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η-paired superconducting hidden phase in photodoped Mott insulators
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We show that a metastable η-pairing superconducting phase can be induced by photodoping doublons and
holes into a strongly repulsive fermionic Hubbard model. The doublon-hole condensate originates from an
intrinsic doublon-hole exchange interaction and does not rely on the symmetry of the half-filled Hubbard
model. It extends over a wide range of doublon densities and effective temperatures. Different nonequilibrium
protocols to realize this state are proposed and numerically tested. We also study the optical conductivity in
the superconducting phase, which exhibits ideal metallic behavior, i.e., a delta function at zero frequency in
the conductivity, in conjunction with a negative conductivity at large frequencies. These characteristic optical
properties can provide a fingerprint of the η-pairing phase in pump-probe experiments.
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I. INTRODUCTION

Nonequilibrium phenomena hold the promise of creating
new phases of matter and selectively enhancing different or-
ders [1–4]. One of the most tantalizing findings in the field
is the possible light-induced superconductivity in strongly
correlated materials [5,6]. Various theoretical works have
attempted to explain its microscopic origin in different situa-
tions [7–15]. In addition to ideas based on Floquet engineering
of electron-phonon and electron-electron interactions, one
may contemplate the interesting possibility that η pairing
plays a role in these scenarios.

The η-paired states are a family of excited states of the
fermionic Hubbard model on a bipartite lattice, which exhibit
an unconventional staggered superconducting order parameter
[16]. A plethora of nonequilibrium protocols have been con-
sidered to selectively induce the η-paired states. In the ideal
Hubbard model, the η order is related to spin and charge or-
ders within the SO(4) symmetry and can be induced out of the
charge-density-wave or s-wave superconducting ground state
in the attractive Hubbard model [17–20]. Recently, carefully
designed nonequilibrium protocols have been shown to pop-
ulate the η-paired states and selectively suppress competing
antiferromagnetic correlation in the repulsive Hubbard model
[21–23]. This finding opens up the tantalizing possibility of
inducing superconductivity in a Mott insulator and a rela-
tion to recent experiments on light-induced superconductivity
[24]. However, these works did not suffice to demonstrate a
symmetry-breaking phase of η pairing, which should be indi-
cated by a divergent pairing susceptibility (so an infinitesimal
perturbation can induce a growing SC phase domain in an
extended system), and, furthermore, require stringent condi-
tions on the external driving as well as the SO(4) symmetry
of the half-filled Hubbard model, which is often broken in

real materials, resulting in, e.g., the decay of the pumped η

pairing [21]. Therefore, an intriguing question arises whether
nonequilibrium protocols can induce a metastable η-paired
hidden phase which is robust against symmetry-breaking
perturbations.

In recent years, photodoping has emerged as one of the
most promising pathways to induce nonthermal phases in
strongly correlated materials [2,3]. Here, we use the term
photodoping to refer to any nonequilibrium protocol that
creates charge carriers in an insulating system (in particu-
lar a Mott insulator). Because photocarriers can have a long
lifetime [25–31], fast intraband thermalization processes can
eliminate detailed memory of the nonequilibrium protocols
and lead to a universal photodoped state characterized by
only a few parameters, such as the doublon density d and
an effective temperature Teff . The partial thermalization can
be particularly efficient with the recently proposed evapora-
tive cooling mechanism [32]. So far, weak photodoping of
doublon-hole pairs into the half-filled Mott state has been
observed to slightly enhance the local pairing susceptibility
[33,34]. However, except for the extreme limit d = 0.5, in
which all sites contain either doublons or holons [26], it
remains unclear how much the η pairing can be enhanced,
and whether an η-paired hidden phase can be stabilized upon
photodoping.

In this paper, we show that photodoping can indeed induce
a robust hidden phase with η pairing in the Mott insulator for a
wide range of parameters d and Teff , by considering exemplar-
ily a Hubbard lattice coupled to external fermion reservoirs. A
steady-state dynamical mean-field theory is used to solve the
problem and scan a nonequilibrium phase diagram. The hid-
den phase originates from a doublon-hole pairing mechanism
that is intrinsic to the local electron-electron interaction. The
instability only relies on the presence of cold photocarriers
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and requires no special photodoping protocols, or the SO(4)-
symmetry protection. We further demonstrate that this state
behaves like a superconductor, i.e., it shows zero resistivity
and the Meissner effect.

The paper will be organized as follows. Section II dis-
cusses the general concept of a quasistationary photodoped
state in a single-band Mott insulator. Section III introduces
the steady-state formulation and the numerical method (dy-
namical mean-field theory). Section IV shows the numerical
results and the analytical understanding of η-paired supercon-
ductivity in photodoped Mott insulators. Section V includes
conclusions and outlook.

II. PHOTODOPING OF A MOTT INSULATOR

We consider the repulsive Hubbard Hamiltonian on a bi-
partite lattice at half filling (〈n〉 = 1),

H = −t0
∑
〈i j〉σ

d†
iσ d jσ + U

∑
i

ni↑ni↓, (1)

with hopping t0 and interaction U ; t0 = 1 sets the energy
scale in the following. The model (1) features a Mott insu-
lating ground state with strong antiferromagnetic correlations
at half filling. The ground state at half filling is generically
nonsuperconducting. To induce nonzero η pairing, one has
to drive the system out of equilibrium. In strongly correlated
solids, one way is to excite the system with electromag-
netic waves, creating charge carriers across the insulating
gap [29,35]. This leads to a photodoped state, as outlined in
the introduction. Here we propose that any general protocol
which creates charge excitations in the system should result
in similar physics sufficiently long after the excitation itself.
This is justified by the hierarchy of time scales: In general,
the charge recombination process is relatively slow, because
the dissipation of a large potential energy U to low-energy
degrees of freedom is inefficient [28,36], while the intraband
thermalization (doublon-doublon and holon-holon scattering)
can be much faster. Thus, a partially thermalized photodoped
state, with metastable doublons and holons as quasiparticles,
can be observed in a reasonable time window.

