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Mott transition and electronic excitation of the Gutzwiller wavefunction
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The Mott transition is usually considered as resulting from the divergence of the effective mass of the
quasiparticle in the Fermi-liquid theory; the dispersion relation around the Fermi level is considered to become
flat toward the Mott transition. Here, to clarify the characterization of the Mott transition under the assumption
of a Fermi-liquid-like ground state, the electron-addition excitation from the Gutzwiller wavefunction in the
t-J model is investigated on a chain, ladder, square lattice, and bilayer square lattice in the single-mode
approximation using a Monte Carlo method. The numerical results demonstrate that an electronic mode that is
continuously deformed from a noninteracting band at zero electron density loses its spectral weight and gradually
disappears toward the Mott transition. It exhibits essentially the magnetic dispersion relation shifted by the Fermi
momentum in the small-doping limit as indicated by recent studies for the Hubbard and t-J models, even if the
ground state is assumed to be a Fermi-liquid-like state exhibiting gradual disappearance of the quasiparticle
weight. This implies that, rather than as the divergence of the effective mass or disappearance of the carrier
density that is expected in conventional single-particle pictures, the Mott transition can be better understood as
freezing of the charge degrees of freedom while the spin degrees of freedom remain active, even if the ground
state is like a Fermi liquid.
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I. INTRODUCTION

It is generally true that electrons in an interacting system
are more difficult to move than those in a noninteracting
system. As a result of the interaction, the effective mass
increases, which implies that the dispersion relation around
the Fermi level becomes flatter [1–3]. The Mott transition is
usually considered as an extreme case of this tendency: the
electrons become immobile because of the effective-mass di-
vergence. This picture, which is known as the Brinkman-Rice
picture, was proposed in Ref. [4], where the discontinuity of
the momentum distribution function at the Fermi momentum
(quasiparticle weight) was shown to decrease continuously to
zero toward the Mott transition in the Gutzwiller approxima-
tion, which implies the divergence of the effective mass in the
Fermi-liquid theory.

However, recent studies on electronic excitation near the
Mott transition in the one-dimensional (1D), two-dimensional
(2D), and ladder Hubbard and t-J models [5–13] have indi-
cated that an electronic mode in the Hubbard gap loses its
spectral weight and exhibits the magnetic dispersion relation
shifted by the Fermi momentum in the small-doping limit.
This implies that the charge degrees of freedom freeze while
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the spin degrees of freedom remain active in the Mott transi-
tion.

Hence, the key question in this paper is how the elec-
tronic mode behaves if the ground state is like a Fermi liquid
where the quasiparticle weight gradually disappears toward
the Mott transition. In the Brinkman-Rice picture [4], the
gradual disappearance of the quasiparticle weight implies
the gradual divergence of the effective mass, and flattening
of the dispersion relation is expected.

In this paper, to resolve the above question, electron-
addition excitation from the Gutzwiller wavefunction in
the t-J model is investigated on a chain, ladder, plane,
and bilayer in the single-mode approximation using a
Monte Carlo method. The numerical results demonstrate
that an electronic mode that is continuously deformed
from a noninteracting band at zero electron density grad-
ually loses its spectral weight and exhibits essentially
the momentum-shifted magnetic dispersion relation in the
small-doping limit, even if the ground state is assumed
to be a Fermi-liquid-like state that exhibits gradual dis-
appearance of the quasiparticle weight toward the Mott
transition.

This suggests that this characteristic of the Mott transition
[5–13] is not highly sensitive to the ground-state properties,
but would be general and fundamental in the Mott transi-
tion. Thus, the Mott transition can be better understood in
terms of this characteristic [5–13], rather than conventional
single-particle pictures, such as the divergence of the effective
mass or disappearance of the carrier density [3], regard-
less of whether the ground state is like a Fermi liquid or
not.
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II. MODEL AND METHOD

A. Model and parameters

The t-J model is defined by the following Hamiltonian:

H = −
∑

〈i, j〉,σ
ti, j (c̃

†
i,σ c̃ j,σ + H.c.)

+
∑
〈i, j〉

Ji, j

(
Si · S j − 1

4
nin j

)
− μ

∑
i,σ

ni,σ , (1)

where c̃i,σ denotes the annihilation operator of an electron
with spin σ at site i under the constraint of no double occu-
pancy, and 〈i, j〉 means that sites i and j are nearest neighbors.
Here, ni,σ and Si denote the number operator with spin σ and
the spin operator at site i, respectively, and ni = ∑

σ ni,σ . In
this paper, we consider the t-J models on a chain (ti, j = t ,
Ji, j = J), planar square lattice (ti, j = t , Ji, j = J), ladder (ti, j =
t and Ji, j = J in the legs; ti, j = t⊥ and Ji, j = J⊥ in the rungs),
and bilayer square lattice (ti, j = t and Ji, j = J in the layers;
ti, j = t⊥ and Ji, j = J⊥ between the layers).

