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Generalized f -sum rules and Kohn formulas on nonlinear conductivities
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The f -sum rule and the Kohn formula are well-established general constraints on the electric conductivity
in quantum many-body systems. We present their generalization to nonlinear conductivities at all orders of the
response in a unified manner by considering two limiting quantum time-evolution processes: a quench process
and an adiabatic process. Our generalized formulas are valid in any stationary state, including the ground state
and finite-temperature Gibbs states, regardless of the details of the system such as the specific form of the kinetic
term, the strength of the many-body interactions, or the presence of disorders.
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I. INTRODUCTION

Understanding of dynamical responses of a quantum
many-body system is not only theoretically interesting but is
also essential for bridging theory and experiment, as many
experiments measure dynamical responses. Linear responses
have been best understood, thanks to the general framework of
linear response theory [1–3]. Many experiments can actually
be well described in terms of linear responses. On the other
hand, there is a renewed strong interest in nonlinear responses
recently, thanks to new theoretical ideas, powerful numerical
methods, and developments in experimental techniques such
as powerful laser sources which enable us to probe highly
nonlinear responses. For example, shift current, which is a DC
current induced by AC electric field as a higher order effect,
has been studied vigorously [4–10].

Yet, theoretical computations of dynamical responses are
generally challenging, often even for linear responses and
more so for nonlinear ones. Therefore, it is useful to obtain
general constraints on dynamical responses, including their
relations to static quantities which are easier to calculate.

The f -sum rule and the the Kohn formula of the linear elec-
tric conductivity are typical and well-known examples of such
constraints. They have played an indispensable role in many
applications, and their importance is well established [11,12].
To introduce them, let us consider the simplest case of the
uniform component (�q = 0 Fourier component) of the linear
AC conductivity defined as

ji(ω) =
∑

j

σ
j

i (ω)Ej (ω), (1)

where i, j are indices for spatial directions, ji(ω) = ji(−ω)∗
is the uniform electric current, and Ej (ω) = Ej (−ω)∗ is the
uniform electric field.

The f -sum rule is a constraint on the frequency inte-
gral

∫ ∞
−∞ dω σ

j
i (ω). In condensed-matter physics, the typical

Hamiltonian has the form Ĥ = K̂ + Î , where K̂ is the kinetic

energy (including the chemical potential term) which is bi-
linear in particle creation/annihilation operators, and Î is the
density-density interaction energy. For the standard kinetic
term in nonrelativistic quantum mechanics in the continuum
K̂ = ∫

dd r ĉ†
�r [ − ( �∇2/2m) − μ]ĉ�r, the original form of the

f -sum rule is known as∫ ∞

−∞

dω

2π
σ

j
i (ω) = δi j

ρ

2m
. (2)

The right-hand side is determined by the electron mass m and
the electron density ρ, and is a completely static quantity.
(Throughout the text, we set e = h̄ = 1.) For more general
models of the form Ĥ = K̂ + Î , the f -sum rule still holds
although with a modified right-hand side [13–19].

The Kohn formula [20] is an analytic expression of the
Drude weight, also called the charge stiffness, that character-
izes the ballistic transport of the system. The Drude weight is
formally defined by D j

i = limω→0 ωIm σ
j

i (ω). In other words,
it appears in σ

j
i (ω) as

σ
j

i (ω) = i

ω + iη
D j

i + . . . , (3)

where η > 0 is an infinitesimal convergent parameter and the
dots denote regular terms around ω = 0. (Our definition of
D j

i contains an additional factor of 2 as compared to the
standard convention in the literature.) The Kohn formula gives
the Drude weight D j

i at zero temperature in terms of the cur-
vature of the ground-state energy as a function of the twist of
the boundary condition. The formula was extended to a finite
temperature in Ref. [21]. Its validity and subtlety in applica-
tion to many-body systems have been investigated in Hubbard
chains [21–25] and in Heisenberg spin chains [23,25–29].

