

effective theory after averaging the disorder. We explore the
possibility that this Hamiltonian could be supersymmetric in
Appendix C and find no supersymmetry. So supersymmetry
is specific to particular realizations of disorder and does not
reemerge after independent averages over ti j , Ji j , and Ki j . Per-
haps if we begin strictly with the condition of supersymmetry
for each disorder realization (i.e., ti j = Ki j/2 = −Ji j/2), then
the disorder average might be supersymmetric. However, this
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(a) (b) (c) (d)

FIG. 1. One-loop fermion and boson self-energy diagrams. Fermion self-energy diagrams are shown in (a), (b), and (c), while boson
self-energy is shown in (d). We use a convention where a solid line denotes f propagator, a dashed line denotes ψ propagator, wavy denotes b
propagator, spiral denotes φ propagator, and red spiral denotes ζ propagator.

means that there is only one independent random variable.
This brings along difficultly when doing disorder average
since it will result in several cross-terms like S(τ )n(τ ′), and
so on. We have avoided this complication here. Another route
may be to choose the distribution of random variables such
that their means have the ratios required by supersymmetry.
However, this goes beyond the scope of present work, and we
have not explored this possibility.

IV. RENORMALIZATION GROUP ANALYSIS

In this section we present the details of RG analysis of the
impurity Hamiltonian introduced in Eq. (3.4). At the tree level
the scaling dimensions are found as follows:

dim[ f] = dim[b]=0, dim[ψkα]=−1+r

2
= −dim[ψα (0)],

dim[φa] = d − 1

2
, dim[ζ ] = d ′ − 1

2
,

dim[g0] = 1 − r

2
≡ r̄, dim[γ0] = 3 − d

2
≡ ε

2
,

dim[v0] = 3 − d ′

2
≡ ε′

2
. (4.1)

This establishes r = 1, d = 3, and d ′ = 3 as upper critical
dimensions. Next, the renormalized fields and couplings are
defined as follows:

fα = √
Z f fRα, b = √

ZbbR, g0 = μr̄Zg√
Z f Zb

g,

γ0 = με/2Zγ

Z f

√
S̃d+1

γ , v0 = με′/2Zv

Z f

√
S̃d ′+1

v, (4.2)

where S̃d = �(d/2 − 1)/(4πd/2). The bulk-bath fields ψ, φa,
and ζ do not get renormalized because of the absence of the
respective interaction terms. These renormalization factors,
Z ′s, will be determined in the following sections from the
self-energy and vertex corrections. We shall work at zero tem-
perature and tune the system to criticality, i.e., we set s0 = 0
and subsequently derive the flow away from it.

A. Self-energy

We begin with the calculation of the fermionic self-energy
at one-loop level. Note that at this level there are no diagrams
involving both the bosonic and the fermionic bath couplings.
Here we have three relevant diagrams, shown in Figs. 1(a),
1(b) and 1(c). The diagrams in Figs. 1(a) and 1(b) have been
evaluated already, and their corresponding expressions can

be found in Eqs. (3.3) and (3.4) in Ref. [7], respectively.
Below we quote the fermion self-energy corresponding to the
diagram in Fig. 1(c),

�
f
1(c) = v2

0
1

β

∑
iωn

∫
dd ′

k

(2π )d ′
1

ω2
n + k2

1

iν + iω − λ

= v2
0

Sd ′

2

∫ ∞

0
dk

kd ′−2

iν − λ − k

= v2
0

Sd ′

2
π csc(π (d ′ − 2))(λ − iν)−2+d ′

= Cμv2(iν − λ)

[
− 1

ε′ + 1

2
(N0 + 2iπ )

]
with Cμ = με′

(iν − λ)−ε′ Z2
v

Z2
b

. (4.3)

Here N0 = γE − 2 log(2) − ψ (0)( 3
2 ) with γE being the Euler’s

constant and ψ (0) is the polygamma function.
There is only one diagram contributing to the bosonic

self-energy at the one-loop level, shown in Fig. 1(d). It has
been evaluated previously and its expression can be found in
Eq. (3.8) in Ref. [7].

B. Vertex correction

First, note that there is no one-loop correction to the ver-
tex g0 corresponding to the fermionic bath coupling. So we
proceed with calculating the vertex corrections to the bosonic
bath couplings γ0 and v0. The diagrams corresponding to
the vertex correction to γ0 are shown in Fig. 2(a) and 2(b),
while those corresponding to v0 are shown in Figs. 2(c) and
2(d). Note that the diagram in Fig. 2(a) has been evaluated
before and its expression can be found in Eq. (3.9) in Ref. [7].
The expressions for the rest of the diagrams in Fig. 2 are as
follows:

�
γ

2(b) = γ0v
2
0

1

β

∑
iω1n

∫
dd ′

k1
1

ω2
1n + k2

1

1

i�1n + iω1n − λ

× 1

i�2n + iω1n − λ

= γ0v
2
0

∫
dd ′

k1

2k1

1

i�1n − k1 − λ

1

i�2n − k1 − λ

= γ0Cμv2

[
1

ε′ − 1 + 1

2
(−N0 − 2iπ )

]
, (4.4)

�v
2(c) = v3

0
1

β

∑
iω1n

∫
dd ′

k1
1

ω2
1n + k2

1

1

i�1n + iω1n − λ
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(a) (b) (c) (d)

FIG. 2. One-loop diagrams for vertex corrections. Vertex corrections to γ0 are shown in (a) and (b), while that for v0 are shown in (c) and
(d). The convention for different lines is same as introduced in Fig. 1.