Hereafter, the numbers of sites and electrons are denoted
by Ns and Ne, respectively. The electron density and doping
concentration are defined as n = Ne/Ns and δ = 1 − n, re-
spectively. At half filling, n = 1 and δ = 0. For a ladder and
bilayer, the momentum in the interchain or interlayer direc-
tion is denoted by k⊥. The momenta on a ladder and bilayer
are represented as (kx, k⊥) and (kx, ky, k⊥), respectively. The
shorthand notations 0 and π are used for (0,0) and (π, π ),
respectively. As a compact notation, kx and ky are sometimes
denoted by k1 and k2, respectively.

In this paper, the numerical results for J/t = 0.5 on a chain
and plane; J/t = 0.25, t⊥/t = 2, and J⊥/t = 1 on a ladder;
and J/t = 0.25, t⊥/t = 4, and J⊥/t = 4 on a bilayer with
t > 0 are presented. The calculations were performed under
periodic boundary conditions on clusters of Ns = 120 for the
chain and ladder, Ns = 400 for the plane, and Ns = 200 for the
bilayer. Typically, several millions of samples were generated
following several hundreds of sweeps in the Monte Carlo
calculations.

B. Gutzwiller wavefunction

In this paper, the ground state is assumed to be the
Gutzwiller wavefunction |�〉, defined as [14]

|�〉 = Pd|FS〉, |FS〉 =
∏
σ

∏

k∈Fermi sea

c†
k,σ

|0〉, (2)

where c†
k,σ

denotes the creation operator of an electron with
momentum k and spin σ , and |0〉 represents the vacuum.
Here, Pd denotes the projection operator that forbids double
occupancy. The excitation energy ε(k) and spectral weight
W (k) of the electron-addition excited state c̃†

k,σ
|�〉 averaged

with respect to spin are obtained as follows:

ε(k) = 1

2

∑
σ

〈�|c̃k,σHc̃†
k,σ

|�〉
〈�|c̃k,σ c̃†

k,σ
|�〉 − 〈�|H|�〉

〈�|�〉 , (3)

W (k) = 1

2

∑
σ

〈�|c̃k,σ c̃†
k,σ

|�〉
〈�|�〉 , (4)

where c̃k,σ denotes ck,σ with the constraint of no double occu-
pancy. The expectation value of an operator O by |�〉 can be
evaluated as the sample average of weight wi for configuration
|i〉 generated with probability pi using a Monte Carlo method
[15,16]:

〈�|O|�〉
〈�|�〉 =

∑
i

wi pi, (5)

where

wi =
∑

j

〈 j|O|i〉 〈�| j〉
〈�|i〉 , (6)

pi = |〈i|�〉|2∑
l |〈l|�〉|2 . (7)

It should be noted that c̃†
k,σ

and Pd commute:

c̃†
k,σ

Pd|FS〉 = Pdc†
k,σ

|FS〉, (8)

because c̃†
i,σ Pd|α〉i = Pdc†

i,σ |α〉i, where c†
i,σ and |α〉i denote

the creation operator of an electron with spin σ and a state
(0, ↑, ↓, or ↑↓) at site i, respectively. Thus, the first term
on the right-hand side of Eq. (3) can be calculated as the
energy of the Gutzwiller wavefunction where an electron with
momentum k and spin σ is added to the Fermi sea prior to
projection. This can significantly reduce the computational
complexity of the electron-addition energy. On the other hand,
c̃k,σ Pd|FS〉 �= Pdck,σ |FS〉 in general.

The chemical potential μ at Ne = m can be calculated as
follows:

μ = (Em+1 − Em−1)/2, (9)

where Em±1 denotes the ground-state energy at Ne = m ± 1
for μ = 0. In this paper, because the ground state is assumed
to be expressed as the Gutzwiller wavefunction, μ can be
calculated using the lowest energies of the Gutzwiller wave-
function with an electron added to (Em+1) and removed from
(Em−1) the Fermi sea at Ne = m prior to projection. Similarly,
the Fermi momentum kF can be determined as the momentum
where the dispersion relation of the Gutzwiller wavefunction
with an electron added or removed prior to projection crosses
the Fermi level.

