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Filling-enforced Dirac nodal loops in nonmagnetic systems and their evolutions
under various perturbations
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Based on symmetry analysis, we propose that filling-enforced Dirac nodal loops (FEDLs) in nonmagnetic
systems exist and only exist in five space groups (SGs), namely, SG.57, SG.60, SG.61, SG.62, and SG.205. We
explore all possible configurations of the FEDLs in these SGs and classify them accordingly. Furthermore, we
study the evolutions of the FEDLs under various types of symmetry-breaking perturbations, such as an applied
strain or an external field. The results show that FEDL materials can serve as parent materials of both topological
semimetals hosting nodal points/loops and topological insulators/topological crystalline insulators. By means
of first-principles calculations, almost all materials possessing FEDLs are predicted.
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I. INTRODUCTION

Topological materials have attracted great interest both
theoretically and experimentally [1–3] since the proposal
of topological insulators (TIs) [4]. Generally, topological
materials can be classified into gapped and gapless sys-
tems according to the electronic states near the Fermi level.
The most famous examples among them are TIs and Weyl
semimetals (WSMs) [5–27], respectively. In terms of the
gapped systems, the nontrivial topology of the bands can
be characterized by a topological invariant which depends
on the Bloch wave functions of all the occupied bands in
the whole Brillouin zone (BZ). It is well known that sym-
metries always play key roles in the classification of them.
One of the celebrated examples is the “periodic table” of
noninteracting TIs and topological superconductors (TSCs)
characterized by time-reversal symmetry (TRS), particle-hole
symmetry, and chiral symmetry [28,29]. In addition, the crys-
tal symmetries are found to give rise to a new kind of TIs,
i.e., the topological crystalline insulators (TCIs) [28,30–34].
Recently, TCIs in nonmagnetic systems have been enumerated
[35–37], and these states can be fast diagnosed by symmetry
eigenvalues [38–46]. Besides TIs and TCIs, many gapless
topological phases have also been proposed, such as Dirac
semimetals [47–61], node-line semimetals [62–69], nodal sur-
face semimetals [70–74], hopf-link semimetals [75,76], and
many other semimetals with unconventional quasiparticles
beyond Dirac and Weyl fermions [77–79]. All these findings
have greatly improved our knowledge of both the gapped and
the gapless topological phases.

Guided by the compatibility relations [38], many
nonsymmorphic-symmetry-enforced degeneracies have been
proposed. Especially, there exists a new type of degenera-
cies which are filling enforced. Fillings that realize a band
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insulator for all nonsymmorphic space groups (SGs) with and
without SOC are listed [80]. Systems with other fillings must
be gapless, namely, the filling-enforced semimetals. Until
now, many filling-enforced semimetals have been proposed
[38,41–43], among which filling-enforced Dirac nodal loop
(FEDL) semimetal is a special example with fourfold degen-
erate nodal loops in the BZ. Different from WSMs which only
require lattice translation symmetry for their protection, ma-
terials with FEDL require some more symmetries. Although
the FEDLs have been proposed in several systems [81–86],
a general idea for searching the FEDL materials is still
missing.

In this work, we first explore the necessary and suffi-
cient conditions for FEDLs in nonmagnetic systems and find
that there are five and only five SGs possessing the FEDLs.
Then, we further explore all possible configurations of the
Dirac nodal loops and classify them accordingly. Motivated
by earlier works [87–90], we study the evolutions of the
FEDLs under various perturbations and find that the FEDL
materials can serve as parent materials of both various topo-
logical semimetals and TIs/TCIs. At last, almost all the
FEDL materials are listed, from which we have picked out
some good candidates with fewer and smaller electron/hole
pockets near the Fermi level by means of first-principles
calculations.

II. METHODS

We perform first-principles calculations based on the den-
sity functional theory (DFT) using projector augmented wave
(PAW) method implemented in the Vienna ab initio simulation
package (VASP) [91]. The generalized gradient approxima-
tion (GGA), as implemented in the Perdew-Burke-Ernzerhof
(PBE) functional [92], is adopted to get the band structures.
The cutoff parameter for the wave functions was 500 eV. The
BZ was sampled by Monkhorst-Pack method [93] with a k
spacing of 0.025 × 2πÅ−1 for the three-dimensional periodic
boundary conditions.
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FIG. 1. The schematic figures of (a) the corresponding BZ of
SG.61. (b) The hourglass dispersion along S-X. Labels of the vertical
axis in the right figure denote Gx eigenvalue gx . We can find the
fourfold degenerate band crossings due to the hourglass dispersion
protected by the Gx symmetry between two quartets.