× 1

i�2n + iω1n − λ

= γ 3
0

∫
dd ′

k1

2k1

1

i�1n − k1 − λ

1

i�2n − k1 − λ

= v0Cμv2

[
1

ε′ − 1 + 1

2
(−N0 − 2iπ )

]
, (4.5)

�v
2(d ) = 3

4
v0γ

2
0

1

β

∑
iω1n

∫
dd k1

1

ω2
1n + k2

1

1

i�1n + iω1n − λ

× 1

i�2n + iω1n − λ

= 3

4
v0γ

2
0

∫
dd k1

2k1

1

i�1n − k1 − λ

1

i�2n − k1 − λ

= 3

4
v0Bμγ 2

[
1

ε
− 1 + 1

2
(−N0 − 2iπ )

]
. (4.6)

C. β functions

In the expressions for the renormalized vertices and the f /b
Green’s functions, we look at the cancellation of poles at the
external frequency iν − λ = μ. We thus obtain the following
expressions of the renormalizing factors:

Z f = 1 − g2

2r̄
− 3γ 2

4ε
− v2

ε′ , (4.7)

Zb = 1 − g2

r̄
, (4.8)

Zγ = 1 + γ 2

4ε
− v2

ε′ , (4.9)

Zv = 1 − v2

ε′ − 3γ 2

4ε
. (4.10)

Note that Zg = 1 at this level due to no one-loop vertex correc-
tion to g0. It is now straightforward to obtain the β functions
using Eqs. (4.7)–(4.10),

β(g) = −r̄g + 3

2
g3 + 3

8
gγ 2 + 1

2
v2g, (4.11)

β(γ ) = −ε

2
γ + γ 3 + g2γ , (4.12)

β(v) = −ε′

2
v + g2v. (4.13)

D. Fixed points and stability

By analyzing where the β functions vanish, we obtain the
following fixed points [FP ≡ (g∗2, γ ∗2, v∗2)]:

FP1 : (0, 0, 0), (4.14)

FP2 :
(

0,
ε

2
, 0

)
, (4.15)

FP3 :
(2r̄

3
, 0, 0

)
, (4.16)

FP4 :

(
ε′

2
, 0, 2r̄ − 3

2
ε′

)
, (4.17)

FP5 :
(
−ε

6
+ 8r̄

9
,

2ε

3
− 8r̄

9
, 0

)
, (4.18)

FP6 :

(
ε′

2
,
ε

2
− ε′

2
, 2r̄ − 3

8
ε − 9

8
ε′

)
. (4.19)

Apart from the Gaussian fixed point, FP1, we find five other
fixed points. The fixed points FP2 and FP3 have been studied
earlier in the context of an impurity spin [16–18] and Kondo-
impurity Hamiltonian [19,20], respectively. The fixed point
FP5 is the deconfined critical point found in Ref. [7]. Here we
find two additional fixed points, FP4 and FP6. For FP5 to be
real, we need 3ε/8 < 2r̄ < 3ε/2. While for FP6 to be real we
need ε > ε′ > 0 and 2r̄ > (3ε + 9ε′)/8. Similarly, the reality
condition for other fixed points is straightforward to see.

We will now do the stability analysis of the fixed points by
looking at the eigenvalues of the following stability matrix:

J ≡
[J1 J2 J3

J4 J5 J6

J7 J8 J9

]
, (4.20)

where

J1 ≡ ∂β(g)

∂g
= −r̄ + 9

2
g2 + 3

8
γ 2 + v2

2
,

J2 ≡ ∂β(g)

∂γ
= 3

4
gγ , J3 ≡ ∂β(g)

∂v
= vg,

J4 ≡ ∂β(γ )

∂g
= 2gγ , J5 ≡ ∂β(γ )

∂γ
= −ε

2
+ 3γ 2 + g2,

J6 ≡ ∂β(γ )

∂v
= 0,

J7 ≡ ∂β(v)

∂g
= 2gv, J8 ≡ ∂β(v)

∂γ
= 0,

J9 ≡ ∂β(v)

∂v
= −ε′

2
+ g2. (4.21)

From the eigenvalues of the above matrix (see Appendix A),
it is immediately clear that for r̄ > 0, ε > 0 and ε′ > 0, the
Gaussian fixed point FP1 is always unstable.
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For FP5 to be a stable fixed point, we require ε > 0, 3ε/8 <

2r̄ < 3ε/2, and 2r̄ > (3ε + 9ε′)/8. The second inequality is
trivially satisfied as soon as FP5 is real. If we use in addition
the self-consistency condition ε = 2r̄ = 1 (to be discussed in
Sec. IV F), then this implies that FP5 is stable if ε′ < 5/9
(although we cannot trust the present expansion at values of
ε′ of order unity).

For FP6 the eigenvalues of the stability matrix are given by
the following characteristic polynomial: λ3 + Aλ2 + Bλ + C.
The corresponding coefficients are as follows:

A = −ε − ε′

2
, B = ε′

(
3ε

2
− 2r̄

)
,

C = ε′

8
(ε − ε′)(16r̄ − 3ε − 9ε′). (4.22)

From the condition for FP6 to be real it is clear that C > 0
which implies that at least one eigenvalue is negative if FP6

is real. Therefore the nontrivial fixed point FP6 is unstable.
If this fixed point is real it always has one relevant direction.
We also note that the other new fixed point, FP4, found in this
work also has at least one unstable direction as soon as it is
real.

E. Anomalous dimension of f and b operators

We now calculate the anomalous dimension of the f and b
propagators, defined as follows:

η f = μ
d ln Z f

dμ
|FP, ηb = μ

d ln Zb

dμ
|FP. (4.23)

In our case,

μ
d ln Z f

dμ
= g2 + 3

4
γ 2 + v2, μ

d ln Zb

dμ
= 2g2. (4.24)

Thus we find the following anomalous dimension at the fixed
points:

FP1 : η f = 0, ηb = 0, (4.25)

FP2 : η f = 3

8
ε, ηb = 0, (4.26)

FP3 : η f = 2

3
r̄, ηb = 4

3
r̄, (4.27)

FP4 : η f = 2r̄ − ε′, ηb = ε′, (4.28)

FP5 : η f = 1

3
ε + 2

9
r̄, ηb = −1

3
ε + 16

9
r̄, (4.29)

FP6 : η f = 2r̄ − ε′, ηb = ε′. (4.30)

However, note that these exponents are not physical observ-
ables since the operators f and b are not gauge invariant.