C. Single-mode approximation for spectral function

The spectral function is defined as

A(k, ω) = 1

2

∑
σ,l

|〈l|c̃†
k,σ

|GS〉|2
〈GS|GS〉 δ(ω − εl )

+ 1

2

∑
σ,l

|〈l|c̃k,σ |GS〉|2
〈GS|GS〉 δ(ω + εl ), (10)

where εl denotes the excitation energy of the normalized
eigenstate |l〉 from the ground state |GS〉. In this pa-
per, the single-mode approximation is employed, where the
electron-addition spectral function [A(k, ω) for ω > 0] is ap-
proximated as

As(k, ω) = W (k)δ(ω − ε(k)). (11)

If the excitation is essentially represented by a domi-
nant mode, the single-mode approximation can capture the
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FIG. 1. Spectral function on chain [(a)–(c)], ladder at k⊥ = 0, π [(d)–(f)], plane [(g)–(i)], and bilayer at k⊥ = 0, π [(j)–(l)]. (a), (d), (g), (j)
A(k, ω)t at n = 0 on chain [(a)], ladder [(d)], plane [(g)], and bilayer [(j)] [Eqs. (14) and (15)]. (b), (e), (h), (k) As(k, ω)t for ω > 0 on chain
at n = 0.95 [(b)], ladder at n = 0.95 [(e)], plane at n = 0.905 [(h)], and bilayer at n = 0.95 [(k)], where the dispersion relation and spectral
weight by cubic spline interpolation in Fig. 2 are used. (c), (f) A(k, ω)t on chain at n = 0.95 [(c)] and ladder at n = 0.95 [(f)] obtained using
the non-Abelian DDMRG method with 240 density-matrix eigenstates on a 120-site cluster [8,12]. (i) A(k, ω)t at n = 0.905 on plane obtained
using CPT with 4 × 4-site clusters [9]. (l) A(k, ω)t at n = 0.95 on bilayer in the effective theory near half filling for t⊥ 	 t and J⊥ 	 J
[Eqs. (12) and (13)] [12]. The green lines represent the Fermi level (ω = 0). Gaussian broadening with a standard deviation of 0.1t is used.

essential excitation feature. It has been shown that the
electron-addition excitation (ω > 0) can be effectively repre-
sented by a single mode in the t-J models near half filling (at
each k⊥ for the ladder and bilayer) [Figs. 1(c), 1(f), 1(i), and
1(l)] [8,9,12]. However, if the spectral weight is spread over a
wide range of ω at each k, as observed in the electron-removal
excitation (ω < 0) in the t-J and Hubbard models [Figs. 1(c),
1(f), and 1(i)] [5–13], the single-mode approximation exhibits
a single peak at the weighted mean value of ω. The mode
for ω < 0 in this approximation can exhibit an excitation gap
even if the true excitation is gapless. Thus, in this paper, we
only consider the electron-addition excitation (ω > 0), which
exhibits a significant characteristic toward the Mott transition.

III. RESULTS AND DISCUSSION

A. Spectral function

At zero electron density (n = 0), the spectral function for
an added electron is the same as that in a noninteracting
system [Figs. 1(a), 1(d), 1(g), and 1(j)], because no other
electrons exist. As the electron density increases (i.e., the
chemical potential is increased), the Fermi level moves into
the (lower) band and the spectral function in the single-mode
approximation [As(k, ω); Eq. (11)] for ω > 0 becomes that
indicated in Figs. 1(b), 1(e), 1(h), and 1(k).

The validity of the results is confirmed by their comparison
with the results obtained using the non-Abelian dynamical
density-matrix renormalization-group (DDMRG) method for
the chain [Fig. 1(c)] [8] and ladder [Fig. 1(f)] [12], those
obtained using the cluster perturbation theory (CPT) for the
plane [Fig. 1(i)] [9], and those of the effective theory near half
filling for t⊥ 	 t and J⊥ 	 J for the bilayer [Fig. 1(l)] [12].
In the effective theory [12], the dispersion relation at k⊥ = π

for ω > 0 is obtained as follows:

ω = −J
d∑

i=1

cos ki + J⊥, (12)

and that of the other modes can be expressed as

ω = −t
d∑

i=1

(cos ki − cos kFi ) + t⊥(cos k⊥ − 1) (13)

on the ladder (d = 1) and bilayer (d = 2), where the x and y
components of kF are denoted by kF1 and kF2, respectively. In
Fig. 1(l), the spectral weight at each k is approximated as 1.5δ

for ω > 0 at k⊥ = π , 0.5 − δ for ω < 0 at k⊥ = π , and 0.5
at k⊥ = 0. The contributions from the continua (multiparticle
processes) are neglected.

In the following sections, the changes in the dispersion
relation and spectral weight with the electron density are
discussed.