III. RESULTS AND DISCUSSIONS

A. General descriptions of FEDLs

Up to now, there are some FEDL materials proposed in
earlier works [83–86]. Among them, AgF2 in SG.61 is a good
example with the hourglass dispersion between S and X in
the band structures, as shown in Fig. 1. It is the hourglass
dispersion protected by the glide-mirror symmetry Gx that
contributes to the FEDL. Different from the hourglass disper-
sion in the nodal-chain metals [94], the hourglass dispersion
leading to the FEDL owns some unique features. The first
feature is the existence of the TRS (T ) and the inversion
symmetry (P), which are required for the locally double de-
generacy at each �k point in the BZ. Secondly, the Dirac nodal
loop is always protected by some glide-mirror symmetry Gα

and located on the kα = π plane. Here, α = lx + my + nz
denotes the normal direction of the glide-mirror symmetry Gα

with the Miller indices 〈lmn〉.
Here we give a general description of a Dirac nodal loop.

A Dirac nodal loop is a type of fourfold degenerate nodal loop
locating in a time-reversal invariant plane and is constructed
by the band crossings of two PT related doublets with op-
posite mirror/glide-mirror eigenvalues. These band crossings
along any path connecting two time-reversal invariant mo-
menta (TRIMs) originate from the hourglasslike dispersion
protected by the mirror/glide-mirror symmetry. We say one
plane in the BZ is time-reversal invariant if the set of �k points
in this plane map to the same plane up to a reciprocal lattice
vector under TRS.

FIG. 2. The schematic figures of band connections between
(a) two “X”-type TRIMs and (b) one “S”-type TRIM and one “X”-
type TRIM.

TABLE I. The generators of the SGs possessing FEDLs.

Operators Seitz form

Ê {1|0}
Ĝα {m100| 1

2
1
2 0}/{m100| 1

2
1
2

1
2 }

P̂ {−1|0}
Ĝβ {m010|lmn}
1. “A/B” in the “Seitz form” column means the expression of the
corresponding operator possesses alternative representations.
2. “l,” “m,” and “n” in {m010|lmn} can be either 0 or 1

2 , because Ĝ2
β

and R̂2
2β must be integer lattice translation in the real space.

In the following, we will deduce the necessary and suffi-
cient conditions of a FEDL.

(1) The combination of P and T , i.e., PT , gives the local
double degeneracy at each �k point in the BZ, termed as PT
related doublets. We only focus on the nonmagnetic systems,
thus, P, T , and the combination of them PT are all required.

(2) The existence of a mirror/glide-mirror symmetry
Gα = {mα|�τ } serves bands within the PT related doublet shar-
ing the same Gα eigenvalues. Following the work by Fang
et al. [95], bands within the PT related doublet sharing the
same Gα eigenvalues appear only if the component of �τ along
the α direction (denoted by �τα) is a half modulo an integer
lattice translation. It should be noted that each component
of �τ must be either zero or a half modulo an integer lattice
translation because G2

α is always an integer lattice translation
in the real space. Simultaneously, the Dirac nodal loop can
only exist in the kα = π plane, while not the kα = 0 plane.
It can be seen from the following. In the Gα invariant plane,

FIG. 3. The schematic figures for the configurations of FEDLs
in (a) SG.57, (b) SG.60, (c) SG.61, (d) SG.62, and (e) SG.205,
in the BZ, respectively. The nattier blue, pink, and green planes
in the figures correspond to the kx = 0, ky = 0, and kz = 0 planes,
respectively. The solid blue lines here denote fourfold degenerate
states within the (4n)th to (4n + 3)th bands from the correspond-
ing compatibility relations along these lines. There are two FEDLs
encircling R and T in the ky = π plane in SG.57, two FEDLs en-
circling U/R in the kz = π/kx = π planes in SG.60, three FEDLs
encircling S/T/U in the kx = π/ky = π/kz = π planes in SG.61,
only one FEDL encircling S in the kx = π plane in SG.62 and three
FEDLs encircling M/M′/M′′ in the kx = π/ky = π/kz = π planes
in SG.205, respectively.
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FIG. 4. The schematic figures for the configurations of FEDLs
in ky = π plane in SG.57. The two red rings in figure (a) and
two red lines traversing the BZ in figure (c) denote the
contractible/noncontractible FEDLs in the BZ, respectively. In the
corresponding right panels, the purple lines show compatibility rela-
tions between high-symmetry momenta �k (i.e., R and T) and some
infinitesimally close momenta �k + δ�k along the R-T line, while the
blue lines show band connections between the momentum infinitesi-
mally close to R and the momentum infinitesimally close to T in the
R-T line.