The main result of this paper is the generalization of the
f -sum rule and the Kohn formula on the linear conduc-
tivity, summarized above, to an infinite series of formulas
on nonlinear conductivities at arbitrary orders. Although
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nonlinear f -sum rules of general response functions have
been formulated in Ref. [30], the formulation there is not
directly applicable to the f -sum rule of the optical conductiv-
ity. The results in Ref. [30] and its subsequent works [31,32]
partially overlap ours, but our results are more general in
several aspects. (See Ref. [33] for a more detailed compari-
son.) Conventionally, the f -sum rule and the Drude weight are
formulated in the frequency space as in Eqs. (2) and (3). How-
ever, it is illuminating, and indeed useful as we demonstrate
below, to formulate them in terms of the real-time response
of the current to the applied electric field. The integral over
the frequency for the f -sum rule corresponds to the instanta-
neous response, and the singularity at zero frequency which
gives the Drude weight corresponds to the response after an
infinitely long time. In fact, considering a very similar process
of application of an electric field pulse both in the quantum
quench (zero time) limit and in the adiabatic (infinite time)
limit, we obtain the nonlinear generalizations of the f -sum
rule and the Kohn formula, respectively. A similar idea has
been utilized in the earlier discussion of the Drude weight at
the linear order [34]. The present approach allows us to treat
the linear and nonlinear conductivities, and the f -sum rule and
Drude weight, on the same footing in a unified framework.
Our results are quite general and not limited to the Hamiltoni-
ans of the form Ĥ = K̂ + Î . These results hold in any steady
state, including the ground state and in equilibrium at a finite
temperature.

The remainder of this paper is organized as follows. The
setup and the main results of our study are summarized in
Sec. II. A simple proof of our claims is presented in Sec. III.
Several examples are discussed in Sec. IV. The concluding
remarks are in Sec. V.

II. SUMMARY OF RESULTS

A. Setup

We consider a general system of many quantum particles.
To demonstrate our main claim in a simple setting, let us as-
sume the d-dimensional cubic lattice and focus on the uniform
component of the electric current induced by a uniform elec-
tric field. The system size V and the boundary condition can
be chosen arbitrarily. We do not require any spatial symmetry
such as the translation invariance or the rotation symmetry.

The Hamiltonian of the system is written in terms of
creation and annihilation operators ĉ†

�rα , ĉ�rα (α labels the in-
ternal degrees of freedom) defined on each point �r. We allow
any number of creation and annihilation operators to appear
in a single term in the Hamiltonian, representing correlated
hopping, pair hopping, ring exchange, and so on. Thus, our
Hamiltonian does not necessarily take the form Ĥ = K̂ + Î .
We still assume that all the hoppings and interactions are short
ranged and U(1) symmetric.

We describe the electric field via the time dependence
of the U(1) vector potential �A(t ) = (Ax(t ), Ay(t ), . . . ) while
setting the scaler potential to be 0. To discuss the uniform
electric field, we assume that every link in the ith direction has
the same value Ai(t ) (i = x, y, . . . ). The Hamiltonian Ĥ ( �A(t ))
then depends on t through �A(t ). We set �A(t ) = 0 for t � 0 and

continuously turn it on for t > 0. The resulting electric field is

�E (t ) ≡ d �A(t )

dt
. (4)

(To avoid negative signs, we use the sign convention oppo-
site of the standard definition.) The U(1) symmetry of the

Hamiltonian enables us to identify the current density �̂j ≡
( ĵx, ĵy, . . . ) averaged over the entire system:

ĵi( �A) ≡ 1

V

∂Ĥ ( �A)

∂Ai
. (5)

Suppose that the system is described by a stationary state
at t = 0:

ρ̂(0) =
∑

n

ρn|n(�0)〉〈n(�0)|,
∑

n

ρn = 1. (6)

Here |n(�0)〉 is the nth eigenstate of the unperturbed Hamil-
tonian Ĥ (�0) with the energy eigenvalue En(�0). For example,
the Gibbs state with an inverse temperature β is given by
ρn = e−βEn (�0)/Z (Z ≡ ∑

n e−βEn (�0)).
The evolution of the system for t � 0 is described by the

time-evolution operator Ŝ(t ) defined by

dŜ(t )

dt
= −iĤ ( �A(t ))Ŝ(t ), Ŝ(0) = 1. (7)

The expectation value of an operator Ô at time t � 0 is then
given by

〈Ô〉t ≡ Tr[Ôρ̂(t )], ρ̂(t ) = Ŝ(t )ρ̂(0)Ŝ(t )†. (8)

The linear and nonlinear conductivities in real time are
defined as the response of the current density

ji(t ) ≡ 〈 ĵi( �A(t ))〉t = 1

V

〈
∂Ĥ ( �A)

∂Ai

∣∣∣∣ �A= �A(t )

〉
t

(9)

toward the applied electric field:

ji(t ) − ji(0) =
∞∑

N=1

1

N!