III. MODEL AND METHOD

This fact motivates us to consider a steady-state bath-
coupling mechanism as a representative of general photodop-
ing protocols. The details of steady-state theory for photodop-
ing can be found in a recent work [37]. We will first discuss
this mechanism and compare the results against other pro-
tocols. To be specific, we consider a coupling to auxiliary
external fermion baths at each lattice site through

Hbath =
∑
iασ

εαc†
iασ ciασ + g

∑
iσα

d†
iσ ciασ , (2)

where g is the coupling constant between lattice electrons diσ

and bath electrons ciασ and α labels different baths and bath
levels of energy εα . We take into account two separate fermion
baths of half bandwidth W = 2 with hybridization density
of states D(ω)± = ∑

α g2δ(ω − εα ) = 	
√

W 2 − (ω ± U/2)2,
where 	 = g2/W 2. The bath D± is shifted by ±U/2, and the
corresponding chemical potential is shifted by ±μb. Such a

bath coupling results in the injection of electrons into the
upper Hubbard band and the absorption of electrons out of the
lower Hubbard band. Due to the long lifetime of the excess
doublons and holes, large doublon occupancies d = n↑n↓ can
be reached with relatively small bath couplings 	, minimizing
the side effects of the bath coupling, so that the behavior of the
nonequilibrium steady-state reflects the general properties of
photodoped systems.

The model is considered on the infinitely coordinated
Bethe lattice with noninteracting bandwidth 4t0, where it can
be exactly solved using nonequilibrium dynamical mean-field
theory (DMFT) [38,39], both for the real time dynamics
under time-dependent driving protocols and for nonequilib-
rium steady states. The Bethe lattice is bipartite and can
be used to study symmetry-breaking phases with either uni-
form or staggered order parameters. In the staggered case,
the lattice model is mapped to two self-consistent Ander-
son impurity models defined by SA/B[ψ, ψ̄] = Sloc

A/B[ψ, ψ̄] −∫
dtdt ′ψ̄ (t )�A/B(t, t ′)ψ (t ′), which are solved using the non-

crossing approximation [40]. The resulting DMFT equations
in the Nambu Keldysh formalism are similar to those of stag-
gered antiferromagnetism and s-wave superconductivity, with
the hybridization function �A/B(t, t ′) = t2

0 σzGB/A(t, t ′)σz +
D(t, t ′). More details are given in the Appendix.

The preparation of photodoped states via bath doping is
illustrated in Fig. 1(a), for U = 8 and 	 = 0.05. The plot ex-
emplarily shows the spectral function A(ω) and the occupied
density of states A<(ω) = Im G<(ω)/2π in the nonequilib-
rium steady state for one set of bath parameters. The curves
can be related reasonably well by assuming a Fermi distribu-
tion function f (ω) = A<(ω)/A(ω) with μb = ±5.4 at a given
temperature (dashed line), thus verifying the universal nature
of the bath-doped state which has been mentioned above. In
the following, different doublon-hole densities and temper-
atures Teff are fixed implicitly by varying μb and the bath
temperature Tb.

IV. SUPERCONDUCTIVITY OF THE PHOTOCARRIERS

To study the pairing susceptibility in the photodoped states,
a local test field 1

2 hx(d↓d↑ + H.c.) with hx = 0.0001 is applied
to measure the pairing susceptibility χ = − Re〈d↓d↑〉/hx.
Both uniform (s-wave) and staggered (η-) pairing suscepti-
bilities are measured in the resulting photodoped states for a
scan with varying μb, as plotted in Fig. 1(b). In the η-pairing
case, the local test field is opposite for the two sublattices
A and B. The pairing susceptibility is generally enhanced
for both s-wave and η pairing, with the latter much more
favored. A prominent observation is the emergence of a
nonzero η-pairing order under strong photodoping d � 0.3.
Note that with hx = 0.0001, there is a numerical limit of the
order 1/hx = 104 to the susceptibility, but an order parameter
Re〈d↓d↑〉 � 0.2 clearly indicates the symmetry breaking. By
also varying the inverse bath temperature βb and thus implic-
itly βeff = 1/Teff , we obtain different scans which can then
be combined into a phase diagram (Fig. 2), showing χη as a
function of d and βeff . The phase boundary between the nor-
mal and η-pairing phase around d � 0.3 and βeff � 6.0 can
be roughly identified, except for very large doping d ∼ 0.5 or
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FIG. 1. (a) Spectral function A(ω) and occupied density of states
A<(ω) at μb = 5.4, which corresponds to the data point labeled
by the arrow in (b). The dashed green curve indicates the equilib-
rium (μb = 0.0, 	 = 0.05) spectral function for βeq = 100. The blue
curve shows the density of states of the baths, while their fillings
at μb = 5.4 are shown as shaded areas. Dashed black lines indicate
A(ω) fFD(ω), with a Fermi distribution fFD of inverse temperature
βeff = 7.7901 and chemical potential μ = μb. (b) Susceptibility of
both η and s-wave SC pairing as a function of double occupancy.
	 = 0.05 and βb = 100. The equilibrium (d ∼ 0.01) is indicated by
the vertical dashed line.

low temperature due to the difficulty of precisely controlling
βeff in these regimes.