we have
gα = ±ie−i�knα ·�τnα . (1)

Here, gα denotes eigenvalue of Gα for �k points in the Gα

invariant plane. The component of �k along the α direction is

denoted by �kα , while �knα denotes the other components of �k,
i.e., �k = �kα + �knα . Similarly, �τnα denotes the components of �τ
along directions other than α, i.e., �τ = �τα + �τnα . Furthermore,
we denote the magnitudes of �kα and �τα as kα and τα , respec-
tively. Within these notations, we have kα = �kα · α̂, �kα = kαα̂,
τα = �τα · α̂, and �τα = ταα̂. Here α̂ denotes the unitary vector
along the α direction. Suppose |ψ〉 is the eigenstate of Gα with
gα = ±ie−i�knα ·�τnα , then

Gα (PT )|ψ〉 = (GαP)T |ψ〉
= (

PGαT2�τα−2�τnα

)
T |ψ〉

= PGαT T2�τα−2�τnα
|ψ〉

= PT GαT2�τα−2�τnα
|ψ〉

= PT Gαe−i2(kατα−�knα ·�τnα )|ψ〉
= PT gαe−i2(kατα−�knα ·�τnα )|ψ〉

= g∗
αei2(kατα−�knα ·�τnα )PT |ψ〉

= ∓ie−i�knα ·�τnα ei2kατα (PT )|ψ〉, (2)

which indicates PT |ψ〉 is the eigenstate of Gα with gα =
∓ie−i�knα ·�τnα ei2kατα . Thus, requirement of PT related doublets
sharing the same Gα eigenvalue means

ie−i�knα ·�τnα = −ie−i�knα ·�τnα ei2kατα , (3)

which requires e−i(2kατα ) = −1. Here T2�τα−2�τnα
denotes the

translation operator with translational vector 2�τα − 2�τnα . This
can be obtained only if τα = 1

2 modulo an integer lattice
translation and kα = π .

FIG. 5. (a)–(e) Five possible connections of the bands satisfying the compatibility relations along R-U in SG.60.
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TABLE II. The operators in SG.61.

Operators Seitz form

Ê {1 | 0}
R̂2α

{
R2α

∣∣ 1
2 (aα + aβ )

}

P̂ {−1|0}
Ĝα

{
Mα| 1

2 (aα + aβ )
}

(3) There must exist another direction along which the
component of �τ is nonzero. This can be deduced from the
following. If all the other components of �τ (except for �τα)
are zero, i.e., �τnα = �τ − �τα = 0, we have GαP = T2�τ PGα =
T2�τα

PGα = e−i(2kατα )PGα = −PGα for four TRIMs in the
kα = π plane. Here T2�τα

denotes an odd lattice translation
with the amplitude of 2τα along the α direction. Thus,
four TRIMs in the kα = π plane are all fourfold degen-
erate with gα = (+i,+i,−i,−i) in the quaternate bases
{|ψ〉, PT |ψ〉, P|ψ〉, T |ψ〉}. We call this type of TRIMs in the
kα = π plane with gα = (+i,+i,−i,−i) as “X”-type TRIMs.
Band structures between two “X”-type TRIMs can be gapped,
because the hourglass dispersion is no longer necessary to
appear, such as the band connections shown in Fig. 2(a).
As a result, there exists another direction along which the
component of �τ possesses half-integer lattice translation,
which gives another type of TRIMs with gα = (+1,+1)
or gα = (−1,−1) in the bases of {|ψ〉, PT |ψ〉}. We call
the two TRIMS with gα = (+1,+1) or gα = (−1,−1) in the
bases of {|ψ〉, PT |ψ〉} as “S” type TRIMs. Different from the
“X”-type TRIMs, we find [Gα, P] = 0 stands at the “S”-type
TRIMs. Thus, Gα here must be a glide-mirror symmetry,
while it cannot be a mirror symmetry.

