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Super-Poissonian behavior of the Rosenzweig-Porter model in the nonergodic extended regime
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The Rosenzweig-Porter model has seen a resurgence in interest as it exhibits a nonergodic extended phase
between the ergodic extended metallic phase and the localized phase. Such a phase is relevant to many physical
models from the Sachdev-Ye-Kitaev model in high-energy physics and quantum gravity to the interacting many-
body localization in condensed-matter physics and quantum computing. This phase is characterized by fractal
behavior of the wave functions and a postulated correlated miniband structure of the energy spectrum. Here
we will seek evidence for the latter in the spectrum. Since this behavior is expected on intermediate energy
scales, spectral rigidity or number variance is a natural way to tease it out. Nevertheless, due to the Thouless
energy and ambiguities in the unfolding procedure, the results are inconclusive. On the other hand, by using the
singular-value decomposition method, clear evidence for a super-Poissonian behavior in this regime emerges,
consistent with a picture of correlated minibands.
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The Anderson metal-insulator transition continues to sur-
prise even after six decades [1]. The canonical picture for a
single-particle Anderson transition is the three-dimensional
Anderson model. which shows a metal-insulator transition
for a critical value of on-site disorder. For weak disorder
the system is metallic, and the wave function is extended,
while for stronger disorder the wave function is localized, and
the system is insulating [2,3]. At the critical disorder the wave
function is fractal [4]. The energy spectrum also reflects these
phases. In the localized regime the level spacing distribution
(corresponding to small energy scales and large times) follows
the Poisson distribution, while for the extended regime it
corresponds to the Wigner-Dyson (WD) distribution. [5–8].
Several forms of the level spacing were suggested at criticality
[9–12]. For larger energy scales, the spectral rigidity or the
variance of the number of levels in a given energy window
is a useful indicator. For the localized phase the variance is
equal to the average number of states in this window, while
for the extended phase it is proportional to the logarithm of
the average. At the critical point the variance is proportional
to the average number of states, with a proportionality lower
than 1 [13–15].

An additional energy scale relevant to disordered metals is
the Thouless energy ET = g� (where g is the dimensionless
conductance and � is the average level spacing) [13]. While
WD predictions hold up to an energy scale E < ET , above
which a nonuniversal behavior takes over. The physical origin
of the Thouless energy is the onset of diffusive behavior.

There has been a recent surge of interest in the critical
behavior of the transition. Part of this interest stems from the
realization that for the many-body localization phenomenon
the localized and extended regions may be separated by a
critical regime [16–25]. An additional motivation pertains to
the Sachdev-Ye-Kitaev (SYK) model, originally introduced in
the study of spin liquids [26] and recently gaining relevance

to holographic dualities in string theory [27] and quantum
gravity [28]. There is evidence the SYK model perturbed
by a single-body term shows a critical region [29]. This
model also shows a signature of the existence of a Thouless
energy [30].

The generalized Rosenzweig-Porter (GRP) random matrix
model [31,32] is considered the simplest model for which the
localized and fully ergodic phases both exist, with a non-
ergodic extended (NEE) phase separating them. Almost all
evidence for the NEE comes from the study of the fractality
of the wave functions [32–37]. In Ref. [38] some tantalizing
clues for super-Poissonian behavior appeared in the nth level
spacing distribution. Finding fingerprints of NEE in the en-
ergy spectrum is important for both theoretical and practical
reasons. It is much easier numerically, as well as experimen-
tally, to obtain the energies than to obtain wave functions for
large systems. Here we examine two methods to garner such
information: the venerable method of number variance [39]
and singular-value decomposition (SVD) [40–42]. Both will
be used to study very large GRP matrices on scales of thou-
sands of eigenvalues. It turns out that although the number
variance exhibits anomalies which could be attributed to NEE,
it is nevertheless hard to separate them from the effects of the
Thouless energy, finite size, and dependence on unfolding. On
the other hand, SVD seems to provide strong evidence for an
intermediate scale of energy, for which systems belonging to
the NEE phase show super-Poissonian behavior of the spectra,
similar to the random Cantor set behavior [17].