∑
i1,...,iN

∫ t

0
dt1· · ·

∫ t

0
dtN

× σ
i1...iN
i (t − t1, . . . , t − tN )

N∏
�=1

Ei� (t�). (10)

Here, N denotes the order of the response, i.e., N = 1 for the
linear conductivity and N � 2 for nonlinear conductivities.
Summations of i�’s (� = 1, . . . , N) run over x, y, . . . . The
response function σ

i1...iN
i (t1, . . . , tN ) vanishes whenever t� < 0

for any � = 1, 2, . . . , N due to the causality. It is also sym-
metric with respect to the permutation of any pair of (i�, t�)
and (i�′, t�′ ).

The Fourier transformation of σ
i1...iN
i (t1, . . . , tN ) is

defined as

σ
i1...iN
i (ω1, . . . , ωN )

=
∫ ∞

0
dt1· · ·

∫ ∞

0
dtNσ

i1...iN
i (t1, . . . , tN )

N∏
�=1

e(iω�−η)t� .

(11)
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The most singular part of σ
i1...iN
i (ω1, . . . , ωN ) around ω1 =

· · · = ωN = 0 takes the form

σ
i1...iN
i (Drude)(ω1, . . . , ωN ) = Di1...iN

i

N∏
�=1

i

ω� + iη
. (12)

We call Di1...iN
i nonlinear Drude weight for N � 2. The for-

mula (ω + iη)−1 = Pω−1 − iπδ(ω) implies that this term
contains

∏N
�=1 δ(ω�). In real time, the Drude weight part of

the conductivity reads

σ
i1...iN
i (Drude)(t1, . . . , tN ) = Di1...iN

i

N∏
�=1

θ (t�). (13)

Here θ (t ) is the step function. Note that the non-linear conduc-
tivity may contain other, more moderately singular terms. For
example, σ

i1i2
i (ω1, ω2) may contain δ(ω1)g(ω2) where g(ω2)

is regular around ω2 = 0.

B. Main results

The first main result of this paper is the generalized f -sum
rule of nonlinear conductivities:∫ ∞

−∞

dω1

2π
· · ·

∫ ∞

−∞

dωN

2π
σ

i1...iN
i (ω1, . . . , ωN )

= 1

2NV

〈
∂N+1Ĥ ( �A)

∂Ai∂Ai1 . . . ∂AiN

∣∣∣∣ �A=�0

〉
0

. (14)

Here 〈Ô〉0 ≡ tr[Ôρ̂(0)] is the expectation value defined by the
unperturbed density matrix in Eq. (6). Any density-density in-
teractions, or more generally any terms in Hamiltonian which
do not couple to the gauge field, do not appear explicitly on
the right-hand side of the f -sum rule. The derivative of the
Hamiltonian in this expression represents the explicit depen-
dence of the current operator Eq. (5) on �A, which is usually
referred to as the diamagnetic contribution. Different types of
f -sum rules of nonlinear conductivities have been discussed
previously, for example, in Refs. [35–37].

The second main result is the generalized Kohn formula for
nonlinear Drude weights:

Di1...iN
i = 1

V

∂N+1E ( �A)

∂Ai∂Ai1 . . . ∂AiN

∣∣∣∣ �A=�0
, , (15)

E ( �A) ≡
∑

n

ρnEn( �A). (16)

Here, En( �A) is the energy eigenvalue of the (instantaneous)
eigenstate |n( �A)〉 of Ĥ ( �A), which is assumed to be contin-
uously connected to |n(�0)〉. Level crossings may occur at a
finite �A and En( �A) do not necessarily coincide with the nth
energy level of Ĥ ( �A). Note that, in general, E ( �A) cannot be
interpreted as any sort of free energy as the weight ρn is
fixed independent of �A. For noninteracting Bloch electrons
in a periodic lattice, Ref. [38] found an expression equiva-
lent to Eq. (15) from a diagrammatic approach up to N = 3
in the semiclassical limit. Our result is much more general,
being applicable to general interacting systems and up to the
infinite order. The similarity between the generalized f -sum
rule Eq. (14) and the generalized Kohn formula Eq. (15) is
now evident. Yet, they are different, and the difference reflects

the different underlying processes, as we will discuss in detail
in Sec. III. The generalized f -sum rule is given by the ex-
pectation value of the derivative of the Hamiltonian, which
corresponds to the quench process. In contrast, the general-
ized Kohn formula is given by the derivative of the energy
eigenvalues, which corresponds to the adiabatic process.