(4) Given the three points above, there must exist two
“X”-type TRIMs with gα = (+i,+i,−i,−i) and two “S”-
type TRIMs with gα = (+1,+1) or gα = (−1,−1). Given no
other symmetries, the hourglass dispersion between “S”-type
TRIM and “X”-type TRIM is not necessary to appear, such as
the counter example shown in Fig. 2(b). Thus, another sym-
metry R is needed to introduce fourfold degeneracy with gα =
(+1,+1,+1,+1) or gα = (−1,−1,−1,−1) at one “S”-type
TRIM. Here, we call TRIMs with gα = (+1,+1,+1,+1) or
gα = (−1,−1,−1,−1) as fourfold “S”-type TRIMs. gα =
(+1,+1,+1,+1) or gα = (−1,−1,−1,−1) indicate that
there exist two types of irreducible representations in which
we have D(Gα ) = I4×4 or D(Gα ) = −I4×4 if some special
quaternate bases are chosen. D(Gα ) and I4×4 denote the rep-
resentation matrix of Gα and the 4 × 4 identity matrix. It is
clearly that [D(Gα ), D(R)] ≡ 0 stands in every irreducible
representation, regardless of which type of irreducible rep-
resentation it belongs to. Thus, the introduced symmetry R
should satisfy the following conditions

[Gα,R] = 0 , {R, P} = 0 (4)

at this fourfold “S”-type TRIM. {R, P} = 0 is required by the
following reasons. Firstly, it is known that either {R, P} = 0
or [R, P] = 0 stands at any TRIM. Since P ∗ R and R ∗ P al-
ways share the same rotation component in the real space, the
difference between them must be an integer lattice translation
T�r . Thus, RP = T�τr PR = e−i�k·�τr PR = ±PR stands when �k

FIG. 6. (a)–(d) The schematic figures for the configurations of
FEDLs in SG.61 in the BZ. We have neglected the possible connec-
tions of different FEDLs for simplicity. From Fig. 6(a) to Fig. 6(b),
the FEDL encircling S/T/U in the kx = π/ky = π/kz = π plane
becomes two Dirac nodal loops crossing the kx = π/ky = π/kz = π

plane, respectively. Similarly, the FEDL encircling U in the kz = π

plane becomes two Dirac nodal loops crossing the kz = π plane in
Fig. 6(c), while the FEDL encircling S/U in the kx = π/kz = π plane
becomes two Dirac nodal loops crossing the kx = π/kz = π plane in
Fig. 6(d). (a),(b),(e) The schematic figures for the configurations of
FEDLs in SG.205 in the BZ.

is a R-invariant TRIM for systems with symmetries R and
P. �τr here denotes the translational vector of T�τr . As a result,
{R, P} = 0 or [R, P] = 0 stands at arbitrary TRIMs. Further-
more, fourfold degeneracy can be induced only if {R, P} =
0, while not [R, P] = 0. In addition, [Gα,R] = 0 will con-
strain the fourfold degeneracy with D(Gα ) = I4×4 or D(Gα ) =
−I4×4 in the quaternate bases {|ψ〉, PT |ψ〉,R|ψ〉,RPT |ψ〉}.

Equivalently, Eq. (4) can be written as

[Gα,M] = 0 , {M, P} = 0 (5)

with M = RP. It can be deduced in the following. Firstly,
we have [Gα,M] = [Gα,RP] = [Gα,R]P + R[Gα, P] = 0.
Here we have used [Gα,R] = 0 in Eq. (4), and [Gα, P] = 0
is required by “S”-type TRIMs. Secondly, we have {M, P} =
{RP, P} = RPP + PRP = R + (−RP)P = R − R = 0.

Given all these conditions above, hourglass Dirac disper-
sion protected by the Gα between fourfold “S”-type TRIM
and “X”-type TRIM is constructed. Furthermore, nodal phe-
nomena protected by some glide-mirror symmetry must be
a one-dimensional nodal loop. Thus, the Dirac nodal loop is
induced.