Close to the equilibrium half-filled state d ∼ 0 (d ≈ 0.01
for the shown parameters), we have also sketched the an-
tiferromagnetic phase, which is known to persist for weak
photodoping but is quickly destroyed due to the doublon
(hole) hopping processes [41–43]. (DMFT gives a stabil-
ity range of d � 0.05 for the antiferromagnetic phase under
photodoping in the same model [35].) Apparently, the η-
pairing phase persists under photodoping over a much larger
doping range d as compared to antiferromagnetism.

A. The universality of photodoped η-paired phases

To explain the phenomenology, we first note that the
η-pairing order parameter can be expanded into three
pseudospin components spanning the charge-sector SU (2)
symmetry: η+

i = ηx
i + iηy

i = θid
†
i↑d†

i↓, η− = (η+)†, and ηz
i =

1
2 (ni − 1), where θi = ±1 on the two sublattices. The η-
pairing phase can then be explained by a superexchange
mechanism between the η pseudospins. In fact, for U 	 t0,
one can project out doublon-hole creation and recombina-

FIG. 2. Nonequilibrium phase diagram of the repulsive Hubbard
model at U = 8 under photodoping. The data points show the sus-
ceptibility χη along scans through the phase diagram, obtained by
varying the inverse temperature of the auxiliary bath at 	 = 0.05 and
different μb from βb = 100.0, 50.0, 33.3, 20.0, to 17.2. The phase
boundary is only schematic (χη ∼ 103) and a guide to the eye. The
negative temperature region is obtained from the positive one by
reflection. The region close to equilibrium does not extend to d = 0
but is limited by the double occupancy of the equilibrium state.

tion processes using a Schrieffer-Wolff transformation [26,44]
and obtain a two-liquid model where a doublon-hole liquid
with exchange interaction −∑

〈i j〉 Jexηi · η j couples (through
doublon/holon hopping) to a singlon liquid with AFM ex-
change interaction

∑
〈i j〉 JexSi · S j . Specifically, the effective

Hamiltonian reads,

H eff = −
∑
〈i j〉

Jexηi · η j +
∑
〈i j〉

JexSi · S j

− t0
∑
〈i j〉σ

[P id
†
iσ d jσP j + Pid

†
iσ d jσP j], (3)

which includes both exchange interactions and a hopping
term that “exchanges” the position of a pair of neighboring
doublons/holons and singlons. The operator Pi represents the
projection to the doublon-holon subspace of site i spanned
by |0〉 and |↑↓〉 and P̄ = 1 − P . This effective model is
a generalization of the t-J model, which is derived in the
Appendix. The two exchange interactions share the same cou-
pling constant Jex = 2t2

0 /U and thus are closely related. The
η-exchange interaction originates from a virtual process ex-
changing a neighboring doublon-hole pair, see the Appendix
for more details. This model therefore explains both the an-
tiferromagnetic phase at d ∼ 0 and the η pairing at d ∼ 0.5.
The above-mentioned universal photodoped state is, indeed,
rigorously defined by this model. A photodoped Mott insu-
lator is then characterized by a mixture of doublons/holons
carrying η-pseudopin and localized electrons carrying spin.
We further note that, in a chemically doped Mott insulator,
only one type of the charge excitations (doublon or holon)
exists and the η-exchange term −Jexη

+
i η−

j + H.c. vanishes.
Furthermore, a particle-hole transformation di↑ →

d̃i↑, di↓ → (−1)id̃†
i↓ maps charge to spin (ηi → S̃i) and
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U → −U . The sign reversal of U is equivalent to the effect of
negative temperature (a highly excited state with completely
inverted charge distribution in the energy spectrum, see
Ref. [45] for more details), leading to a negative temperature
phase diagram which may be realized through strong external
driving [46], see the lower half of Fig. 2. Hence, the
η-pairing phase is dual to a ferromagnetic state, with singly
occupied sites mapped to charge excitations, which also
explains its larger stability in terms of the stability of a
ferromagnetic phase against defects. Indeed, the hopping of
charge excitations in the FM phase does not create strings
of defects in the ordered background, in contrast to the
AFM phase, where this effect contributes significantly to the
destruction of staggered spin ordering [41,43].

Finally, we also checked that the η-pairing phase survives
in the presence of small (particle-hole) symmetry-breaking
terms in the Hamiltonian, as one expects for a symmetry-
breaking phase. In particular, all conclusions survive under a
next-to-nearest-neighbor hopping t1 = 0.1t0. Different U and
g are also studied, which give no qualitatively different results.

Since the bath coupling in the above discussion is weak
and does not selectively favor the η-pairing phase, the lat-
ter should be an intrinsic property of the photodoped state
and thus be accessible in real time with any protocol which
realizes strong photodoping at low Teff and breaks the con-
servation of 〈η〉. This is fundamentally different from the
previous works requiring specific properties of the driving and
the SO(4) symmetry protection [20–23,47]. We demonstrate
the universality of our steady-state theory by considering two
real-time protocols. Firstly, we consider the resonant excita-
tion of doublon-hole pairs induced by an electric pulse in a
Hubbard model coupled to bosonic baths, which leads to sig-
nificantly enhanced χη = 15 up to the maximum simulation
time. Better results can be obtained by coupling the Hubbard
bands to external narrow bands, e.g., core levels, which cool
down the electrons by absorbing large amounts of entropy
(evaporative-cooling effect) [32]. In this case we observed
a symmetry breaking η-paired phase which remains beyond
t ∼ 100 [45], see Appendix D for more details.