F. Anomalous dimension of spin, electron, and density operators

We are interested in the anomalous dimensions of the
gauge-invariant operators, S, c, and n. For this purpose we
can look at the correlators 〈S(τ ) · S(0)〉, 〈cα (τ )c†

α (0)〉, and
〈n(τ )n(0)〉 made from the composite operators f †

α σ a
αβ fβ/2,

f †
α b, and f †

α fα , respectively. In order to proceed, we first intro-

duce these composite operator terms in the action, such that

S(D) = 1

β

∑
iωn

(
�S f †

α

σ a
αβ

2
fβ + �c[ f †

α b + H.c.] + �n f †
α fα

)
+ Srest (D), (4.31)

where Srest has all the other terms in the action analyzed
before. As we shall see in the following, this procedure will
directly yield us the renormalization factors for the required
gauge-invariant operators and consequently their anomalous
dimensions.

We define the renormalized couplings and the renormal-

ized composite operators Ŝ = f †
α

σ a
αβ

2 fβ , c†
α = f †

α b, and n =
f †
α fα as follows:

�S = Z f f �S,R

Z f
, �c = Z f b�c,R√

Z f Zb
, �n = Z f f 1�n,R

Z f
,

(4.32)

Ŝ = √
ZSŜR, c = √

ZccR, n = √
ZnnR. (4.33)

We find that the diagrams required to evaluate the vertex
corrections to �S , �c, and �n are exactly those that we used
in the calculation of Zγ , Zg, and Zv respectively. Therefore,

ZS =
(

Z f

Zγ

)2

, Zc = Z f Zb

Z2
g

, Zn =
(Z f

Zv

)2

. (4.34)

This readily gives us

ZS = 1 − g2

r̄
− 2γ 2

ε
, (4.35)

Zc = 1 − 3g2

2r̄
− 3γ 2

4ε
− v2

ε′ , (4.36)

Zn = 1 − g2

r̄
. (4.37)

We can now evaluate the anomalous dimensions as

ηS ≡ d ln ZS

d ln μ
= 1

ZS

[
∂ZS

∂g
β(g) + ∂ZS

∂γ
β(γ ) + ∂ZS

∂v
β(v)

]
= 2(g2 + γ 2), (4.38)

ηc ≡ d ln Zc

d ln μ
= 1

Zc

[
∂Zc

∂g
β(g) + ∂Zc

∂γ
β(γ ) + ∂Zc

∂v
β(v)

]
= 3g2 + 3

4
γ 2 + v2, (4.39)

ηn ≡ d ln Zn

d ln μ
= 1

Zn

[
∂Zn

∂g
β(g) + ∂Zn

∂γ
β(γ ) + ∂Zn

∂v
β(v)

]
= 2g2. (4.40)

The anomalous dimensions at the fixed points are listed in
Table I. Just as shown in Ref. [7], we can also make an exact
statement here. To all orders in ε, ε′, and r̄: If g∗ = 0, then
ηc = 2r̄; if γ ∗ = 0, then ηS = ε; and if v∗ = 0, then ηn = ε′.
This statement can be easily proved by differentiating the
relations for the coupling constants in Eq. (4.2) with respect to
the RG scale μ and using the definitions in Eqs. (4.38)–(4.40).
Thus at the nontrivial fixed point, FP6, ηS = ε, ηc = 2r̄, and
ηn = ε′ to all orders in ε, ε′, and r̄. While at the nontrivial
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TABLE I. Anomalous dimensions at fixed points.

Fixed point ηS ηc ηn

FP1 0 0 0
FP2 ε 3

8 ε 0
FP3

4
3 r̄ 2r̄ 4

3 r̄
FP4 ε ′ 2r̄ ε ′

FP5 ε 2r̄ 16
9 r̄ − ε

3
FP6 ε 2r̄ ε ′

fixed point FP5, ηS = ε and ηc = 2r̄ to all orders, but ηn

cannot be evaluated exactly to all orders.
We now recall the self-consistency condition, Eq. (3.2),

which we shall shortly impose at the nontrivial fixed point.
Recall that we started out with our RG assuming the power-
law behavior for the fields P, Q, and R [see Eq. (3.3)]. In
the last paragraph we calculated the exponents corresponding
to the correlators 〈S(τ ) · S(0)〉, 〈cα (τ )c†

α (0)〉, and 〈n(τ )n(0)〉,
which enter the right-hand side of self-consistency conditions
in Eq. (3.2). In order to satisfy the self-consistency conditions
in Eq. (3.2) the exponents on the left-hand side and right-hand
side of the expressions must be the same. Therefore satisfying
the self-consistency for Q, R, and P fields means ηS = 2 − ε,
ηc = 2 − 2r̄, and ηn = 2 − ε′ respectively, where ηs are given
by the expressions in Eqs. (4.38)–(4.40) or Table I (at fixed
points).

At the fixed point FP5 (i.e., the DQCP FP from Ref. [7]),
we impose the self-consistency conditions on Q and R,
Eq. (3.2), but there is no self-consistency condition on P since
K = 0. Using the above prescription this fixes the values of
ε = 1 and r̄ = 1/2 by matching the exponents of Q and R in
Eq. (3.2) to those of ηS and ηc, respectively, found above (see
Table I). However, since there is no self-consistency condition
involving ηn the value of ε′ is not fixed. Since the exponents
ηc and ηS are obtained exactly, their values of ηc = 2r̄ = 1
and ηS = ε = 1 can be trusted. But the exponent ηn is not
exact and will have corrections from higher-order expansion
in r̄ and ε (it does not depend on ε′ at FP5). We can choose
any ε′ < 5/9 so that FP5 is stable. We then obtain our main
result that ηn = 5/9, using Eq. (4.40) or Table I and the self-
consistent values of ε = 2r̄ = 1.