B. SGs hosting FEDLs

In the following, we will deduce all SGs hosting FEDLs in
the nonmagnetic systems. In terms of any symmetry A, it acts
on both the real space and the spin space. When we focus our
discussion on the real space, we use Â instead of the symmetry
A. Then, the expression of R in the real space (denoted by
R̂) is the key for us to deduce all SGs possessing FEDLs.
For systems with the inversion symmetry, R̂ can be chosen
as two/three/four/sixfold rotation (or screw rotation). The
corresponding point groups of SGs containing Ĝα , P̂, and R̂
must belong to {D2h, D4h, D3d , D6h, Th, Oh}. [Gα,R] = 0 in
Eq. (4) requires [Ĝα, R̂] = 0 in the real space. After enumer-
ating these point groups one by one, we find the commutation
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FIG. 7. Band structures of (a) K2SnBi in SG.57, (b) Hf2Co3Si4 in SG.60, (c) AgF2 in SG.61, and (d) AgAsF7 in SG.62, respectively. The
insets in them show us the hourglass dispersions protected by the corresponding glide-mirror symmetries in SG.57, SG.60, SG.61, and SG.62,
respectively.

relation [Ĝα, R̂] = 0 in the real space (up to some integer
lattice translation) requires that R̂ must be either the twofold
rotation (or screw rotation) orthogonal to the α direction,
or the two/three/four/six-fold rotation (or screw rotation)
along the α direction. Firstly, we will prove that R̂ cannot be
two/three/four/six-fold rotation (or screw rotation) along the
α direction. If R̂ is some rotation (or screw rotation) along the
α direction, we have [R, R2α] = [R, GαP] = 0. Here R2α =
GαP denotes the two-fold screw rotation along the α direction.
Using the anticommutation relation {R, P} = 0 at the fourfold
“S”-type TRIM, we have

GαR = R2αPR
= R2α (−RP)

= − R2αRP

= −RR2αP

= −RGα. (6)

Equation (6) contradicts with the commutation relation
[Gα,R] = 0 at the fourfold “S”-type TRIM. As a result, R̂
cannot be two/three/four/sixfold rotation (or screw rotation)
along the α direction. Thus, R̂ must be some twofold rotation
(or screw rotation) orthogonal to the α direction. Then, R̂ can
be denoted by R̂2β with the β direction orthogonal to the α

direction, the corresponding point groups of SGs containing
Ĝα , P̂, and R̂ must be either D2h or supergroups of D2h. Let
us focus on SGs with D2h point group first. We choose the
inversion center as the origin, the α and β directions are along
the x axis and y axis, respectively. According to the discus-
sions above, we know that τα and some other component of �τ
must be 1

2 , while the third component of �τ can be either 0 or 1
2 .

In terms of Gβ = {mβ |�τ ′}, we do not give any direct constraint
of �τ ′, but the introduced Gβ must be compatible with Eq. (5)
at fourfold “S”-type TRIMs. Then the Seitz notations of the
inversion symmetry, Ĝα and Ĝβ , as generators in the real space
can be expressed in Table I.

Firstly, we choose Ĝα = {m100| 1
2

1
2 0} to show how we

can get SGs possessing fourfold “S”-type TRIMs. In this
case, we can easily find X : (π, 0, 0) and U : (π, 0, π ) are
“X”-type TRIMs, while S : (π, π, 0) and R : (π, π, π ) are
“S”-type TRIMs. Ĝβ can be expressed as Ĝβ = {m010|lmm},
with l, m, n ∈ {0, 1

2 }. We find GαGβ = ĒT−2l,1,0GβGα . Here,
Ē comes from the anticommutation relation m100m010 =
Ēm010m100 in the spin space. Then, we have [Gα, Gβ ] = 0 at S

and R if l = 0, while {Gα, Gβ} = 0 at S and R if l = 1
2 . As the

first equation (i.e., [Gα,M] = 0) required in Eq. (5), fourfold
“S”-type TRIMs can appear if l = 0. In the following, we
will focus on the second equation (i.e., {M, P} = 0) required
in Eq. (5) at fourfold “S”-type TRIMs when l = 0. We find
GβP = T2l,2m,2nPGβ , thus,

(1) if l = m = n = 0, we have GβP = PGβ which is not
in accordance with the anticommutation relation required in
Eq. (5). In this case, there is no fourfold “S”-type TRIM and
FEDL.