B. Optical signature of the η-paired phase

In this section, we study the superconducting optical
response of the hidden phase. In DMFT, the optical con-
ductivity can be evaluated from the current-current ( j- j)
correlation function χ j j (t, t ′) = δ j(t )/δA(t ′) with σ (ω) =
−iχ j j (ω)/(ω + i0+) in the steady state [48], see the Appendix
for detailed discussions. As shown in Fig. 3, the equilib-
rium system features a Mott gap of size ∼U as expected.
Strong photodoping with d ∼ 0.4 gives rise to a broad Drude
peak in Re σ (ω) (ω > 0), implying normal metallic behav-
ior. More interestingly, a negative conductivity is observed at
ω ∼ U for Re σ . This can be attributed to the recombination
of doublon-hole pairs under periodic driving. The η-pairing
phase is, on the other hand, characterized by a clear 1/ω

behavior in the imaginary part Im σ at small ω, in contrast
to the normal phase where Im σ (0) = 0. In this case, a delta
function peak Re σ (ω) ∼ πDδ(ω) is imposed by analyticity
(not shown in the plot), where we define the SC Drude weight
D = − Re χ j j (0). This delta function peak leads to the zero

FIG. 3. (a) Real and (b) imaginary part of the optical conduc-
tivity. The dark blue dashed curves correspond to an equilibrium
paramagnetic state with β = 100. The light blue curves and the red
curves characterize the two states labeled by red (η state, βb = 100)
and blue arrows (normal state, βb = 17.2) in Fig. 2, respectively.
A delta function peak at ω = 0, present in the SC phase, is not
shown. Both normal and η states have μb = 5.4. For all three curves
	 = 0.05 and U = 8.0 are assumed. The inset shows a 1/ω scaling
of the imaginary part of the optical conductivity.

resistivity effect. In addition, the zero-frequency j- j corre-
lation χ j j (0) �= 0 results in the London equation j = −DA,
where D is identified with the phase stiffness 〈δ2H/δA2〉
[17,49].

We observe that the results obtained with different proto-
cols (both real-time and steady-state) for different doublon
densities, different βeff , and different U collapse onto a single
line when

√
UD is plotted against the order parameter |η|

in Fig. 4. (The deviation of the steady-state data at large η

may be attributed to nonthermal effects induced by the bath
coupling.) This indicates a scaling behavior D ∼ |η|2/U and
can be explained by the two-liquid effective model. The phase
stiffness can be evaluated to be D = 4Jex〈ηi · η j〉 
 4Jex|η|2
for neighboring sites i, j, see the Appendix for a detailed
derivation. The η-SC hidden phases are, therefore, universally
supported by the intrinsic doublon-holon pairing mechanism.
More interestingly, the phase stiffness corresponds to short-
range correlations 〈ηi · η j〉 and may be observable under much
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FIG. 4.
√

UD as a function of η pairing. The rescaling is in-
tended to demonstrate the D ∝ η2/U scaling. The real-time results
for U = 9 and 18 are obtained using the entropy-cooling protocol
(ii), where external narrow bands are coupled up to about t ≈ 100
and then detached, leaving behind an η-pairing phase. A supercon-
ducting current j is then created by a short electric pulse satisfying
A = − ∫

dtE (t ) ≈ −0.020 to measure D. The dashed line is the
mean-field prediction for the phase stiffness.
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smaller photodoping (recall that χη is strongly enhanced al-
ready for smaller d).

V. CONCLUSION

In this paper, we have studied the nonequilibrium phase
diagram of the repulsive Hubbard model and demonstrated
that the η-pairing superconducting phase can be stabilized by
photodoping, i.e., the injection of cold photocarriers into the
system. The hidden phase exists in a wide range of parameters
(d , βeff ) and requires no symmetry protection. Photodoping
leads to normal metallic behavior and a negative conductiv-
ity at large frequencies, while the η-pairing phase is further
characterized by a zero dc-resistivity and the Meissner effect.
Moreover, the phase stiffness D can be enhanced with in-
creased short-range η correlations, which may be ubiquitously
observed in excited Mott insulators. Strong photodoping with
d > 1

4 in a Mott insulator can potentially be realized with
recent proposals [32,34]. A large density of doublon-hole
pairs can also be prepared in fermionic cold-atom systems
[26,50,51]. The η-paired phase is observed here in an infinite-
dimensional system, while, in lower dimensions, the strong
enhancement of the pairing susceptibility can still have ob-
servable effects. The staggered η-pairing superconducting
order can potentially be detected using a recently proposed
noise correlation measurement in ARPES experiments [52].

Independent of the experimental implementation, our main
finding of an η-pairing doublon-hole condensate over a broad
range of doping levels is of general importance for various
Mott insulators. Our approach to prepare cold photodoped
states may be used to explore related unconventional SC or-
ders in more complex Mott insulators [53,54] and in charge
transfer insulators [55].
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APPENDIX A: DYNAMICAL MEAN-FIELD THEORY

This section provides details on the nonequilibrium formu-
lation of dynamical mean-field theory used in the main text.
The simulation is done on a Bethe lattice with an inifinite
coordination number. A Bethe lattice is a treelike structure
without loops. It can be naturally decomposed into two sub-
lattices, and thus allows to treat staggered orders in bipartite
lattices, such as the antiferromagnetic order in a square lat-
tice. To deal with the superconducting order, we define the
Nambu spinor ψT = (ψ↑, ψ↓) = (d↑, d†

↓) and the Hamilto-
nian is rewritten as

H = −t0
∑
〈i j〉σ

σeiσAψ
†
iσ ψ jσ − U

∑
i

ψ
†
i↑ψi↑ψ

†
i↓ψi↓, (A1)

where the coupling to a general vector potential A(t ) is as-
sumed. The lattice problem is mapped to a single-impurity

FIG. 5. An example of Bethe lattice with coordination number 3.
The two sublattices are distinguished by red and blue colors.