Note that at the other nontrivial fixed point, FP6, the expo-
nents ηc = 2r̄, ηS = ε, and ηn = ε′ are obtained exactly. Here
we need to impose the self-consistency conditions on all the
three fields P, Q, and R. Again following the above prescrip-
tion, we obtain the self-consistent values of 2r̄ = ε = ε′ = 1.
Hence, at this fixed point ηc = ηS = ηn = 1. For these large
values of r̄, ε, and ε′ the fixed point FP6 becomes complex
and is unstable at one-loop order, but there is no justification
for using the one loop results at these large values.

Similarly, at the other new fixed point, FP4, the self-
consistency conditions yields the values 2r̄ = ε′ = 1. Here the
value of ε is not fixed. However, for these values this fixed
point is complex and unstable at one-loop order.

G. Flow of s

At one-loop level, we can derive the flow of s, which was
set to zero at the critical point in the above discussion. The

parameter s is nothing but the difference between the masses
of the f and b fields. Using the standard momentum-shell
RG procedure, and the self-energies of f and b fields, it is
straightforward to obtain the renormalization of s. We refer
the interested readers to Appendix (D.1) in Ref. [7] where the
technical steps (for K = 0) are sketched in detail. Following
these steps we obtain the β function of s as follows:

β(s) = −s + 3sg2 − g2 + 3
4γ 2 + v2. (4.41)

This governs the flow away from the critical point, discussed
above for s0 = 0. It turns out that s is always a relevant
parameter. As shown in Ref. [7], s tunes the phase transi-
tion from a metallic spin glass phase to a disordered Fermi
liquid [7].

V. CONCLUSION

This paper has presented a renormalization group analysis
of the t-J-K model in (2.1), a model for the cuprates with
random and infinite-range interactions. This model was pre-
viously studied without the density-density interaction, K , in
Ref. [7]: They found a deconfined critical point at a nonzero
doping p = pc, separating a metallic spin glass for p < pc,
from a disordered Fermi liquid for p > pc. In the present
paper, we examined the fate of this fixed point for nonzero
K and also computed the exponent characterizing density
correlations. To our knowledge, a microscopic calculation of
this quantity has not been done before, and our calculations
are relevant to cuprates and related materials.

Recent M-EELS experiments [4,5] have observed anoma-
lous density fluctuations near optimal doping in the cuprates.
In our theory, the critical density fluctuations are characterized
by the spectral density

χ ′′
n (ω) ∼ sgn(ω)|ω|ηn−1, T = 0, (5.1)

and similarly for the spin fluctuations with exponent ηS . These
spectral functions are obtained from the imaginary part of the
respective correlation functions. At nonzero T , the spectrum
is characterized by a “Planckian” frequency scale, and (5.1)
is multiplied by a universal function of h̄ω/(kBT ) so that we
can write

χ ′′
n (ω) ∼ T ηn−1�ηn

(
h̄ω

kBT

)
; (5.2)

(5.1) holds for h̄ω � kBT , while χ ′′
n ∼ ω/T 2−ηn for h̄ω �

kBT . The explicit form of the function �η can be determined
by conformal mapping [24–26]

�η(y) = sinh

(
y

2

)∣∣∣∣�(
η

2
+ iy

2π

)∣∣∣∣2

. (5.3)

We note that in a Fermi liquid �2(y) = y/2 is a linear func-
tion, so that χ ′′

n (ω) ∼ ω is T independent. All other values
of ηn yield a nontrivial T dependence, including the marginal
case, for which �1(y) = π tanh(y/2).

The M-EELS experiments [4,5] seem to observe a
frequency-independent density response at the optimal
doping. In terms of the spectral density (5.1), this corresponds
to having the exponent ηn = 1. In this paper, we found a new
fixed point, FP6, with K = 0, at which the exponents can
be determined to all loop order: We obtained the “marginal”
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value ηn = ηS = 1. However, at least the one-loop order at
which our computations were carried out, this fixed point was
unstable to the previously found [7] fixed point at K = 0,
labeled FP5 here. But it cannot be ruled out that at strong
coupling FP6 is the appropriate fixed point, and we expect
ηn = ηS = 1 to continue to hold exactly at any such fixed
point with K = 0. Therefore our theory provides a possible
route to explain the origin of the exponent ηn = 1 observed in
the experiments.

At the K = 0 fixed point FP5, we previously showed that
ηS = 1 to all-loop order [7]. In the present paper, we are
only able to determine ηn at FP5 to one loop (there is no
corresponding argument to extend the computation of ηn to all
orders): The result is shown in Table I. At the self-consistent
values of the expansion parameters, ε = 2r̄ = 1, the exponent
evaluates to ηn = 5/9. However, our computation is first order
in ε, r̄ (both of the same order), and so we expect corrections
to the value quoted here.

We hope that numerical studies of Hamiltonians like (2.1)
will shed further light on the existence and nature of the finite
doping deconfined critical point.
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APPENDIX A: EIGENVALUES OF STABILITY MATRIX

Here we quote the eigenvalues of the stability matrix (4.20)
evaluated at the fixed points,

FP1 :

{
−r̄,−ε

2
,−ε′

2

}
, (A1)

FP2 :

{
ε,

3ε − 16r̄

16
,−ε′

2

}
, (A2)

FP3 :
{

2r̄,
4r̄ − 3ε

6
,

4r̄ − 3ε

6

}
, (A3)

FP4 :

{
ε′ − ε

2
,

1

4
(3ε′ −

√
32r̄ε′ − 15ε′2),

1

4
(3ε′ +

√
32r̄ε′ − 15ε′2)

}
, (A4)

FP5 :

{
1

36
(16r̄ + 15ε −

√
4864r̄2 − 3840r̄ε + 873ε2),

1

36
(16r̄ + 15ε +

√
4864r̄2 − 3840r̄ε + 873ε2),

1

18
(16r̄ − 3ε − 9ε′)

}
. (A5)

The eigenvalues at FP6 are discussed in the main text using its
characteristic polynomial.