B. Dispersion relation

At n = 0, because the added electron behaves as a nonin-
teracting electron, the dispersion relation can be expressed as

ω = −2t
d∑

i=1

(cos ki − 1) (14)

on the chain (d = 1) and plane (d = 2), and as

ω = −2t
d∑

i=1

(cos ki − 1) − t⊥(cos k⊥ − 1) (15)

on the ladder (d = 1) and bilayer (d = 2), where the Fermi
level is set to the bottom of the (lower) band [Figs. 1(a), 1(d),
1(g), and 1(j)].
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FIG. 2. Dispersion relation ω = ε(k) [(a)–(f)] and spectral weight W (k) [(g)–(l)] for ω > 0 on chain [(a), (g)], ladder at k⊥ = 0 [(b), (h)]
and π [(c), (i)], plane [(d), (j)], and bilayer at k⊥ = 0 [(e), (k)] and π [(f), (l)]. The red diamonds denote the Monte Carlo results. The blue lines
indicate the cubic spline interpolation. For the chain and ladder [(a)–(c), (g)–(i)], n ≈ 0.017, 0.083, 0.150, 0.217, 0.283, 0.350, 0.417, 0.483,
0.550, 0.617, 0.683, 0.750, 0.817, 0.850, 0.883, 0.917, 0.950, and 0.983 from above. For the plane [(d), (j)], n = 0.005, 0.105, 0.225, 0.245,
0.305, 0.405, 0.505, 0.605, 0.705, 0.745, 0.825, 0.845, 0.885, and 0.905 from above. For the bilayer [(e), (f), (k), (l)], n = 0.01, 0.05, 0.09,
0.13, 0.21, 0.25, 0.29, 0.37, 0.41, 0.59, 0.63, 0.71, 0.75, 0.79, 0.87, 0.91, 0.95, and 0.99 from above.

As illustrated in Figs. 2(a)–(f), the dispersion relation of the
electron-addition excitation [ω = ε(k)] changes continuously
as the electron density increases from n = 0 [Eqs. (14) and
(15)]. To clarify the electron-density dependence, Figs. 3(a),
3(d), 3(g), and 3(j) display the characteristic energies: ε(π )
on the chain, ε(π) on the plane, 	ε and εc on the ladder
and bilayer. Here, 	ε and εc denote the bandwidth and band
center, respectively, which are defined as

	ε = ε(Qmax, π ) − ε(Qmin, π ), (16)

εc = [ε(Qmax, π ) + ε(Qmin, π )]/2, (17)

where Qmin and Qmax represent 0 and π on the ladder, and 0
and π on the bilayer.

For the chain and plane, the dispersion relation continues
to disperse even in the limit of n → 1 [Figs. 2(a), 2(d), 3(a),
and 3(d)]. This implies that the mode for ω > 0, which is
continuously deformed from that of a noninteracting electron
at n = 0, does not become flat toward the Mott transition,
in contrast to the conventional single-particle picture of the
effective-mass divergence.

For the ladder and bilayer, the dispersion relation at k⊥ = 0
shrinks to ω → 0 at kx = π and (kx, ky) = π, respectively,
in the limit of n → 1 [Figs. 2(b) and 2(e)], whereas the dis-
persion relation at k⊥ = π continues to disperse [Figs. 2(c),
2(f), 3(g), and 3(j)]. Although these features are similar to
those of the transition from a metal to a band insulator, the
spectral weight at k⊥ = π gradually disappears toward the
Mott transition, in contrast to the conventional band picture,
as shown in Sec. III C.

To clarify the nature of the electron-addition excitation in
the limit of n → 1, we consider the excitation at half filling
(n = 1), where the t-J model is reduced to the Heisenberg
model. For the chain and plane, the dominant spin excitation

exhibits the following spin-wave dispersion relation [17,18]:

e1D(kx ) = v1D| sin kx| (18)

on the chain and

e2D(k, k) =
√

2v2D| sin k| (19)

for kx = ky = k on the square lattice, where the spin-wave
velocities of the Heisenberg models on the chain and square
lattice have been obtained as v1D = πJ/2 [17] and v2D =
1.18(2)

√
2J [19], respectively. As illustrated in Figs. 3(a) and

3(d), ε(π ) and ε(π) in the limit of n → 1 reasonably well
approach e1D(π/2) and e2D(π/2) (open red diamonds) on the
chain and plane, respectively.