Anderson model, which is defined by the following action,

SA/B[ψ, ψ̄] = Sloc
A/B[ψ, ψ̄] −

∫
dtdt ′ψ̄ (t )�A/B(t, t ′)ψ (t ′),

(A2)

where Sloc collects the local terms and �A,B is the
matrix-valued hybridization function determined by the self-
consistency condition for a Bethe lattice of infinite coordina-
tion number, see Fig. 5 [38],

�A/B(t, t ′) = �R
A/B(t, t ′) + �L

A/B(t, t ′) + D(t, t ′), with

�R
A/B(t, t ′) = t2

0

2
σze

iσzA(t )GB/A(t, t ′)e−iσzA(t ′ )σz,

�L
A/B(t, t ′) = t2

0

2
σze

−iσzA(t )GB/A(t, t ′)eiσzA(t ′ )σz, (A3)

where D = D+ + D− comes from the bath coupling as dis-
cussed in the main text. GA/B are matrix-valued impurity
Green’s function in Nambu basis. We assume half of the bonds
connected to the local site are parallel to the external field A
while the other half are antiparallel to it, leading to Peierls
phases of the sign ±1, respectively. A(t ) is set to zero in
the bath-doping and entropy transfer protocols (the protocol
(ii) in main text). The two sublattices A, B are related by
GB = σzGAσz in the presence of η pairing and with σz replaced
by the identity matrix in the s-wave pairing case.

One can also consider the next-nearest-neighbor (NNN)
hopping −t1

∑
〈〈i j〉〉σ σeiσAψ

†
iσ ψ jσ . This is included by

adding t2
1
2 σzei2σzA(t )GA/B(t, t ′)e−i2σzA(t ′ )σz to hybridization

function �R
A and analogously for �L and the sublattice B.

APPENDIX B: THE TWO-LIQUIDS EFFECTIVE MODEL
OF PHOTODOPED STATES

The low energy physics of a fermionic Hubbard model
is described by a t-J model under hole or electron doping
[44,56]. In a photodoped state, the situation is different due
to the simultaneous presence of nonthermal doublons and
holes. To derive the effective theory of the photodoped state,
we assume the double occupancy is conserved, which is
justified by an exponentially large lifetime of doublon-hole
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pairs as discussed in the main text. We then perform the
Schrieffer-Wolff transformation following Ref. [44]. Specif-
ically, we transform the Hamiltonian (1) into a rotating frame
by unitary transformation H rot (t ) = eS(t )(H − i∂t )e−S(t ), with
S(t ) = Ut

∑
i(ni↑ − 1/2)(ni↓ − 1/2). The resulting Hamilto-

nian reads as follows,

H rot (t ) = −t0
∑
〈i j〉σ

[P id
†
iσ d jσP j + Pid

†
iσ d jσP j]

− t0
∑
〈i j〉σ

[eiUtPid
†
iσ d jσP j + H.c.], (B1)

where Pi = ni↑ni↓ + n̄i↑n̄i↓ = 1 − (ni↑ + ni↓) + 2ni↑ni↓
projects site i to the doublon-hole subspace with n̄ = 1 − n
and P = 1 − P . The first line of (B1) switches a
doublon/hole state with its neighboring singlon state, while
the second line gives rise to the creation and recombination
of doublon-hole pairs. In this formalism, both creation and
recombination processes are treated on equal footing and
can be integrated out through a high-frequency expansion
[57]. Ignoring three-site terms, the following results can be
checked with straightforward calculations [34],

H eff = −t0
∑
〈i j〉σ

[P id
†
iσ d jσP j + Pid

†
iσ d jσP j]

+ t2
0

U

∑
〈i j〉σ

[d†
iσ diσ̄ d†

jσ̄ d jσ + d†
iσ d†

iσ̄ d jσ̄ d jσ ]

+ t2
0

U

∑
〈i j〉σ

(niσ − n jσ )niσ̄ n̄ jσ̄ . (B2)

The first term in the second line is simply S+
i S−

j + S−
i S+

j .
Using the identity

∑
〈i j〉 ai j = ∑

〈i j〉 a ji, the second term of the
line can be rewritten as

1

2

∑
〈i j〉σ

[d†
iσ d†

iσ̄ d jσ̄ d jσ + d†
jσ d†

jσ̄ diσ̄ diσ ]

= −
∑
〈i j〉

[η+
i η−

j + η−
i η+

j ]. (B3)

The third line of (B2) can be simplified by project-
ing into doublon-hole and singlon subspaces, defining
Fi jσ = (niσ − n jσ )niσ̄ n̄ jσ̄ ,

Fi jσ = PiFi jσP j + P iFi jσP j

+PiFi jσP j + P iFi jσP j . (B4)

It can be checked that the second and third terms identically
vanish. The first and fourth terms read∑