APPENDIX B: RG IN TERMS
OF GAUGE-INVARIANT OPERATORS

In this Appendix we present an alternative RG analysis
directly in terms of the gauge-invariant operators. This also
has the advantage that we can present our results for a general
M and M ′, which generalizes SU(1|2) to SU(M ′|M ). We have
the following impurity and bath Hamiltonian as before:

Himp = g0[c†
�αψα�(0) + H.c.] + γ0Saφa(0) + v0ñζ (0)

+
∫

|k|rdkkψ
†
kα�

ψkα� + 1

2

∫
dd x

[
π2

a + (∂xφa)2
]

+ 1

2

∫
dd ′

x[π̃2 + (∂xζ )2], (B1)

where α = 1, . . . , M, � = 1, . . . , M ′, and a = 1, . . . , M2 − 1.
This Hamiltonian is a large M, M ′ generalization of Eq. (3.4).
In the above Hamiltonian, ñ ≡ n − n f with n ≡ f †

α fα and
n f ≡ 〈 f †

α fα〉0 = 2/3. To proceed with RG, we first introduce
the following renormalization factors:

Sa = √
ZSSa

R, cpα = √
ZccR,pα,

ñ = √
ZññR, n = √

ZnnR,

γ0 = με/2Z̃γ√
ZSS̃d+1

γ , g0 = μr̄ Z̃g√
Zc�(r + 1)

g,

v0 = με′/2Z̃v√
ZñS̃d ′+1

v. (B2)

In what follows we will also make use of the following ex-
pression for expectation values:

Im,m′ ≡ 〈( f †
α fα )m(b†

�b�)m′ 〉

= 1

D(M, M ′, P)

∮
|z|=c<1

dz

2π i

1

zP+1

×
[(

z
d

dz

)m

(1 + z)M

][(
z

d

dz

)m′
1

(1 − z)M ′

]
. (B3)

For more details we refer to Ref. [7]. We just recall that I0,0 =
1 and the values for M = 2, P = 1, and M ′ = 1, which is the
case of interest to us are as follows:

Im,0 = 2
3 , m � 1; I0,m′ = 1

3 ,

m′ � 1; Im,m′ = 0, m � 1and m′ � 1. (B4)

1. Spin correlator

Here we calculate the spin correlator, 〈O1〉 ≡ 〈Sa(τ )Sa(0)〉,
which will give us ZS . We will follow the strategy from
Refs. [7,17], which relies on explicit evaluation of operator
traces rather than the Wick’s theorem, such that 〈O1〉 = N1/D.
We evaluate the denominator and numerator in 〈O1〉 using the
diagrams shown in Figs. 3 and 4, respectively, to obtain,

D = 1 + γ 2
0 L0(D1φ + D2φ + D3φ )+ g2

0L′
0(D′

1ψ + D′
2ψ + D′

3ψ )

+ g2
0L′′

0 (D′′
1ψ + D′′

2ψ + D′′
3ψ )+ v2

0L′′′
0 (D1ζ + D2ζ + D3ζ ),

(B5)
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(a) (b) (c) (d) (e)

FIG. 3. Diagrams used to evaluate the denominator, D [Eq. (B5)]. Note that these are not Feynman diagrams (see the text and Ref. [7] for
details). Here the solid line denotes the imaginary time trajectory of the SU(M ′|M) superspin. A filled circle represents a γ0 vertex, a filled
square represents a g0 vertex, and a filled hexagon represents a v0 vertex. The φ, ψ , and ζ propagators are represented by a spiral curve, a
dashed curve, and a wiggly curve, respectively.

N1 = L0 + γ 2
0 (L1D1φ + L2D2φ + L3D3φ )

+ g2
0(L′

1D′
1ψ + L′

2D′
2ψ + L′

3D′
3ψ )

+ g2
0(L′′

1 D′′
1ψ + L′′

2 D′′
2ψ + L′′

3 D′′
3ψ )

+ v2
0 (L′′′

1 D1ζ + L′′′
2 D2ζ + L′′′

3 D3ζ ). (B6)

The diagrams in Figs. 3(a)–3(d) and 4(a)–4(j) have been
evaluated before in Ref. [7]. The expressions for Li, L′

i , and L′′
i

can be found in Eqs. (B5)–(B16) in Ref. [7], while those for
Di, D′

i, and D′′
i can be found in Eqs. (B17)–(B25) in Ref. [7].

We quote here the previously not evaluated expressions,

L′′′
0 = 〈ññ〉 = I2,0 − 2n f I1,0 + n2

f ,

(B7)

L′′′
1 = 〈SaññSa〉 = M + 1

2M
[MI3,0 − I4,0 − 2n f (MI2,0 − I3,0)

+ n2
f (MI1,0 − I2,0)], (B8)

L′′′
2 = 〈SaSaññ〉 = M + 1

2M
[MI3,0 − I4,0 − 2n f (MI2,0 − I3,0)

+ n2
f (MI1,0 − I2,0)], (B9)

L′′′
3 = 〈SañSañ〉 = M + 1

2M
[MI3,0 − I4,0 − 2n f (MI2,0 − I3,0)

+ n2
f (MI1,0 − I2,0)]. (B10)