Our results reproduce the well-known f -sum rule [12] and
the Kohn formula [12,20,21] for the linear conductivity. We
also have an infinite series of generalized formulas for nonlin-
ear conductivities. Examples of second-order relations are

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
σ xx

x (ω1, ω2) = 1

4

〈
∂3Ĥ ( �A)

∂A3
x

∣∣∣∣ �A=�0

〉
0

, (17)
∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
σ xy

x (ω1, ω2)

=
∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
σ xx

y (ω1, ω2) = 1

4

〈
∂3Ĥ ( �A)

∂A2
x∂Ay

∣∣∣∣ �A=�0

〉
0

,

(18)

and

Dxx
x = ∂3E ( �A)

∂A3
x

∣∣∣∣ �A=�0
, (19)

Dyz
x = Dzx

y = Dxy
z = ∂3E ( �A)

∂Ax∂Ay∂Az

∣∣∣∣ �A=�0
. (20)

In particular, Eqs. (18) and (20) imply unexpected relations
among distinct components of nonlinear conductivities in
different spatial directions. We stress that they are derived
without assuming any spatial symmetry.

The order-by-order expression of the Drude weights
Eq. (15) can be combined together into a compact form that
fully contains the effect of �A(t ) to all orders:

ji (Drude)(t ) = 1

V

∂E ( �A)

∂Ai

∣∣∣∣ �A= �A(t )

. (21)

Here, ji (Drude)(t ) is the part of ji(t ) including all contributions
from the linear and nonlinear Drude weights.

Under the open boundary condition, the effect of nonzero
�A can be gauged away to outside of the system. Hence, the
energy eigenvalue En( �A) cannot actually depend on �A and the
Drude weight vanishes at all orders. This is consistent with a
previous study [24] which found the vanishing linear Drude
weight under the open boundary condition.

When the periodic boundary condition with the period Li

in the ith direction is instead imposed, the gauge field Ai can
be interpreted as the twist φi = AiLi of the boundary condi-
tion. Although the Hamiltonian Ĥ ( �A) with φi = 2πni (ni ∈
Z) is unitary equivalent to Ĥ (�0), this does not necessarily
imply En( �A) = En(�0) because of the possible level crossings
remarked above [26,34].

III. DERIVATION OF THE MAIN RESULTS

We derive our formulas by considering a time-evolution
process where Ai(t ) is increased from 0 at t = 0 to a constant
Ai at t = T . To precisely formulate this process, let us write

Ai(t ) = fi(t/T )Ai, (22)
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where fi(τ ) is an analytic function of τ ∈ R, satisfying
fi(τ ) = 0 for τ � 0 and fi(τ ) = 1 for τ � 1. It is crucial that
the value of Ai(T ) = Ai is fixed independent of T .

The common strategy in our discussion of the generalized
f -sum rule and Kohn formula is to evaluate ji(T ) = 〈 ĵi( �A)〉T

in two different ways, one directly from Eqs. (8) and (9) and
the other using Eq. (10). We then compare the coefficient of∏N

�=1 Ai� in the two expressions and derive constraints.

A. f -sum rule

We start with the f -sum rule. To this end, we consider the
limit of a very quick change of the vector potential: T → 0.
This can be regarded as an example of quantum quench (sud-
den switching of the vector potential). In this limit, the state
cannot follow the change of the Hamiltonian, and the sudden
approximation Ŝ(T ) = 1 becomes exact. This can be most
easily seen by the formula (T denotes the time ordering)

Ŝ(T ) = T e−iT
∫ 1

0 dτ Ĥ ( fi (τ )Ai ). (23)

Because of the prefactor T in the exponent, Ŝ(T ) → 1 in the
limit of T → 0. In this limit, all responses of the electric
current originate from the diamagnetic contributions.