For the ladder and bilayer, the dispersion relation of the
spin excitation at k⊥ = π for J⊥ 	 J can effectively be ex-
pressed as

eeff (k) = J
d∑

i=1

cos ki + J⊥ (20)

on the ladder (d = 1) and bilayer (d = 2) [12]. As indicated
in Figs. 3(g) and 3(j), 	ε (solid purple triangles) and εc

(solid blue circles) in the limit of n → 1 are reduced to the
bandwidth 	e (open red triangles) and band center ec (open
red circles) of the spin excitation at half filling, respectively,
which are defined as

	e = eeff (Qmin, π ) − eeff (Qmax, π ), (21)

ec = [eeff (Qmin, π ) + eeff (Qmax, π )]/2. (22)

The above results are consistent with the general relation-
ship between the dispersion relation of the spin excitation in
a Mott insulator (Ne = Ns) and that of the electron-addition
excitation in the small-doping limit (Ne = Ns − 1) shown in
Ref. [12]: spin-excited states in a Mott insulator can emerge
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FIG. 3. Characteristic energies and spectral weights as a func-
tion of electron density. (a) ε(π )/t , (b) W (π ), and (c) Z on chain.
(d) ε(π)/t , (e) W (π), and (f) Z for kx = ky on plane. (g) εc/t (solid
blue circles) and 	ε/t (solid purple triangles), (h) W (π, π ), and
(i) Z on ladder. (j) εc/t (solid blue circles) and 	ε/t (solid purple
triangles), (k) W (π, π ), and (l) Z for kx = ky on bilayer. The solid
blue diamonds, solid blue circles, and solid purple triangles indicate
the Monte Carlo results. The red curve in (c) represents the exact
result for the Gutzwiller wavefunction on the chain [22,23]. The
magenta curves are guides for the eye. In (a) and (d), the open red
diamonds at n = 1 indicate e1D(π/2)/t with v1D = πJ/2 [17] [(a)]
and e2D(π/2)/t with v2D = 1.18

√
2J [19] [(d)]. In (g) and (j), the

open red circles at n = 1 indicate ec/t on the ladder [(g)] and bilayer
[(j)], and the open red triangles at n = 1 indicate 	e/t on the ladder
[(g)] and bilayer [(j)].

in the electron-addition spectrum outside the Fermi surface,
exhibiting the magnetic dispersion relation shifted by kF in
the small-doping limit [5–13]. By applying this relationship,
the dispersion relation of the electron-addition excitation in
the small-doping limit is expected to be

ω = −v1D cos kx (23)

for π/2 < kx < 3π/2 on the chain [kF = π/2; Eq. (18)],

ω = −
√

2v2D cos k (24)

for π/2 < k < 3π/2 along kx = ky = k on the plane [kF =
π/2; Eq. (19)], and Eq. (12) on the ladder at k⊥ = π [d = 1;
kF = (π, 0); Eq. (20)] and bilayer at k⊥ = π [d = 2; kF =
(π, 0); Eq. (20)]. The results that are obtained simply by
assuming that the ground state is the Gutzwiller wavefunc-
tion [Figs. 1(b), 1(e), 1(h), 1(k), 2(a), 2(c), 2(d), 2(f), 3(a),
3(d), 3(g), and 3(j)] agree reasonably well with this behavior
[Eqs. (12), (23), and (24); Fig. 1(l)].

C. Spectral weight

At n = 0, W (k) = 1 because the electron-addition excita-
tion is the same as that of a noninteracting system [Figs. 1(a),
1(d), 1(g), and 1(j)]. As the electron density increases, the
spectral weight outside the Fermi surface gradually decreases,
as illustrated in Figs. 2(g)–(l). To clarify the electron-density
dependence, Figs. 3(b), 3(e), 3(h), and 3(k) display the char-
acteristic spectral weights: W (π ) on the chain, W (π) on the
plane, W (π, π ) on the ladder, and W (π, π ) on the bilayer. At
n = 1, W (k) = 0 because an electron cannot be added to the
ground state with the constraint of no double occupancy. The
Hubbard gap can be regarded as infinitely large.

The spectral weights at k⊥ = 0 on the ladder and bilayer
remain nonzero even in the limit of n → 1 [Figs. 2(h) and
2(k)], as in the case of the transition from a metal to a band
insulator. However, the spectral weights on the chain, plane,
and ladder at k⊥ = π , as well as on the bilayer at k⊥ = π grad-
ually disappear toward the Mott transition (n → 1) [Figs. 2(g),
2(i), 2(j), 2(l), 3(b), 3(e), 3(h), and 3(k)].

These results imply the following: For the chain and plane,
the dispersing mode crossing the Fermi level (Sec. III B),
which is continuously deformed from that of a noninteract-
ing electron at n = 0, loses its spectral weight and gradually
disappears toward the Mott transition without flattening of
the dispersion relation [5–11]. For the ladder and bilayer, the
mode at k⊥ = π , which is continuously deformed from the
noninteracting antibonding band (k⊥ = π ) at n = 0, persists
as a dispersing mode in the metallic phase (Sec. III B) but
loses its spectral weight and gradually disappears as n → 1
[12,13], contrary to the conventional band picture in which
the number of bands is considered to be determined by the
number of atomic orbitals in a unit cell [20] and invariant with
the electron density provided that symmetry breaking does
not occur (neither emergence nor disappearance of a band is
expected).