The GRP is defined by a random matrix Hi j , of size
N × N , where the diagonal terms are chosen from a certain
distribution while the off-diagonal term is chosen from a
distribution with a variance proportional to N−γ . Specifically,
we have chosen the diagonal Hii from a box distribution
with a range −√

6/2, . . . ,
√

6/2 (δ2〈Hii〉 = 1/2) and the off-
diagonal Hi �= j from a box distribution between −N−γ /2/2
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and N−γ /2/2 (〈δ2Hi �= j〉 = N−γ /12), thus corresponding to
Nγ 〈H2

i �= j〉/〈H2
ii 〉 = 1/6.

For GRP one expects a transition from localized to ex-
tended behavior at γ = 2 [32,38,43–48]. This transition is
manifested in the energy spectrum of the system in a transition
in the nearest neighbor level distribution between Poisso-
nian behavior for γ > 2 to WD like repulsion at γ < 2. The
finite-size scaling of this behavior is clearly seen by the ratio
statistics, defined as

rs = 〈
min

(
rn, r−1

n

)〉
, rn = En − En−1

En+1 − En
, (1)

where En is the nth eigenvalue of the matrix and 〈· · · 〉 is
an average over different matrices and a range of eigenval-
ues. For the Poisson distribution one expects rs = 2 ln(2) −
1 ∼ 0.3863, while for the WD distribution rs ∼ 0.5307 [49].
Finite-size scaling assumes that for γ > 2 the value of rs

approaches the Poisson value as the matrix size grows, while
for γ < 2, r approaches the WD value. At the transition
(γ = 2) r should be independent of the matrix size. Thus,
as one plots rs(γ ) for larger values of N , the curve be-
comes more steplike, and all the curves are expected to
cross at the same point. This has been seen in Ref. [37]
and is reproduced here for larger matrix sizes. In Fig. 1(a)
we plot r(γ ) for N = 500, 1000, 2000, 4000, 16 000, 48 000
with 12 800, 6400, 3200, 1600, 800, 100 different matrices.
The curves can be scaled using γ̃ = |γ − γc|(N/N0)β , with
β = 0.12 and γc = 2, and N0 = 500 was chosen as the small-
est matrix size. As can be seen in Fig. 1(b), this scaling works
well.

Thus, for the low-energy scale one finds very clear evi-
dence of the transition between localized states and extended
ones at γ = 2.

On the other hand, the transition between the NEE phase
and the truly extended phase anticipated to occur at γ = 1
leaves no signature in the ratio statistics. This is expected,
as the small energy scale corresponds to long times, and
since the states are extended at very long times in both the
ergodic and NEE phases, small energy scales cannot resolve
the difference. Thus, one should probe energy scales that are
much larger than the mean level spacing.

Two statistical measures will be considered: the level num-
ber variance for a given energy window and applying the SVD
to the spectrum [40–42].

The first is also known as the number variance [39].
Specifically, for an energy window of size E , the average num-
ber of levels 〈n(E )〉 and the variance 〈δ2n(E )〉 = 〈[n(E ) −
〈n(E )〉]2〉 are calculated. For the WD distribution 〈δ2n(E )〉 =
0.44 + (2/π2) ln[〈n(E )〉], while for the Poisson distribution
〈δ2n(E )〉 = 〈n(E )〉. One may argue that for the NEE phase
(1 < γ < 2) one should expect 〈δ2n(E )〉 = χ〈n(E )〉, where
χ = γ − 1 [38,50].

A major concern for the variance method is that it relies on
unfolding the spectrum. For rather smooth spectra, the details
of unfolding and averaging over realizations should not affect
the results, but for the NEE phase, where a nonsmooth spec-
tral density is expected [17,30,38], the unfolding procedure
might strongly influence results. A different way to study the
properties of an ensemble of spectra originating from different
realizations was recently suggested [40–42] based on tech-
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FIG. 1. The nearest neighbor level spacing statistics as mani-
fested in the behavior of the ratio statistics r(γ ) for different values
of γ and matrix size N . (a) The finite-size dependence of rs(γ ). All
curves cross at the critical value γc = 2 and exchange their order as
they cross this point. This is a clear manifestation of a second-order
phase transition. (b) Finite-size scaling. All curves neatly fall on
the two branches above and below the transition as a function of γ̃

defined in the text.

niques originating in signal analysis. Given L realizations of P
eigenvalues each, one defines a matrix X of size L × P, where
Xl p is the p level of the lth realization. X is SVD decomposed
as X = U�V T , where U and V are L × L and P × P matrices,
respectively, and � is a diagonal matrix of size L × P and
rank r = min(L, P). The r diagonal elements of �, denoted
as σk , are the singular values of X and may be ordered such
that σ1 � σ2 � · · · σr . Essentially, this is a nonperiodic mode
decomposition of the series. Defining λk = σ 2

k represents the
fraction of the total variance in the series captured by the
mode. The lower singular values capture the global trends
of the spectra, while the higher values represent the local
fluctuations. It has been postulated that for the higher values in
the localized regime λk ∼ k−2, while in the extended regime
λk ∼ k−1 [41,42], corresponding to 1/ f noise behavior [51].