Let us evaluate ji(T ) = 〈 ĵi( �A)〉T in two different ways. On
the one hand, 〈Ô〉T can be approximated by 〈Ô〉0 in the quench
limit. Thus

ji(T ) = 1

V

〈
∂Ĥ ( �A)

∂Ai

∣∣∣∣ �A= �A

〉
0

=
∞∑

N=0

1

N!V

∑
i,i1...iN

〈
∂N+1Ĥ ( �A)

∂Ai∂Ai1 . . . ∂AiN

∣∣∣∣ �A=�0

〉
0

N∏
�=1

Ai� .

(24)

On the other hand, when T is small enough, σ
i1...iN
i

(t − t1, . . . , t − tN ) in Eq. (10) can be approximated by

σ
i1...iN
i (0) ≡ lim

t1,...,tN →+0
σ

i1...iN
i (t1, . . . , tN ). (25)

We can then easily perform all the
∫ t

0 dt� integrals in Eq. (10)
and get

ji(T ) − ji(0) =
∞∑

N=1

1

N!

∑
i1...iN

σ
i1...iN
i (0)

N∏
�=1

Ai� . (26)

Comparing Eqs. (24) and (26), we find

σ
i1...iN
i (0) = 1

V

〈
∂N+1Ĥ ( �A)

∂Ai∂Ai1 . . . ∂AiN

∣∣∣∣ �A=�0

〉
0

. (27)

Finally, this relation can be cast into the form of f -sum
rules (15) by expressing σ

i1...iN
i (0) in terms of the Fourier

component.
∫ ∞

−∞

dω1

2π
· · ·

∫ ∞

−∞

dωN

2π
σ

i1...iN
i (ω1, . . . , ωN ) = σ

i1...iN
i (0)

2N
.

(28)

The factor 2−N originates from the discontinuity of
σ

i1...iN
i (t1, . . . , tN ) around t� = 0.

B. Kohn formula

Let us move on to the Kohn formula. This time, we con-
sider the opposite limit; that is, the limit of the adiabatic
flux insertion, T → ∞. [34] In this limit, the adiabatic the-
orem [39,40] tells us that Ŝ(T )|n(�0)〉 ∝ |n( �A)〉 so

ρ̂(T ) =
∑

n

ρn|n( �A)〉〈n( �A)|. (29)

Crucially, the weight ρn remains unchanged even when en-
ergy levels En( �A) explicitly depend on �A. Thus, using the
Hellmann–Feynman theorem, we find

ji(T ) = 1

V

∑
n

ρn〈n( �A)|∂Ĥ ( �A)

∂Ai
|n( �A)〉| �A= �A

= 1

V

∑
n

ρn
∂En( �A)

∂Ai

∣∣∣∣ �A= �A
= 1

V

∂E ( �A)

∂Ai

∣∣∣∣ �A= �A

=
∞∑

N=1

1

N!V

∑
i1...iN

∂N+1E ( �A)

∂Ai∂Ai1 . . . ∂AiN

∣∣∣∣ �A=�0

N∏
�=1

Ai� . (30)

Next we show that only the Drude weight contribution is
important for the current response in the adiabatic limit. To
this end, let us use the Fourier transformation and rewrite the
right-hand side of Eq. (10) as

∞∑
N=1

1

N!

∑
i1,...,iN

N∏
�=1

Ai�

∫ ∞

−∞

dω1

2π
· · ·

∫ ∞

−∞

dωN

2π

× σ
i1...iN
i (ω1, . . . , ωN )

N∏
�=1

Ii� (ω�), (31)

where

Ii(ω) ≡
∫ 1

0
dτeiωT (τ−1) dfi(τ )

dτ
. (32)

When ω = 0, Ii(0) = fi(1) = 1. However, when ω = 0, we
can derive the following upper bound using an integration in
part and the Schwartz inequality,

|Ii(ω)| =
∣∣∣∣
∫ 1

0
dτ

1

iωT

deiωT (τ−1)

dτ

dfi(τ )

dτ

∣∣∣∣ � Ci

|ω|T , (33)

where Ci ≡ max0�τ�1 (2|dfi(τ )/dτ | + |d2 fi(τ )/dτ 2|) is a fi-
nite constant because of the assumed analyticity of fi(τ ).
Thus, limT →∞ Ii(ω) = 0 when ω = 0. This means that only
the term proportional to

∏N
�=1 δ(ω�) in σ

i1...iN
i (ω1, . . . , ωN ),

i.e., the Drude weight term Eq. (12), can contribute to the
integral in Eq. (31) in the adiabatic limit.