D. Quasiparticle weight

The momentum distribution function is defined as

n(k) = 1

2

∑
σ

〈�|c̃†
k,σ

c̃k,σ |�〉
〈�|�〉 , (25)

which can be calculated as n(k) = 1 − n/2 − W (k) owing
to the sum rule [21]. It has been established that n(k) of
the Gutzwiller wavefunction exhibits a discontinuity at kF in
the metallic phase [Figs. 2(g), 2(h), 2(j), and 2(k)] [14,22–
25]. The value of this discontinuity is called the quasiparticle
weight, which is represented by Z in this paper [Figs. 3(c),
3(f), 3(i), and 3(l)]. The volume inside the Fermi surface of
the Gutzwiller wavefunction is the same as the noninteracting
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Fermi sea (cf. Luttinger’s theorem [26]). The same volume
as the noninteracting Fermi sea and Z �= 0 in the metallic
phase are usually identified as evidence of a Fermi liquid. In
this sense, the Gutzwiller wavefunction can be regarded as a
Fermi-liquid-like state.

As illustrated in Figs. 3(c) and 3(f), the quasiparticle
weight Z on the chain and plane decreases continuously to
zero toward the Mott transition. The Brinkman-Rice picture
is based on this behavior: Z → 0 implies the divergence of
the effective mass m∗, because m∗ ∝ 1/Z in the Fermi-liquid
theory, assuming that the renormalization of m∗ is only due to
the ω dependence of the self-energy [4]. If electronic excita-
tion can essentially be represented by the single mode of the
Fermi-liquid quasiparticle with m∗ → ∞, the Mott transition
should be characterized by the flattening of the dispersion
relation toward the Mott transition, as is widely believed ac-
cording to the Brinkman-Rice picture.

In contrast, as discussed in Secs. III A–III C, the results on
the chain and plane indicate that the mode crossing the Fermi
level, which is continuously deformed from a noninteracting
band at n = 0, does not become flat toward the Mott transition,
but loses its spectral weight for ω > 0, even if the ground
state is assumed to be a Fermi-liquid-like state with the same
volume as the noninteracting Fermi sea and a nonzero Z that
decreases continuously to zero toward the Mott transition.

The results exhibiting Z �= 0 on the chain [Figs. 2(g) and
3(c)] are due to the Gutzwiller wavefunction [22,23]. In a 1D
system, the low-energy properties are generally described as
a Tomonaga-Luttinger liquid [27–30] where Z = 0 [31,32].
Thus, the picture of m∗ → ∞ for the Fermi-liquid quasipar-
ticle is generally inapplicable to 1D systems. Nevertheless,
the gradual loss of the spectral weight from the dispersing
mode that exhibits the momentum-shifted magnetic disper-
sion relation in the small-doping limit has been shown in 1D
systems [6,8] as well as in 2D systems [7,9]. This implies
that this characteristic is general and fundamental in the Mott
transition, regardless of whether the ground state is like a
Fermi liquid or not. That is, this characteristic is not highly
sensitive to the ground-state properties or dimensionality, but
would generally be robust in the Mott transition.

For the ladder and bilayer, Z remains nonzero even in
the limit of n → 1 [Figs. 2(h), 2(k), 3(i), and 3(l)], as in
the case of the transition from a metal to a band insulator.
Nevertheless, similarly to the cases of the chain and plane,
the dispersion relation of the antibonding band is deformed
into the momentum-shifted magnetic dispersion relation in the
small-doping limit [Figs. 2(c), 2(f), 3(g), and 3(j)]. Further-
more, the spectral weight at k⊥ = π decreases continuously
to zero toward the Mott transition [Figs. 2(i), 2(l), 3(h), and
3(k)] [12,13], contrary to the conventional band picture. These
results also support the general and fundamental characteristic
of the Mott transition.

E. Model with Gutzwiller-wavefunction ground state

The characteristic discussed in this paper can also be
demonstrated using a model whose ground state is the
Gutzwiller wavefunction. It is known that the ground state
of the 1D supersymmetric t-J model with 1/r2 interac-
tion (J/t = 2) is the Gutzwiller wavefunction [33]. The

electron-addition spectral function A+(kx, ω) of this model
has been obtained analytically [34]. According to the analyt-
ical expression of A+(kx, ω) [34], the dominant mode (upper
edge of the continuum) that is continuously deformed from
the noninteracting band at n = 0 loses its spectral weight and
gradually disappears toward the Mott transition. Its dispersion
relation continues to disperse and becomes

ω = eHS(kx − kF) (26)

for kF < kx < 2π − kF in the small-doping limit (Fermi mo-
mentum kF → π/2), where eHS(kx ) denotes the dispersion
relation of the dominant mode of the spin excitation at half
filling (the Haldane-Shastry model) [35]:

eHS(kx ) = Jkx(π − kx )/2. (27)

This clearly demonstrates that the characteristic discussed in
this paper can appear even in a system whose ground state is
a Fermi-liquid-like state exhibiting gradual disappearance of
the quasiparticle weight toward the Mott transition [Fig. 3(c)].