We have calculated 〈δ2n(E )〉 for large matrices of size
N = 16 000, 24 000, 32 000, 48 000 and 800, 200, 100, and
100 different realizations, respectively. For each realization N
eigenvalues εi were obtained. The spectrum was then unfolded
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FIG. 2. The variance 〈δ2n(E )〉 as a function of 〈n(E )〉 for the
largest matrix size N = 48 000 and values of γ between 0.8 and
2.4. The Poissonian and Wigner-Dyson behaviors are indicated. The
top right inset zooms into the logarithmic behavior region, where
deviations from the Wigner-Dyson behavior are seen even deep in
the extended ergodic regime γ < 1. In the middle inset the variance
normalized by n is plotted. Even in the localized regime γ > 2 some
deviation from the Poisson value of 1 is seen.

by εi = εi−1 + 2m(εi − εi−1)/〈εi+m − εi−m〉, where 〈· · · 〉 is
an average over realizations and m = 6 (other values were
used with no significant change). The center of the energy
window is set at E ( j) = N/2 + j × 20, where for each real-
ization j = − jmax, . . . , jmax (with jmax = 150, 225, 300, 450,
i.e., the center of the energy window is located within a range
of 3/16 of the spectra around the middle). For each E ( j), the
number of states in a window of width E centered at E ( j),
nj (E ), is evaluated; then the averages 〈n(E )〉 and 〈n2(E )〉 are
taken over all positions of the center j and realizations.

The variance 〈δ2n(E )〉 as a function of 〈n(E )〉 is plotted in
Fig. 2 for the largest matrix size, N = 48 000, and different
values of γ . Our main aim is to study the asymptotic be-
havior of the variance in large energy windows. Clearly, as
γ increases, the variance switches from a Wigner-Dyson-like
behavior to a Poisson-like behavior. Nevertheless, the ob-
served behavior raises serious doubts about our ability to give
definite answers on the asymptotic behavior from such data.
Several factors compound the problem. It is clear that even
for γ < 1 for which Wigner-Dyson behavior (〈δ2n(E )〉 =
(2/π2) ln[〈n(E )〉] + 0.44) is expected, this behavior is fol-
lowed up to only a certain nTh, above which a stronger than
linear dependence is seen. This scale nTh depends both on γ

(see the right inset in Fig. 2) and on the size of the matrix
[see Fig. 3(a)]. This is similar to the deviation seen for the
Anderson model [13,14,52] and in the SYK model [30] and is
an indication of an energy scale known as the Thouless energy,
ETh = δnTh, related to a timescale tTh = h̄/ETh, indicating the
typical time necessary to explore the system’s available phase
space. nTh grows as the system becomes less sparse (lower γ )
or larger in size.

As can be seen in Fig. 2 for γ > 2 and for different sizes
in Fig. 3(b), deep in the Poisson regime (γ > 2), the expected
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FIG. 3. The variance 〈δ2n(E )〉 as a function of 〈n(E )〉 for (a) γ =
0.8 (WD regime), (b) γ = 2.4 (Poisson regime), and (c) γ = 1.2
(NEE regime) and matrix sizes between N = 16 000 and N =
48 000. A zoom into smaller values of n is shown in the insets.
(a) Deep in the WD regime, it is clear that at nTh deviations from the
WD behavior are seen. The dependence of nTh on size is presented
in the bottom inset in (a). Above nTh the variance grows stronger
than linear and depends on N . (b) Deep in the Poisson regime. Up to
n ∼ 500 the behavior is linear, as expected from the Poisson regime.
For higher n deviations to weaker dependence are seen. For larger
systems the deviation appears for larger values of n. (c) In the NNE
regime, the behavior deviates from WD almost immediately and
follows a stronger than linear behavior, up to a point where a weaker
dependence on n is seen.
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FIG. 4. The scree plots of ordered partial variances λk for 800
realizations of matrix size N = 16 000 and different values of γ

between 0.8 and 2.4. The expected behaviors for Poisson (1/k2) and
WD (1/k0.8) and the transient behavior at γ = 1.2 (1/k4.2) are indi-
cated by dashed lines. A random Cantor set of spectra of N = 4000
and 1000 realizations with Ds = 0.6 (see text) corresponds to the
solid black circles.