〈i j〉σ
PiFi jσP j

=
∑
〈i j〉

Pi(ni↑n̄ j↓ + ni↓n̄ j↑)P j,

= −1

2

∑
〈i j〉

Pi[(ni↑ + ni↓ − 1)(n j↑ + n j↓ − 1) − 1]P j

=
∑
〈i j〉

−2ηz
i η

z
j + 1

2
PiP j, (B5)

∑
〈i j〉σ

P iFi jσP j = −
∑
〈i j〉

P i(n j↑ni↓ + n j↓ni↑)P j

= 1

2

∑
〈i j〉

P i[(ni↑ − ni↓)(n j↑ − n j↓) − 1]P j

=
∑
〈i j〉

2Sz
i Sz

j − 1

2
P iP j, (B6)

where P ini = 1 and Pini↑ = Pini↓ are used. Collecting these
terms, one then reaches the following form

H eff = −
∑
〈i j〉

Jexηi · η j +
∑
〈i j〉

JexSi · S j

− t0
∑
〈i j〉σ

[P id
†
iσ d jσP j + Pid

†
iσ d jσP j]

+ Jex

4

∑
〈i j〉

(PiP j − P iP j ). (B7)

The first and second terms represent the η-η exchange
interaction between doublon-hole pairs and the regular su-
perexchange interaction between spins, respectively. The third
term represents hopping of electrons and couples doublon-
hole and singlon liquids. It is unchanged from (B2). The factor
M̂ = ∑

〈i j〉(PiP j − P iP j ) can be simplified to

M̂ =
∑
〈i j〉

(−1 + Pi + P j )

=
∑
〈i j〉

(2(ni↑ni↓ + n j↑n j↓) − ni − n j + 1)

= 4D
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
+ const., (B8)

where D is the coordination number of the lattice. This is a
constant if the double occupancy and total particle number
are fixed and can, therefore, be neglected in our discussion.
Notice that the Hamiltonian (B7) does not depend on the
half-filling condition and becomes equivalent to the t-J model
in the absence of either doublons or holes. In fact, the absence
of doublons or holes makes η+ = η− = 0 and Jexηi · η j →
Jexnin j/4. A finite chemical potential μ results in the Zee-
man term μηz breaking the charge-sector SU (2) symmetry.
Moreover, next-nearest-neighbor (NNN) hopping results in
frustration in the ordering. These terms, when being small,
should suppress but not necessarily wipe out the η-pairing
phase completely.

1. Phase stiffness of the η-pairing condensate

A vector potential coupled to the model (B7) can generally
result in modification of the parameter Jex [58]. However, for
slowly varying fields, especially for a constant vector potential
A, a simpler treatment is available as follows. Consider a half-
filled repulsive Hubbard model which couples to a constant
and spatially uniform vector potential A,

H = −t
∑
〈i j〉

eiA·(Ri−R j )d†
iσ d jσ + U

(
n↑ − 1

2

)(
n↓ − 1

2

)
. (B9)
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This coupling can clearly be gauged away (absorbed by a
gauge transformation), and thus is physically irrelevant in the
nonsuperconducting phase,

diσ = eiA·Ri d̃iσ . (B10)

However, the η-pseudospin operators transform under the
transformation

η+
i = ηx

i + iηy
i = θid

†
i↑d†

i↓ = e−i2A·Ri η̃+
i , (B11)

which applies to η− = η+† analogously. As mentioned above,
one can generally consider a time-dependent vector potential
A(t ) and make a time-dependent Schrieffer-Wolff transforma-
tion. Here we restrict ourselves to a constant A(t ) = A, in
which case the effective model would simply be a Heisenberg-
like model. With Jex = 2t2/U ,

Heff = −Jex

2

∑
〈i j〉

(η̃+
i η̃−

j + H.c.) + Hhop

= −Jex

2

∑
〈i j〉

(ei2A·(Ri−R j )η+
i η−

j + H.c.) + Hhop, (B12)

which demonstrates the coupling between η pseudospins and
the gauge field. Note that Hhop is the doublon/hole hopping
term giving rise to the regular part of the optical conductivity.
With normal current neglected, the SC current along the bond
e = R j − Ri can be expressed as

je = −〈δHeff/δAe〉
= iJex〈e2iAeη+

i η−
j − H.c.〉

= 2Jex[−〈ηi × η j〉z cos(2Ae) + 〈ηi · η j〉 sin(2Ae)], (B13)

where Ae = A · e and ηz = 0 are assumed.
For weak Ae, it is conventional to calculate the phase stiff-

ness D = −〈δ2Heff/δ
2Ae〉|Ae=0, which appears in the London

equation je = −DAe as usual,

D = 4Jex〈ηi · η j〉. (B14)

In the η-pairing phase, the relatively large |η| order justifies a
mean-field approximation, which yields D = 4Jex|η|2.

APPENDIX C: OPTICAL CONDUCTIVITY IN BETHE LATTICE

The optical conductivity can be computed within DMFT using the single-particle quantities [48]. A lattice summation is
usually required in the calculation. However, the procedure can be much simplified in the case of a Bethe lattice. In this section
we derive the longitudinal optical conductivity in the Bethe lattice. Under a spatially uniform electric field, the hybridization
function is �A(t, t ′) = �R

A(t, t ′) + �L
A(t, t ′), where we have assumed two sublattices A, B as above. In the following we will

omit the subscript A, B unless it would be ambiguous. Then the current can be expressed as follows,

J (t ) = −1

2
Re Tr (σzG ◦ (�R − �L ))<

= −1

2
Re Tr

{∫ t

−∞
dsσzG

r (t, s)(�<
R (s, t ) − �<

L (s, t )) +
∫ t

−∞
dsσzG

<(t, s)
(
�a

R(s, t ) − �a
L(s, t )