F. Comparisons with conventional pictures

In conventional single-particle pictures, an electronic
quasiparticle or a hole is considered as a carrier and the
Mott transition is considered to be characterized as one of the
following two possibilities [3]: the divergence of the effective
mass m∗ → ∞ or the disappearance of the carrier density
nc → 0. The former is based on the Fermi-liquid theory,
where interaction effectively makes the electronic quasipar-
ticle heavier. The latter is based on a band picture such as the
mean-field approximation for the antiferromagnetic order [36]
or Hubbard’s decoupling approximation [37], where holes in
a doped Mott insulator can be regarded as carriers. Discus-
sions on the Mott transition have mostly focused on which
picture is more appropriate and intense controversies have
arisen, particularly in relation to cuprate high-temperature
superconductors [3,38]. For the distinction between m∗ → ∞
and nc → 0, the ground-state properties such as the quasipar-
ticle weight Z , antiferromagnetic order, and sign of the Hall
coefficient are important.

In contrast, the characteristic discussed in this paper is
not highly sensitive to the ground-state properties [5–13].
The quasiparticle weight Z or the presence or absence of a
spin gap or antiferromagnetic order in a Mott insulator is
not significant. In fact, essentially the same characteristic of
the Mott transition appears on the square lattice [Figs. 2(d),
2(j), 3(d), and 3(e)] and on the chain [Figs. 2(a), 2(g), 3(a),
and 3(b)], although the Gutzwiller wavefunction on a square
lattice exhibits an antiferromagnetic long-range order at half
filling [39,40], whereas that on a chain does not [41,42].
Instead, the existence of spin excitation in the energy regime
that is much lower than the charge gap in a Mott insulator is
important for this characteristic. This spin-charge separation
can be regarded as a defining factor of a Mott insulator [13].
In fact, in a band insulator, spin-charge separation does not
occur; the lowest spin- and charge-excitation energies are the
same as the band gap because the excitations are described in
terms of electronic single particles [5,11].

It should be noted that the spin-charge separation in the
metallic phase of a 1D system means that excitations in
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the low-energy limit are described in terms of independent
spin and charge excitations [31,32,43], rather than electronic
quasiparticles. The lowest excitation energies for the spin 	s

and charge 	c of the order of 1/Ns are different. In a Mott
insulator, the spin-charge separation is more robust [	s �
	c = O(U ) for Coulomb repulsion U 	 t ; 	s � 	c = ∞
in the t-J (Heisenberg) model] and general, regardless of the
dimensionality.

Although there are physical quantities that can distinguish
between an insulator and a metal, such as the Drude weight
[44], the characterization of the Mott transition should reflect
a general characteristic of a Mott insulator that can distinguish
a Mott insulator from a band insulator [13]. The above-
mentioned spin-charge separation in a Mott insulator provides
such a characteristic. Because the characteristic of the Mott
transition discussed in this paper reflects the spin-charge sep-
aration of a Mott insulator, it would be general regardless
of the dimensionality [5–13]. Although an antiferromagnetic
order may be considered as important in the Mott transition,
it is not essential to the Mott transition. This is because not
only an antiferromagnetically ordered insulator, but also a
spin liquid, which is an insulator exhibiting spin excitation
(with or without a spin gap) in the energy regime that is much
lower than the charge gap without a magnetic order, is usually
regarded as a Mott insulator. The quasiparticle weight Z in the
metallic phase or structural instability is not essential to the
Mott transition either, because the Mott transition can occur
even on a chain with Z = 0 or without being accompanied by
lattice distortion.

G. Doping-induced states

The emergence of electronic states in the Hubbard gap
upon doping a Mott insulator has been recognized since the
early 1990s [45,46], but the interpretations thereof have been
controversial. The emergent states have been interpreted as
part of the upper Hubbard band that is quickly shifted by
doping [47,48], composite-particle states [49–52], and a spin-
polaron shake-off band [53,54]. In these interpretations, the
mode of the emergent states is essentially separated by an
energy gap from the mode around the Fermi level, even if
the spin excitation of a Mott insulator is gapless [47–54]. In
contrast, another interpretation is that the emergent states are
essentially the spin-excited states that exhibit the magnetic
dispersion relation shifted by kF in the electronic spectrum
[5–13]. If the magnetic excitation of a Mott insulator is gap-
less, the mode of the emergent electronic states should also be
gapless in the small-doping limit.