Also,

D1ζ =
∫ τ

0
dτ1

∫ τ

τ1

dτ2Gζ (τ1 − τ2) = − S̃d ′+1τ
ε′

ε′(1 − ε′)
, (B11)

D2ζ =
∫ β

τ

dτ1

∫ β

τ1

dτ2Gζ (τ1 − τ2) = − S̃d ′+1τ
ε′

ε′(1 − ε′)
, (B12)

D3ζ =
∫ τ

0
dτ1

∫ β

τ

dτ2Gζ (τ1 − τ2) = 2S̃d ′+1τ
ε′

ε′(1 − ε′)
, (B13)

Gζ (τ ) =
∫

dd ′
k

(2π )d ′
dω

2π

e−iωτ

k2 + ω2
= S̃d ′+1

|τ |d ′−1
. (B14)

Using Eqs. (B5) and (B6) we get,

〈O1〉 = N1

D
= L0

{
1 + γ 2

0

[(
L1

L0
− L0

)
D1φ

+
(

L2

L0
− L0

)
D2φ +

(
L3

L0
− L0

)
D3φ

]
+g2

0

[(
L′

1

L0
− L′

0

)
D′

1ψ +
(

L′
2

L0
− L′

0

)
D′

2ψ

+
(

L′
3

L0
− L′

0

)
D′

3ψ

]
+g2

0

[(
L′′

1

L0
− L′′

0

)
D′′

1ψ +
(

L′′
2

L0
− L′′

0

)
D′′

2ψ

+
(

L′′
3

L0
− L′′

0

)
D′′

3ψ

]

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

FIG. 4. Diagrams used in the evaluation of the numerator, N1 [Eq. (B6)], of 〈O1〉 = 〈Sa(τ )Sa(0)〉. Here the external Sa operator is
represented by an open circle. Apart from this the rest of the conventions are same as in Fig. 3.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

FIG. 5. Diagrams used in the evaluation of the numerator, N2 [Eq. (B21)], of 〈O2〉 = 〈c(τ )c†(0)〉. Here the external c/c† operator is
represented by an open square, while the rest of the conventions are the same as in Fig. 3.

+v2
0

[(
L′′′

1

L0
− L′′′

0

)
D1ζ +

(
L′′′

2

L0
− L′′′

0

)
D2ζ

+
(

L′′′
3

L0
− L′′′

0

)
D3ζ

]}
. (B15)

We thus obtain,

ZS = 1 − γ 2

ε
Lγ − g2

2r̄
Lg − v2

ε′ Lv, (B16)

where

Lγ = L1 + L2 − 2L3

L0
, (B17)

Lg = L′
1 + L′′

1 + L′
2 + L′′

2 − 2L′
3 − 2L′′

3

L0
, (B18)

Lv = L′′′
1 + L′′′

2 − 2L′′′
3

L0
. (B19)

We find that Lγ = Lg = 2 and Lv = 0 for M = 2, M ′ = 1.
Thus, for M = 2, M ′ = 1,

ZS = 1 − 2γ 2

ε
− g2

r̄
. (B20)

2. Electron correlator

In this subsection we will calculate the electron correlation,
〈O2〉 ≡ 〈c(τ )c†(0)〉 = N2/D. The denominator, D, has been

already evaluated in Eq. (B5). The numerator, N2, is evaluated
using the diagrams shown in Fig. 5. Thus we obtain,

N2 = P0 + γ 2
0 (P1D1φ + P2D2φ + P3D3φ )

+ g2
0(P′

1D′
1ψ + P′

2D′
2ψ + P′

3D′
3ψ )

+ g2
0(P′′

1 D′′
1ψ + P′′

2 D′′
2ψ + P′′

3 D′′
3ψ )

+ v2
0 (P′′′

1 D1ζ + P′′′
2 D2ζ + P′′′

3 D3ζ ). (B21)

The diagrams in Fig. 5(a)–5(j) have been previously eval-
uated. The expressions for Pi, P′

i , and P′′
i can be found in

Eqs. (B33)–(B42) in Ref. [7]. For the rest we have

P′′′
1 = 〈c†

�α ññc�α〉 = M ′(I3,0 − 2I2,0 + I1,0

− 2n f (I2,0 − I1,0) + n2
f I1,0

)
+ I3,1 − 2I2,1 + I1,1 − 2n f (I2,1 − I1,1) + n2

f I1,1,

(B22)

P′′′
2 = 〈c†

�αc�α ññ〉 = M ′(I3,0 − 2n f I2,0 + n2
f I1,0

)
+ I3,1 − 2n f I2,1 + n2

f I1,1, (B23)

P′′′
3 = 〈c†

�α ñc�α ñ〉
= M ′(I3,0 − I2,0 − n f (2I2,0 − I1,0) + n2

f I1,0
)

+ I3,1 − I2,1 − n f (2I2,1 − I1,1) + n2
f I1,1. (B24)

From Eqs. (B5) and (B21) we have

〈O2〉 = N2

D
=P0

{
1 + γ 2

0

[(P1

P0
− L0

)
D1φ +

(P2

P0
− L0

)
D2φ +

(P3

P0
− L0

)
D3φ

]
+ g2

0

[(
P′

1

P0
− L′

0

)
D′

1ψ +
(

P′
2

P0
− L′

0

)
D′

2ψ +
(

P′
3

P0
− L′

0

)
D′

3ψ

]
+ g2

0

[(
P′′

1

P0
− L′′

0

)
D′′

1ψ +
(

P′′
2

P0
− L′′

0

)
D′′

2ψ +
(

P′′
3

P0
− L′′

0

)
D′′

3ψ

]
+ v2

0

[(
P′′′

1

P0
− L′′′

0

)
D1ζ +

(
P′′′

2

P0
− L′′′

0

)
D2ζ +

(
P′′′

3

P0
− L′′′

0

)
D3ζ

]}
. (B25)
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m)

FIG. 6. Diagrams used in the evaluation of the numerator, N4 [Eq. (B31)], of 〈O4〉 = 〈n(τ )n(0)〉. Here the external n operator is represented
by an open hexagon, while the rest of the conventions are same as in Fig. 3.