)}
. (C1)

To obtain the susceptibility, we differentiate the functional J[A(t )]

χ (t, t ′) = δJA(t )/δA(t ′)|A=0

= −1

2
Re Tr

{∫ t

−∞
dsσz

δGr (t, s)

δA(t ′)
(�<

R (s, t ) − �<
L (s, t )) +

∫ t

−∞
dsσz

δG<(t, s)

δA(t ′)
(
�a

R(s, t ) − �a
L(s, t )

)}∣∣∣∣
A=0

− 1

2
Re Tr

{∫ t

−∞
dsσzG

r (t, s)
(δ�<

R (s, t )

δA(t ′)
− δ�<

L (s, t )

δA(t ′)

)
+

∫ t

−∞
dsσzG

<(t, s)
(δ�a

R(s, t )

δA(t ′)
− δ�a

L(s, t )

δA(t ′)

)}∣∣∣∣
A=0

. (C2)

We note that �R = �L for A(t ) = 0. This causes the first line of (C2) to vanish identically. On the other hand, the functional
derivative of � leads to

δ�<,a
R (s, t )

δA(t ′)
= t2

0

2
eiσzA(s)σz

{
δG<,a(s, t )

δA(t ′)
+ iδ(s − t ′)σzG

<,a(s, t ) − iδ(t − t ′)G<,a(s, t )σz

}
σze

−iσzA(t ),

δ�<,a
L (s, t )

δA(t ′)
= t2

0

2
e−iσzA(s)σz

{
δG<,a(s, t )

δA(t ′)
− iδ(s − t ′)σzG

<,a(s, t ) + iδ(t − t ′)G<,a(s, t )σz

}
σze

iσzA(t ), (C3)

where the δG/δA terms cancel on subtracting the two terms at A = 0. Thus we finally have

χA(t, t ′) = − t2
0

2
Re Tr

{
i
∫ t

−∞
dsσzG

r
A(t, s)σz(σzG

<
B (s, t )δ(s − t ′) − G<

B (s, t )σzδ(t − t ′))σz

+ i
∫ t

−∞
dsσzG

<
A (t, s)σz

(
σzG

a
B(s, t )δ(s − t ′) − Ga

B(s, t )σzδ(t − t ′)
)
σz

}
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= − t2
0

2
Im Tr σz

{
Gr

A(t, t ′)G<
B (t ′, t )σz + G<

A (t, t ′)Ga
B(t ′, t )σz

− δ(t − t ′)
∫ ∞

−∞
ds

(
Gr

A(t, s)σzG
<
B (s, t ) + G<

A (t, s)σzG
a
B(s, t )

)}
. (C4)

The formula only contains local Green’s functions and all δG/δA like terms are canceled, so no lattice summation is required
for computing χ . To study the normal phase, we can go back to the original formalism (in contrast to Nambu formalism) by
simply replacing σz with the identity matrix I. It is straightforward to verify that the Drude weight vanishes. In fact,

D(t ) = −
∫ ∞

−∞
dt ′χ (t, t ′)

= t2
0

2
Im Tr

{ ∫ ∞

−∞
dt ′(Gr

A(t, t ′)G<
B (t ′, t )I + G<

A (t, t ′)Ga
B(t ′, t )I

) −
∫ ∞

−∞
dt ′(Gr

A(t, t ′)IG<
B (t ′, t ) + G<

A (t, t ′)IGa
B(t ′, t )

)}

= 0. (C5)

1. f-sum rule

σ (t, t ′) = −c
∫ ∞

t ′ dt̄χ (t, t̄ ) has a jump at t = t ′ due to the delta function in χ . As a result, the integration of σ (t, ω) satisfies∫ ∞
0 dωσ (t, ω) = 1

2

∫ ∞
−∞ dωσ (t, ω) = 1

4 2πσ (t, t−) and∫ ∞

0
dωσ (t, ω) = −πt2

0

4
Im Tr

{
σz

∫ ∞

−∞
ds

(
Gr

A(t, s)σzG
<
B (s, t ) + G<

A (t, s)σzG
a
B(s, t )

)}

= −π

4
Im Tr

{∫ ∞

−∞
ds

(
Gr

A(t, s)
(
t2
0 σzG

<
B (s, t )σz

) + G<
A (t, s)

(
t2
0 σzG

a
B(s, t )σz

))} = −π

4
Ekin. (C6)

This is consistent with the sum rule in more realistic lattices
[39] and thus justifies the use of Bethe lattice to study the
optical conductivity.

APPENDIX D: REAL-TIME PROTOCOLS

In addition to the steady-state results obtained with
fermion-reservoir coupling, we also considered two real-time
protocols to demonstrate the universality of photodoped states
and crosscheck the observable properties computed in differ-
ent ways. An obvious attempt to reach a cold photodoped
state is to create doublons and holes by resonant excitation
between the Hubbard bands and subsequently “cool” them
through coupling to a bath of bosonic degrees of freedom
(phonons, spins) [59]. However, direct real-time simulations
of this process [34,59] close to the Mott state have so far
reported only relatively high Teff . DMFT studies also sug-
gest that the preparation of low temperature phases, such
as a Fermi liquid state, by cooling from a hot state is crit-
ically slowed down by fundamental constraints apparently
independent of the bath setting [60]. To prepare the η state
it therefore seems advantageous to keep Teff low through-
out the process in which doublons and holes are being
created.