The behavior of the characteristic mode discussed in this
paper can also be understood in the final interpretation above
[5–13], even if a Fermi-liquid-like ground state is assumed
[Figs. 1(b), 1(e), 1(h), 1(k), 3(a), 3(d), 3(g), and 3(j); Eqs. (12),
(18), (19), (20), (23), and (24)]. When viewed from the low-
electron-density side, this mode is continuously deformed
from a noninteracting band at n = 0, gradually losing its
spectral weight toward the Mott transition [Figs. 2(a), 2(c),
2(d), 2(f), 2(g), 2(i), 2(j), 2(l), 3(a), 3(b), 3(d), 3(e), 3(g), 3(h),
3(j), and 3(k)], which implies that this mode also has the same
origin as a noninteracting band at n = 0.

H. Physical picture of Mott transition

The physical picture of this characteristic of the Mott
transition has been described as follows [5–13]: From the
metallic side, the charge degrees of freedom freeze toward the
Mott transition, while the electronic motion is preserved in
the spin degrees of freedom. This picture has been derived
based on the spectral feature indicating that an electronic
mode representing an electronic particle with spin and charge
gradually loses its identity (spectral weight) toward the Mott
transition, while the dispersion relation is continuously re-
duced to the magnetic dispersion relation shifted by kF in
the Mott transition. From the insulating side, spin excitation
emerges as electronic excitation because the charge character
is added by doping. This picture has been derived based on the
spectral feature indicating that the electronic excitation in the
small-doping limit exhibits the magnetic dispersion relation
shifted by kF (a spin-excited state at k = p from the ground
state with Ne = m can overlap with an electron-addition ex-
cited state at k = p + kF from the ground state with Ne =
m − 1 where an electron with k = kF on the Fermi surface
is removed [12]). The emergence in the electronic spectrum
implies that the excitation not only has a spin character, but
also gains a charge character owing to doping (the electronic
excitation should have the same quantum numbers as an elec-
tron).

The above picture contrasts with conventional single-
particle pictures: the electronic quasiparticle becomes ex-
tremely heavy and immobile when m∗ → ∞, and the number
of mobile holes disappears (full filling of electrons) when
nc → 0. In these single-particle pictures, the decoupling of the
spin and charge degrees of freedom toward the Mott transition
is not considered. These pictures do not explain how a metallic
state changes into a Mott insulating state that exhibits spin
excitation in the energy regime that is much lower than the
charge gap (the spin-charge separation characteristic of a Mott
insulator).

IV. SUMMARY

Electron-addition excitation from the Gutzwiller wave-
function was investigated in the 1D, 2D, ladder, and bilayer
t-J models in the single-mode approximation using a Monte
Carlo method. In all of these models, the numerical results
demonstrated that an electronic mode that is continuously
deformed from a noninteracting band at zero electron density
loses its spectral weight and gradually disappears toward the
Mott transition, exhibiting essentially the magnetic dispersion
relation shifted by the Fermi momentum in the small-doping
limit. Thus, this characteristic would be general and funda-
mental in the Mott transition, regardless of the dimensionally,
lattice structure, and even the presence of a spin gap or an-
tiferromagnetic long-range order in a Mott insulator. Because
this characteristic can be obtained simply by assuming that the
ground state is the Gutzwiller wavefunction, it would not de-
pend on the ground-state details, but rather, reflects a general
characteristic of a Mott insulator, namely, spin-charge separa-
tion (the existence of spin excitation in the energy regime that
is much lower than the charge gap).
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This result contrasts with the conventional single-particle
pictures such as the Fermi-liquid quasiparticle picture and
band picture (mean-field approximation). In these pictures,
the divergence of the effective mass (the flattening of the
dispersion relation) or disappearance of the carrier density is
considered as the essence of the Mott transition, where the
spectral-weight loss from a dispersing mode or continuous
evolution to the spin excitation of a Mott insulator is not
expected. Meanwhile, the characteristic mode shown in this
paper has the same origin not only as a noninteracting band
at zero electron density, but also as spin-excited states in a
Mott insulator, and is continuously deformed between these
two limits, even under the assumption of a Fermi-liquid-like
ground state.

In the future, experimental confirmation of this character-
istic, as well as a reexamination of the material properties near
the Mott transition that have been interpreted in conventional
single-particle pictures, will be useful for deeper understand-
ing of the Mott transition and electronic states in strongly
correlated systems.
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