Finally, the contribution from the Drude weight in the
current response Eq. (10) can be readily evaluated as

ji(T ) − ji(0) =
∞∑

N=1

1

N!

∑
i1...iN

Di1...iN
i

N∏
�=1

Ai� . (34)

Comparing the coefficient of
∏N

�=1 Ai� between Eqs. (30)
and (34), we obtain the generalized Kohn formula Eq. (15).

165137-4



GENERALIZED f -SUM RULES AND KOHN FORMULAS … PHYSICAL REVIEW B 102, 165137 (2020)

IV. EXAMPLES

A. Tight-binding models

Let us clarify the physical implication of the nonlinear
Drude weights by considering noninteracting electrons sub-
jected to a periodic potential. Suppose that a constant electric
field �E is applied to this system at a finite temperature. If
we assume the periodic boundary condition, Eq. (21) for this
setting becomes

ji (Drude)(t ) = 1

V

∑
α,�k

n(ε
α,�k )∂kiεα,�k+ �Et , (35)

where �k is the crystal momentum, ε
α,�k is the band dispersion

of αth band, and n(ε) ≡ 1/(eβε + 1) is the Fermi–Dirac dis-
tribution function. Thus electrons under a periodic potential,
in general, exhibit nonlinear responses toward the applied
electric field unless they form a band insulator. This is in sharp
contrast to electrons in free space which are simply accel-
erated at the constant rate �E/mel (mel is the electron mass).
Because the band dispersion ε

α,�k is periodic in �k, Eq. (35)
implies that electrons will go back and forth. This is nothing
but the well-known Bloch oscillation [41–44].

To give a simple example in which E ( �A) in Eq. (16) has
a nontrivial �A dependence even at a finite temperature, let us
discuss the d = 1 tight-binding model with a nearest-neighbor
hopping t > 0 at half filling:

Ĥ (Ax ) = −t
Lx∑

x=1

(ĉ†
x+1e−iAx ĉx + H.c.)

=
∑

kx

εkx+Ax ĉ
†
kx

ĉkx . (36)

Here, the lattice constant is set to be 1, the band dispersion
is given by εkx = −2t cos kx, and the Fourier transforma-
tion is defined as ĉ†

x = L−1/2
x

∑
kx

e−ikxxĉ†
kx

. Since εkx has a
particularly simple form, the Ax dependence of E (Ax ) =∑

kx
n(εkx )εkx+Ax can be easily factored out:

E (Ax ) = 〈Ĥ (0)〉0 cos Ax. (37)

In fact, since the Bloch function lacks the Ax dependence in
this one-band model, we have

〈Ĥ (Ax )〉0 = E (Ax ). (38)

Therefore, the nonlinear Drude weight agrees exactly with the
f -sum at the same order. In other words, in this one-band
tight-binding model, the induced current does not depend on
the timescale of the application of the electric field, and is the
same for the instantaneous or adiabatic process.

Moreover, the simple functional form of Eq. (37) im-
plies that the nonlinear f sum or the nonlinear Drude weight
of all odd orders have the same amplitude in this model.
The Drude weight at every even order vanishes due to the
time-reversal symmetry. The energy density 〈Ĥ (0)〉0/Lx in
the large Lx limit changes continuously from −(2t/π )[1 −
(π2/24)(βt )−2 + O((βt )−4)] at low temperatures (βt � 1)
and −(t/2)[βt + O((βt )3)] at high temperatures (βt � 1).

B. S = 1/2 XXZ chain

Finally, as an example of interacting models, let us discuss
the S = 1/2 anisotropic Heisenberg spin chain (J > 0) at zero
temperature:

Ĥ (Ax ) = −J
Lx∑

x=1

(
1

2
ŝ+

x+1e−iAx ŝ−
x + H.c. + �ŝz

x+1ŝz
x

)
. (39)

Again we assume the periodic boundary condition.
The � = 0 case reduces to the tight-binding model

Eq. (36) with t = J/2. As we have discussed in the previous
subsection, in this case, Eqs. (37) and (38) imply that the
linear Drude weight Dx

x coincides with the linear f sum, the
second-order Drude weight and f sum vanish, and the third-
order Drude weight is given by

Dxxx
x = −Dx

x , (40)

which coincides with the third-order f sum.
We can now see the effect of interactions by turning to � =

0. An analytic expression of the linear Drude weight Dx
x in the

large Lx limit was obtained [26] by applying the Kohn formula
to the results [47] of Bethe ansatz. In our notation, it reads