(2) if l = 0, m = 1
2 , n = 0, we have GβP = −PGβ at both

S and R, which is in accordance with the anticommutation re-
lation required in Eq. (5). In this case, both the S and R TRIMs
are fourfold “S”-type TRIMs. There must be two FEDLs in
kα = π plane. After some coordinate transformation, we find
the corresponding SG is SG.57.

(3) if l = 0, m = 0, n = 1
2 , GβP = −PGβ stands at R,

which is in accordance with the anticommutation relation
required in Eq. (5). In this case, the R TRIM is the unique
fourfold “S”-type TRIM and there must be a FEDL in kα = π

plane. After some coordinate transformation, we find the cor-
responding SG is SG.60.

(4) if l = 0, m = 1
2 , n = 1

2 , GβP = −PGβ stands at S,
which is in accordance with the anticommutation relation
required in Eq. (5). In this case, the S TRIM is the unique
fourfold “S”-type TRIM and there must be a FEDL in the
kα = π plane. After some coordinate transformation, we find
the corresponding SG is SG.61.

FIG. 8. (a) Band structures of IrN2 in SG.205. (b) Illustration
figure of the direct gap between the minimum conduction band and
the maximum valence band near the Fermi level on the kx = π plane.
We choose 0.25 eV as the energy cut, i.e., zone with energy gap larger
than 0.25 eV is represented with the white color.
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TABLE III. The symmetry-breaking transitions of SG.57.

SG.57-sg.n Filling factor of sg.n Coordinate transformation Phase transition

sg.11 4n {a, b, c}sg.11 = {b, c, a}SG.57 {FEDLCBZs, FEDLTBZs}→ I
sg.13 4n {a, b, c}sg.13 = {c, a, b}SG.57 {FEDLCBZs, FEDLTBZs}→ {2DP ⊕ 2DP , I}
sg.14 4n {FEDLCBZs, FEDLTBZs}→ {DNLCBZs, DNLTBZs}
sg.18 4n {a, b, c}sg.18 = {b, c, a}SG.57 {FEDLCBZs, FEDLTBZs}→ { 2DN ⊕ 2DN , I}
sg.26 4n {a, b, c}sg.26 = {c, a, b}SG.57 FEDLs → I
sg.28 4n {a, b, c}sg.28 = {c, b, −a}SG.57 {FEDLCBZs, FEDLTBZs}→{4 CWNLs, 4 WNLTBZs}
sg.29 8n {a, b, c}sg.29 = {−b, a, c}SG.57 {FEDLCBZs, FEDLTBZs}→{2 CWNCs, 4 WNLTBZs}

1. The “Filling factor of sg.n” column denotes the filling that realizes a band insulator for the subgroup sg.n.
2. FEDLCBZs and FEDLTBZs denote the contractible/noncontractible FEDLs, respectively. Similarly, DNLCBZs and DNLTBZs represent
Dirac nodal loops which are contractible and noncontractible in the BZ, respectively.
3. 2DP ⊕ 2DP and 2DN ⊕ 2DN mean two Dirac points and two DNs along the R-T line are possible to exist when each separated FEDL
is protected by R2x symmetry. DN here represents a fourfold degenerate node along R-T, with its dispersions doubly degenerate in the ky = π

and kz = π planes, while without degeneracy along the other directions.
4. I, CWNL, WNLTBZ, and CWNC denote insulator, concentric Weyl nodal loop, Weyl nodal loops traversing the BZ, and concentric Weyl
nodal chain, respectively.
5. Here “A ⊕ B” indicates nodal phenomena A and B are independent with each other, and can be obtained simultaneously.