Thus we obtain

Zc = 1 − γ 2

ε
Pγ − g2

2r̄
Pg − v2

ε
Pv, (B26)

where

Pγ = P1 + P2 − 2P3

P0
, (B27)

Pg = P′
1 + P′

2 − 2P′
3 + P′′

1 + P′′
2 − 2P′′

3

P0
, (B28)

Pv = P′′′
1 + P′′′

2 − 2P′′′
3

P0
. (B29)

We obtain Pg = 3, Pγ = 3/4, and Pv = 1 for M = 2, M ′ = 1.
Thus, for M = 2, M ′ = 1,

Zc = 1 − 3

4

γ 2

ε
− 3

2

g2

r̄
− v2

ε′ . (B30)

3. Density correlator

In this subsection we will evaluate the density correlation,
〈O4〉 ≡ 〈n(τ )n(0)〉 = N4/D. Apart from a constant 〈ñ(τ )ñ(0)〉
has the same form as 〈n(τ )n(0)〉. The numerator, N4, is evalu-
ated using the diagrams shown in Fig. 6. We thus have

N4 = T0 + γ 2
0 (T1D1φ + T2D2φ + T3D3φ )

+ g2
0(T ′

1 D′
1ψ + T ′

2 D′
2ψ + T ′

3 D′
3ψ )

+ g2
0(T ′′

1 D′′
1ψ + T ′′

2 D′′
2ψ + T ′′

3 D′′
3ψ )

+v2
0 (T ′′′

1 D1ζ + T ′′′
2 D2ζ + T ′′′

3 D3ζ ), (B31)

where

T0 = 〈nn〉 = I2,0, (B32)

T1 = 〈nSaSan〉 = M + 1

2M
(MI3,0 − I4,0), (B33)

T2 = 〈nnSaSa〉 = M + 1

2M
(MI3,0 − I4,0), (B34)

T3 = 〈nSanSa〉 = M + 1

2M
(MI3,0 − I4,0), (B35)

T ′
1 = 〈nc�′βc†

�′βn〉 = MI2,1 − I3,1, (B36)

T ′
2 = 〈nnc�′βc†

�′β〉 = MI2,1 − I3,1, (B37)

T ′
3 = 〈nc�′βnc†

�′β〉 = MI1,1 + (M − 1)I2,1 − I3,1, (B38)

T ′′
1 = 〈nc†

�′βc�′βn〉 = M ′I3,0 + I3,1, (B39)

T ′′
2 = 〈nnc†

�′βc�′β〉 = M ′I3,0 + I3,1, (B40)

T ′′
3 = 〈nc†

�′βnc�′β〉 = M ′(I3,0 − I1,0) + I3,1 − I1,1, (B41)

T ′′′
1 = 〈nññn〉 = I4,0 − 2n f I3,0 + n2

f I2,0, (B42)

T ′′′
2 = 〈nnññ〉 = I4,0 − 2n f I3,0 + n2

f I2,0, (B43)

T ′′′
3 = 〈nñnñ〉 = I4,0 − 2n f I3,0 + n2

f I2,0. (B44)

Using Eqs. (B5) and (B31) we have

〈O4〉 = N4

D
=T0

{
1 + γ 2

0

[(T1

T0
− L0

)
D1φ +

(T2

T0
− L0

)
D2φ +

(T3

T0
− L0

)
D3φ

]
+ g2

0

[(
T ′

1

T0
− L′

0

)
D′

1ψ +
(

T ′
2

T0
− L′

0

)
D′

2ψ +
(

T ′
3

T0
− L′

0

)
D′

3ψ

]
+ g2

0

[(
T ′′

1

T0
− L′′

0

)
D′′

1ψ +
(

T ′′
2

T0
− L′′

0

)
D′′

2ψ +
(

T ′′
3

T0
− L′′

0

)
D′′

3ψ

]
+ v2

0

[(
T ′′′

1

T0
− L′′′

0

)
D1ζ +

(
T ′′′

2

T0
− L′′′

0

)
D2ζ +

(
T ′′′

3

T0
− L′′′

0

)
D3ζ

]}
. (B45)
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Therefore, we obtain

Zn = Zñ = 1 − γ 2

ε
Tγ − g2

2r̄
Tg − v2

ε
Tv, (B46)

where

Tγ = T1 + T2 − 2T3

T0
, (B47)

Tg = T ′
1 + T ′

2 − 2T ′
3 + T ′′

1 + T ′′
2 − 2T ′′

3

T0
, (B48)

Tv = T ′′′
1 + T ′′′

2 − 2T ′′′
3

T0
. (B49)

We find that Tg = 2, Tγ = 0, and Tv = 0 for M = 2, M ′ = 1.
Thus, for M = 2, M ′ = 1,

Zn = Zñ = 1 − g2

r̄
. (B50)

4. β functions

With the renormalization factors for the gauge-invariant
operators at hand, we can obtain the β functions in a straight-
forward manner. Note that due to the absence of interaction
terms the renormalization factors for the coupling constants
are all unity, i.e., Z̃g = Z̃γ = Z̃v = 1. Now using Eq. (B2) we
find

ε

2
γ ZS +

[
ZS − γ

2

∂ZS

∂γ

]
β(γ )− γ

2

∂ZS

∂g
β(g) − γ

2

∂ZS

∂v
β(v)= 0,

(B51)

r̄gZc +
[

Zc − g

2

∂Zc

∂g

]
β(g) − g

2

∂Zc

∂γ
β(γ ) − g

2

∂Zc

∂v0
β(v) = 0,

(B52)
ε′

2
vZñ+

[
Zñ − v

2

∂Zv

∂v

]
β(v) − v

2

∂Zñ

∂g
β(g) − v

2

∂Zñ

∂γ
β(γ )= 0.