Dx
x = πJ

4

sin γ

γ (π − γ )
(41)

for � = − cos γ (0 � γ < π ).
To calculate the third-order Drude weight Dxxx

x for |�| < 1,
we perform the exact diagonalization up to Lx = 22 spins. For
each �, we compute the ground state energy E0,Lx (Ax ) as a
function of Ax [Fig. 1(a)] and determine Dxxx

x,Lx
by assuming

the Taylor series of the form

E0,Lx (Ax )

Lx
= E0,Lx (0)

Lx
+ Dx

x,Lx
A2

x

2
+ Dxxx

x,Lx
A4

x

24
+ O

(
A6

x

)
. (42)

We note that, for the given system size Lx, the Drude weight
at each order is well-defined and obeys the generalized Kohn
formula Eq. (15). In the actual calculation, we use φx ≡ AxLx

in the range 0 � φx � π/3, limiting Ax to be small enough
to avoid any level crossings. To check the accuracy of this
part of our calculation, we compare the values of Dxxx

x,Lx
ob-

tained this way with an independent calculation via Kubo’s
response theory [33] that does not involve a gauge field for
Lx = 4, 6, . . . , 14. We found that the error was less than 10−7

for all �.
We repeat this calculation for Lx = 8, 10, . . . , 22 and es-

timate the values in the thermodynamic (Lx → ∞) limit,
assuming the power-law decay Dxxx

x,Lx
= Dxxx

x + ∑4
m=1 cmL−m

x .
The extrapolation works well for � � −0.3 [see the left panel
of Fig. 1(b)], while it fails for � � −0.3 [the right panel
of Fig. 1(b)]. In fact, for −1/2 < � < 1, we find an exact
analytic expression

Dxxx
x = − J sin γ

16γ (π − γ )

(
�

(
3π
2γ

)
�

(
π−γ

2γ

)3

�
( 3(π−γ )

2γ

)
�

(
π
2γ

)3 +
3π tan

(
π2

2γ

)
π − γ

)

(43)
by taking the thermodynamic limit of the result based on an
effective field theory in Ref. [46], where �(z) is the gamma
function.

165137-5



HARUKI WATANABE AND MASAKI OSHIKAWA PHYSICAL REVIEW B 102, 165137 (2020)

FIG. 1. Numerical results for the S = 1/2 XXZ chain at zero temperature, obtained by the exact diagonalization up to Lx = 22 spins. All
vertical axes are scaled with J/2. (a) The ground-state energy density as a function of φx = AxLx . The gray fitting curve is obtained by assuming
Eq. (42). (b) Extrapolation of the large Lx values using the data for Lx = 8, 10, . . . , 22. (c) The ground-state energy density E0(0)/Lx , the linear
Drude weight Dx

x , and the third-order Drude weight Dxxx
x in the large Lx limit as a function of �. The black curves represent analytic results

of the ground-state energy density [45], the linear Drude weight [26], and the third-order Drude weight (thermodynamic limit of the result
in Ref. [46]).

We find that the nonlinear Drude weight Dxxx
x has a non-

trivial dependence on the interaction �, as shown in Fig. 1(c).
To verify our calculation, we also perform the same analysis
for the ground-state energy density E0(0)/Lx and estimate the
linear Drude weight Dx

x in the thermodynamic limit. As seen
in the upper panel of the Fig. 1(c), the obtained result shows
excellent agreement with the known analytic results [45,45]
in the entire parameter range −1 � � < 1. This supports the
reliability of our numerical calculation. The nonlinear Drude
weight Dxxx

x obtained numerically as described above also
shows good agreement with the exact analytic formula, espe-
cially in the region � � −0.3 where the extraporation to the
thermodynamic limit works well. On the other hand, the nu-
merical result shows some deviation from the exact formula as
� approaches −1/2 from the above. This presumably reflects
the divergence of Dxxx

x in the limit � → −1/2 + 0 and the
small system size used in the numerical diagonalization. Con-
sidering this, the numerical result is qualitatively consistent
with the analytic formula in the range −1/2 < � � −0.3.
In fact, within the effective field theory approach, Dxxx

x di-
verges in the the thermodynamic limit for the entire range
of −1 � � � −1/2, and this behavior is also supported by
our numerical result. We leave for the future work further
investigation of the mechanism and the physical implication
of the divergent behavior of Dxxx

x for −1 � � � −1/2.
We note that, for the present model,

∂2mĤ (Ax )