Poissonian behavior [〈δ2n(E )〉 = 〈n(E )〉] is seen up to some
value of n (n ∼ 1000 for N = 48 000 and n ∼ 500 for N =
16 000). Above this value 〈δ2n(E )〉 grows weaker than linear.
One could speculate that these deviations are a result of a
combination of finite-size effects and the unfolding, which
becomes less reliable at larger scales.

For the intermediate values of 1 < γ < 2, where the NEE
regime is expected, the behavior is even messier [Figs. 2
and 3(c)]. Almost immediately, the variance starts growing
much faster than linear. As n increases, the growth peters out.
One might fit a linear behavior with a slope smaller than 1,
corresponding to the expected 〈δ2n(E )〉 = χ〈n(E )〉 behavior.
Nevertheless, larger values of n remain strongly dependent on
the size of the matrix [Fig. 3(c)] [53]. Thus, it is difficult to
tease out the behavior at large n without ad hoc assumptions
on the range of the fit.

Due to these difficulties, we switch to the SVD method,
which does not require unfolding or calculation of the number
variance. The scree plots of the ordered partial variances λk for
800 realizations of matrix size N = 16 000 and 0.8 < γ < 2.4
are presented in Fig. 4. Large k corresponds to small energy
scales. Large energy scales depend on the overall density of
states, which is not universal, and therefore, no information
can be gleaned from k ∼ 1. For the Poisson regime (γ � 2,
indicated by purple symbols) λk>2 follows the expected k−2

behavior [41,42], up to deviations for large values of k > 500.
In the WD regime (γ � 1, indicated by reddish symbols), for
k � 10, λk follows kα , with a slope α ∼ 0.8—different from
the expected slope α = 1. As discussed in the Appendix, this
is the effect of a finite number of realizations, much smaller
than the number of eigenvalues (L � P). So for small energy
scales, the WD behavior is followed up to an energy scale,
which may be identified as Eth (corresponding to a value kTh),
above which a much steeper decent of λk<kTh is observed. This
is in line with the number variance behavior.

The NEE regime (1 < γ < 2) shows intermediate behavior
between WD behavior at large k and Poissonian behavior at

small values of k. This general behavior is expected since, as
can be deduced from Fig. 3(c), at very short energy scales WD
behavior is expected. At values of γ > 1.6 strong deviations
from Poissonian behavior are seen at large values of k, and
for γ < 1.6 large values of k show clear correspondence with
WD. The range of energies for which WD holds increases as
γ decreases. For large energies (small k), the complementary
behavior is evident: Poissonian behavior is followed, whereas
for larger γ the Poisson curve is joined earlier. Thus, for large
energies the spectra follow Poissonian behavior, in agreement
with the expectations of Ref. [50].

The crossover between the WD and Poissonian behav-
iors at intermediate values of k is most pronounced for 1 <

γ < 1.6. It seems that for a significant range of k a definite
slope is followed, with a slope larger than Poissonian (super-
Poissonian), which depends on γ . This is demonstrated for
γ = 1.2, where a fit to 1/k4.2 is drawn. It is evident that
a good fit in the range 40 < k < 120 is obtained. A super-
Poissonian (or multifractal metal) behavior has its origin in
clustering of eigenvalues related to the miniband structure
[17,38] for which the correlations between levels belonging to
the same cluster (miniband) are much stronger than between
those the minibands. In Ref. [17] a random Cantor set model
which mimics the expected behavior of these minibands was
proposed. Level spacings � are drawn independently from a
power-law distribution P(� > �0) ∼ �0/�

1+Ds (where �0

is a constant and DS is a measure of fractality of the spectrum).
As can be seen in Fig. 4, a random Cantor set, drawn from
1000 realizations of 4000 levels each, with DS = 0.6, fol-
lows quite strikingly the behavior of γ = 1.1 for intermediate
values of k. Similarly, decreasing values of Ds fit increasing
values of γ . This lends strong support to the notion of a fractal
(miniband) structure of the spectrum of the NEE phase for
intermediate energy scales.