(B53)

We now solve the above three equations using Eqs. (B20),
(B30), and (B50), and obtain the one-loop β functions,

β(g) = −r̄g + 3

2
g3 + 3

8
gγ 2 + 1

2
gv2, (B54)

β(γ ) = −ε

2
γ + γ 3 + g2γ , (B55)

β(v) = −ε′

2
v + g2v. (B56)

These are exactly the same as obtained earlier via a different
RG procedure in Sec. IV C. The calculation of the rest of the
details such as the fixed points and anomalous dimensions
follow exactly as discussed in the main text.

APPENDIX C: SUPERSYMMETRY

In this Appendix, we explore the possibility that averaged
Hamiltonians Himp + Hbath in (3.4) exhibit SU(1|2) supersym-
metry. We were unable to define a suitable supersymmetry
operation, as we discuss below. The difficult lies in making
the bath supersymmetric. One approach is try to implement a
space-time supersymmetry on the bath fermions ψα and the
bosons φ and ζ : However, that does not work because the

scaling dimensions of fermions and bosons are not equal in
this supersymmetry, whereas equality of the power laws in
(3.3) requires them to have the same scaling dimensions.

More progress is possible in an approach which fraction-
alizes the bath operators, in a manner which parallels the
impurity site. So we write

ψα (0) = 1

�

∑
k

f̃kα b̃†
k

φa(0) = 1

�

∑
k

f̃ †
kα

σ a
αβ

2
f̃kβ (C1)

ζ (0) = 1

�

∑
k

f̃ †
kα

f̃kα,

where � is a suitable normalization of the sum over k. The
Green’s functions of the partons

G̃ f (k, τ ) δαβ = −〈 f̃kα (τ ) f̃ †
kβ

(0)〉
(C2)

G̃b(k, τ ) = −〈̃bk (τ )̃b†
k (0)〉,

can then be used to obtain the fields in (3.2)

R(τ ) = − 1

�

∑
k

G̃ f (k, τ )G̃b(k,−τ )

Q(τ ) = − 1

2�

∑
k

G̃ f (k, τ )G̃ f (k,−τ ) (C3)

P(τ ) = − 2

�

∑
k

G̃ f (k, τ )G̃ f (k,−τ ).

Finally, we replace the bath Hamiltonian in (3.4) by

H̃bath = 1

�

∑
k

ε f (k) f̃ †
kα

f̃kα + 1

�

∑
k

εb(k )̃b†
kb̃k . (C4)

Now we consider generators of the SU(1|2) superalgebra as
the sum of impurity and bath terms, replacing (2.2) and (2.3)
by

Cα = fαb† + 1

�

∑
k

f̃kα b̃†
k

Sa = f †
α

σ a
αβ

2
fβ + 1

�

∑
k

f̃ †
kα

σ a
αβ

2
f̃kβ

V = 1

2
f †
α fα + b†b + 1

2�

∑
k

f̃ †
kα

f̃kα + 1

�

∑
k

b̃†
kb̃k . (C5)

It is now easy to see that Himp and H̃bath both commute with
Sa and V . We can also find by explicit evaluation that

[Cα, Hbath] = 0, for ε f (k) = εb(k). (C6)

Further,

[Cα, Himp] = (s0 + λ)cα − λcα + g0
(
δαβV + σ a

αβSa
)
ψβ (0)

+ g0
[
δαβṼ + σ a

αβφa(0)
]
cβ

+ γ0

[
σ a

αβ

2
cβφa(0) + σ a

αβ

2
Saψβ (0)

]
+ v0

[
cαζ (0) + f †

β fβψα (0)

]
− n f v0ψα (0),

(C7)
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where Ṽ = (1/�)
∑

k ( f̃ †
kα

f̃kα/2 + b̃†
kb̃k ). Now recall that

f †
β fβ = 2 − 2V , using Eq. (2.2) and the constraint f †

β fβ +
b†b = 1. For the bath operators we include a chemical po-
tential such that (1/�)

∑
k ( f̃ †

kβ
f̃kβ + b̃†

kb̃k ) = 1; then one can

write ζ (0) = 2 − 2Ṽ . In this case, for s0 = −n f v0, γ0 =
−2g0, and g0 = 2v0 we obtain,

[Cα, Himp] = s0 Cα, (C8)

which is similar to (2.4).
However, the condition in (C6) leads to an issue with su-

persymmetry in the class of models studied in the body of the
paper. To obtain the ansatz in (3.3), with R(τ ) an odd function
of τ and P(τ ), Q(τ ) even functions of τ , we need ε f (k) to
be an odd function of k, while εb(k) needs to be positive
for stability. This is incompatible with the requirements of
supersymmetry.

[1] J.-F. He, C. R. Rotundu, M. S. Scheurer, Y. He, M. Hashimoto,
K.-J. Xu, Y. Wang, E. W. Huang, T. Jia, S.-D. Chen, B. Moritz,
D.-H. Lu, Y. S. Lee, T. P. Devereaux, and Z.-X. Shen, Fermi
surface reconstruction in electron-doped cuprates without an-
tiferromagnetic long-range order, Proc. Natl. Acad. Sci. USA
116, 3449 (2019).

[2] S.-D. Chen, M. Hashimoto, Y. He, D. Song, K.-J. Xu, J.-F. He,
T. P. Devereaux, H. Eisaki, D.-H. Lu, J. Zaanen, and Z.-X. Shen,
Incoherent strange metal sharply bounded by a critical doping
in Bi2212, Science 366, 1099 (2019).

[3] B. Michon, C. Girod, S. Badoux, J. Kačmarčík, Q. Ma, M.
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