∂A2m
x

∣∣∣∣
Ax=0

= (−1)m−1 ∂2Ĥ (Ax )

∂A2
x

∣∣∣∣
Ax=0

, (44)

∂2m−1Ĥ (Ax )

∂A2m−1
x

∣∣∣∣
Ax=0

= (−1)m−1 ∂Ĥ (Ax )

∂Ax

∣∣∣∣
Ax=0

(45)

for m � 1. Therefore, the right-hand side of the f -sum rule at
all odd orders have the same magnitude with the alternating
sign, and that of all even orders vanish. In contrast, Fig. 1(c)
clearly shows that the linear and third-order Drude weights
are generally different. The simple relation Eq. (40), which
was derived for the noninteracting tight-binding model, breaks
down once the interaction is included (� = 0.)

V. DISCUSSIONS

In this paper, we obtained an infinite series of new f -sum
rules Eq. (14) and Kohn formulas Eq. (15) on the non-
linear conductivities. We found nontrivial relations among
conductivities in different spatial directions, such as Eqs. (18)
and (20), even in the absence of any spatial symmetry.

In the discussion of the nonlinear f -sum rules, we did
not use the explicit form of the initial state ρ̂(0) given in
Eq. (6). In fact, ρ̂(0) can be chosen to be a nonequilib-
rium state [31,32,48], especially a nonequilibrium steady
state for which the response function would still be time-
translation invariant. For a more general nonequilibrium state,
where the response function lacks the time-translation invari-
ance, the f -sum rule should be understood as the constraint
on the instantaneous conductivity [33].

The nonlinear f -sum rules can also be extended to
position-dependent responses toward non-uniform electric
fields on an arbitrary lattice. To see this, let L be the set of
directed links (arrows), each of which connects a pair of lattice
sites. The local vector potential Al (t ) on each link l ∈ L, and
hence the local electric field El (t ) ≡ dAl (t )/dt , are allowed to
depend on l . We are interested in the response of the local cur-
rent density, defined by ĵl (t ) ≡ ∂Ĥ (t )/∂Al (t ) for each link,
toward the position-dependent electric field El ′ (t ). One can
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simply reuse all of our discussions in this paper without any
formal change by replacing i’s (indices for spatial directions)
with l’s (indices for links). In general, the position-dependent
vector potentials Al (t ) may also produce a local magnetic field
and Eq. (10) needs to be modified. However, the effect of such
magnetic fields is suppressed by a factor of T (duration of
the time evolution) and can be neglected in the quench limit
T → 0 relevant for the instantaneous response.

While we used lattice models in our derivation, essen-
tially the same argument applies to continuum models as
well. For the particular case of the nonrelativistic quantum
mechanical Hamiltonian K̂ = ∫

dd r ĉ†
�r [ − ( �∇2/2m) − μ]ĉ�r,

with density-density interaction, the right-hand side of the
f -sum rule vanishes for all nonlinear conductivities. Al-
though this is rather remarkable, this does not imply the
absence of any nonlinear response to the electric field. The
vanishment of the f -sum rule just implies that any posi-
tive part of σ

i1...iN
i (ω1, . . . , ωN ) must be compensated by a

negative part.
Since the lattice models for electron systems are low-

energy effective model for nonrelativistic electrons in crystal,
the nonlinear f sum of a real electron system would vanish by
integrating over the infinite frequency range. A nonvanishing
f sum for the low-energy lattice model should correspond to
an frequency integral up to the cutoff energy, typically the
order of the bandwidth of the lattice model.

A nonvanishing f -sum rule for a low-energy effective
model at a given order N does indicate the presence of the
N th order conductivity. While the maximum of the desired
N th order effect, such as the shift current at N = 2, would
be generally different from the maximum of the f sum at the
same order, the latter is easier to evaluate and could give a
quick guidance for construction of a model with a desired
property (such as a large shift current).

The present result is one of rather few general constraints
on conductivities, especially nonlinear ones. The sum rules
can be used to check various approximations or numerical
calculations and could give a guiding principle on designing
systems with desired transport properties. We hope that the
present result will help in developing theories of linear and
nonlinear dynamical responses of quantum many-body sys-
tems in the future.
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