As for the number variance, one may wonder how sensitive
the SVD method is to finite-size effects. In Fig. 5, we examine
the dependence of the scree plot slopes on matrix sizes N =
8000, 16 000, 24 000, 480 000 with 1000, 800, 200, and 100
realizations for WD (γ = 0.8), Poisson (γ = 2), and the NEE
(γ = 1.2) regimes. Since the value of λk depends on size, for
comparison we multiplied the curves by a constant to shift
them one on top of the other for the same γ . In all cases a
similar behavior of λk is seen for all sizes. The same holds for
changing the number of realizations. Of course, the maximum
k is reduced, but the overall behavior remains, as can be seen
from Fig. 5 for N = 16 000 and γ = 1.2, with 800, 400, and
200 realizations.

Thus, singular-value decomposition reveals robust super-
Poissonian behavior for intermediate energy scales of the NEE
phase for the parameter range 1.6 < γ < 2. For 1 < γ < 1.6,
it is hard to observe the super-Poissonian regime since it
is pushed to smaller energy scales, i.e., larger k. Moreover,
the absolute slope decreases, and thus, the deviation from
WD is less pronounced. Studying this regime will require a
much larger number of realizations than what is available for
this study. Demonstration of super-Poissonian behavior of the
SVD analysis of energy spectra of other systems which are
expected to show NEE behavior, for example, the disordered
Josephson junction array [17] and granular SYK matter [54],
may turn out to be very illuminating.
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FIG. 5. The scree plots of ordered partial variances λk for differ-
ent matrix sizes N = 8000, 16 000, 24 000, 480 000 for 1000, 800,
200, and 100 realizations, respectively, and three different values of
γ = 0.8, 1.2, 2. The curves for different matrix sizes were shifted by
multiplying them by a constant so that they would overlap with the
curves for N = 16 000. The influence of the number of realizations
is depicted by calculating λk for N = 16 000, with only 400 and 200
realizations for γ = 1.2 (black symbols).

APPENDIX: SVD SCREE PLOT OF LARGE
1/ f NOISE SERIES

By definition a 1/ f noise series is a sequence with a
power spectrum of 1/ f . Such a series may be numeri-
cally generated by different methods. Here we apply the
method of Kasdin [55], using a recursive filter. We generate
L = 1600 realizations with P = 8192 values each ({X l=1,L

p=1,P})
and perform a discreet fast Fourier transform, f l (k) =
(1/

√
P)

∑
p X l

p exp(−2π ikp/P), and then average the power
spectrum over all realizations, F (k) = ∑

l | f l (k)|2/L. The
modes are then ordered from k = 1 to k = P and are shown in
Fig. 6 as F (k) vs k. The SVD of the matrix X is extracted. In
SVD one essentially breaks matrix X into a sum of matrices
(modes) each with their own amplitude (singular value) σk .
After ranking P(k) = σ 2

k from high to low (k = 1, highest
amplitude) P(k) vs k is plotted (known as a scree plot). As
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FIG. 6. Power spectrum F (k) (orange circles) and scree plot
of the SVD P(k) (black circles) of an ensemble of numerically
generated 1/ f noise sequences of length 8192 for 1600 different
realizations. Attempts to fit to different slopes are shown.

discussed in the main text, this plot has been shown to follow
a distinct power-law behavior for the localized and extended
phases, which makes it possible to identify the phases directly
from the slope of the scree plot. In Fig. 6 we present the scree
plot for P(k) vs k.

The power spectrum shows the expected 1/k for the range
50 < k < 2000. For k < 50, F (k) takes a somewhat larger
slope, 1/k1.06. The SVD scree plot is expected to follow the
power spectrum slope [40–42,51]. Indeed, for k < 50, P(k)
follows with the same slope, 1/k1.06, while for 50 < k <

1000, P(k) corresponds to a different slope, ∼1/k0.84. It is
important to note that while the Fourier transform results in
0 < k < P/2 amplitudes and the number of realizations L
determines only the quality of averaging, for the SVD one is
limited to L eigenvalues. Therefore, if P � L, SVD will show
a finite number of realization effects for a smaller value of k,
resulting in the fact that although the Fourier transform shows
a 1/k slope, the SVD results show a gentler slope. This trend
is seen also in the main text, where although one expects the
SVD in the WD regime to show a 1/k slope, it shows a slope
closer to ∼1/k0.8.
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