1. The evaporative cooling protocol

In this protocol, we consider the scenario where an electric
pulse couples the Hubbard bands with some narrow energy
bands in the system, resulting in dipolar excitations between
the system and the external bands. Specifically, we model this

process as following. The single-band Hubbard model (in the
Mott insulating phase) is suddenly coupled to two narrow-
band fermion reservoirs. Doublons are created in the upper
Hubbard band by coupling to a narrow full band, while the
lower Hubbard band is emptied by ejecting singly occupied
states into the narrow empty band. Doublons and holes are
cooled by entropy transfer to the narrow bands, whose width
controls the effective temperature [32]. These reservoirs are
detached from the system after a short period (usually about
100 hopping times).

The driving-induced fermionic coupling results in a contri-
bution to the hybridization function [45]

�coupl =
∑

α

v(t )G0
bath,α (t, t ′)v(t ′), (D1)

where α = 1, 2 indicates the two reservoirs and G0 is the
reservoir Green’s function in equilibrium. The coupling
v(t ) = f (t ) sin(�(t )t ) has generically a slowly-varying fre-
quency �(t ) and is modulated by the envelope function f (t ).
In the adiabatic limit of slowly varying �(t ), the density of
states of the external fermionic bands is effectively shifted by
±�(t ) at time t , which leads to particle flux when the DoS
of external baths overlaps with the upper or lower Hubbard
bands. We consider a chirped pulse as follows

�(t ) = ω0 + �ω sin

(
π

2

t

tramp

)
t < tmax, (D2)

where ω0 is selected so that doublons are initially (t = 0)
being created at the bottom of the upper Hubbard band, and
�ω is chosen to be close to the bandwidth making the upper
band strongly populated at the end of tmax ≈ 100, after which
the coupling is turned off.
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For obtaining the data points shown in Fig. 4 in the main
text, we have chosen ω0 = 8, δω = 4.5, tramp = 170 for the
case U = 9. The narrow bands are located at energy ω = ±6
and have a box-shaped DoS with bandwidth 0.05. More de-
tails can be found in Ref. [45].

2. The direct excitation protocol

In this section, we will consider a direct dipolar excitation
between lower and upper Hubbard bands through an electric
pulse. For large enough gap, this protocol leads to a nonequi-
librium (quasi)steady state. This analysis is an extension of
the work done in Ref. [34] to the symmetry-broken phase.
The authors of Ref. [34] considered a periodic driving and
a coupling to a continuum of phonons. We have repeated their
analysis within the symmetry-broken formalism and applied
a pairing field. Despite an exhaustive scan over the parameter
space, we could not find a symmetry broken state in the long-
time limit. The main obstacle is a high effective temperature,
which was typically βeff ≈ 1, in agreement with the analysis
in Ref. [34]. Here, we propose an alternative protocol using a
chirped electric field pulse. In this protocol, the electric field is
given by E (t ) = E0 sin(ω(t )t ), where we use a slow chirping
of the electric field ω(t ) = ω0 + αt . This protocol leads to a
buildup of distributions with lower effective temperatures as
does the periodic driving, but the minimum rate of the chirp-
ing is limited by the maximum propagation time accessible in
the numerics.

The most efficient cooling bath that we found is a com-
bination of a high-energy ωH = 1.0 and low-energy ωH =
0.2 phonon. To induce a symmetry breaking, we have ap-
plied a weak pairing field hx = 0.01, which we gradually
turn off, and follow the time evolution of the pairing sus-
ceptibility χη, see Fig. 6(a). The pairing susceptibility is
strongly increased. Similarly, the double occupancy d is
strongly enhanced, see Fig. 6(b), and in the longtime limit
reaches the value d = 0.44. Due to the applied electric
field, we have averaged the spectral function A(ω, t ) =
− 1

π
Im

∫ t+tcut

t dt ′eiω(t ′−t )Gr (t ′, t ) over two periods of the oscil-

lation Ā(ω, t ) = 1
T

∫ t+T/2
t−T/2 A(ω, t )dt, where T = 4πω(t ), see

Fig. 6(c). By fitting to a Fermi distribution function in the
upper Hubbard band, we have determined the effective inverse
temperature to be βeff = 7.7. A comparison with the phase
diagram in Fig. 2 suggests that a state with double occupancy
d = 0.44 and βeff = 7.7 should be within the symmetry bro-
ken state. This is further confirmed by the fact that the order
parameter persists even when the pairing field hx is turned

FIG. 6. Time evolution of the susceptibility χη (a) and double
occupancy (b) for a system excited by a chirped electric field and
coupled to a phononic bath. (c) Longtime averaged spectral function
A(ω, t = 130) (orange) and the lesser component A<(ω, t = 130)
(red). The dashed line indicates the Fermi distribution function for
the inverse temperature β corresponding to the effective temperature
βeff = 7.7. The chirping rate was α = 0.015, the frequency of the
high-energy ω0 = 1.0 and the low-energy ω0 = 0.2, and the electron-
phonon coupling λ = 0.3.

off. However, a strict criterion for the spontaneous symmetry
breaking can be that the final state becomes independent of
the size of the initial pairing field hx. A test with hx = 0.001
shows that the state in the longtime limit still depends on the
initial pairing field. Despite the strongly enhanced suscepti-
bility χη ∼ 15 in the longtime limit, the dependence on the
initial pairing field implies that the reached state has not yet
entered the η-pairing state. However, χη keeps increasing for
the longest propagation times available and may eventually
lead to a symmetry-broken phase for significantly longer sim-
ulation times.
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