Secondly, in terms of the other case Ĝα = {m100| 1
2

1
2

1
2 }, we

can easily find X : (π, 0, 0) and R : (π, π, π ) are “X”-type
TRIMs, while S : (π, π, 0) and U : (π, 0, π ) are “S”-type
TRIMs. We find GαGβ = ĒT−2l,1,0GβGα also stands in this
case. Then, we have [Gα, Gβ ] = 0 at S when l = 0, while
[Gα, Gβ ] = 0 at U when l = 1

2 . As the first equation (i.e.,
[Gα,M] = 0) required in Eq. (5), the S TRIM can be the
fourfold “S”-type TRIM if l = 0, while the U TRIM can be
the fourfold “S”-type TRIM if l = 1

2 . In the following, we will
focus on the second equation (i.e., {M, P} = 0) required in
Eq. (5) at fourfold “S”-type TRIMs for the cases of l = 0 and
l = 1, respectively. In terms of l = 0,

(1) if (l, m, n) ∈ {(000), (00 1
2 )}, we have [Gβ, P] = 0

stands at S, which is not in accordance with the anticommu-
tation relation required in Eq. (5). Thus, there is no fourfold
“S”-type TRIM and FEDL.

(2) if (l, m, n) ∈ {(0 1
2 0), (0 1

2
1
2 )}, we have {Gβ, P} = 0

stands at S, which is in accordance with the anticommutation
relation required in Eq. (5). Thus, the S TRIM is the fourfold
“S”-type TRIM, which indicates there exists a FEDL in this
case. After some coordinate transformation, we find the cor-
responding SGs are SG.60 and SG.62.

Similarly, in terms of l = 1
2 ,

(1) if (l, m, n) ∈ {( 1
2 0 1

2 ), ( 1
2

1
2

1
2 )}, we have [Gβ, P] = 0

stands at U , which is not in accordance with the anticommu-
tation relation required in Eq. (5). Thus, there is no fourfold
“S”-type TRIM and FEDL.

(2) if (l, m, n) ∈ {( 1
2 00), ( 1

2
1
2 0)}, we have {Gβ, P} = 0

stands at U , which is in accordance with the anticommutation
relation required in Eq. (5). Thus, the U TRIM is the four-
fold “S”-type TRIM, which indicates there exists a FEDL in
this case. After some coordinate transformation, we find the
corresponding SGs are SG.62 and SG.60.

Thus, after enumerating all the possibilities of the concrete
forms of Ĝα and Ĝβ , we find there are only four SGs possess-
ing the fourfold “S”-type TRIMs (which lead to the FEDLs),
they are SG.57, SG.60, SG.61 and SG.62, respectively.

It is well known that any symmetry in a subgroup will
be preserved in all the corresponding supergroups. Thus, all
supergroups of SG.57, SG.60, SG.61 and SG.62 can also
possess the FEDLs at the first sight. But, it is not the story
indeed. Let us choose SG.61 as an example to illuminate
this. SG.73 is a supergroup of SG.61 with the corresponding
coset representative {E , T1

2
1
2

1
2
}. For body-centered systems,

TABLE IV. The symmetry-breaking transitions of SG.60.

SG.60-sg.n Filling factor of sg.n Coordinate transformation Phase transition

sg.13 4n {SFEDL, FEDC}→ {4 DPs, I}
sg.14-class a 4n {a, b, c}sg.14 = {c, a, b}SG.60 {SFEDL, FEDC}→ DNLx
sg.14-class b 4n {a, b, c}sg.14 = {a, c, −a − b}SG.60 {SFEDL, FEDC}→ DNLz
sg.18 4n {a, b, c}sg.18 = {c, a, b}SG.60 {SFEDL, FEDC}→ {4 DNs, I}
sg.29 8n {a, b, c}sg.29 = {−b, a, c}SG.60 {SFEDL, FEDC}→ CWNCx
sg.30 4n {a, b, c}sg.30 = {c, a, b}SG.60 {SFEDL, FEDC}→ {2 CWNLs, WNN}
sg.33 8n {a, b, c}sg.33 = {c, b, −a}SG.60 {SFEDL, FEDC}→ CWNCz

1. SFEDLs/FEDC means the FEDLs in SG.60 are composed of two separated FEDLs or only one Dirac nodal chain, respectively.
2. DNLx/DNLz denotes Dirac nodal loop in the kx = π/kz = π plane, which will be reserved under SG.60-sg.14-class a/b transition,
respectively.
3. CWNCx and CWNCz denote concentric Weyl nodal chain in the kx = π and kz = π plane, respectively, while WNN denotes the Weyl nodal
net schematized in Fig. 9(c).

165135-6



FILLING-ENFORCED DIRAC NODAL LOOPS IN … PHYSICAL REVIEW B 102, 165135 (2020)

TABLE V. The symmetry-breaking transitions of SG.61.

SG.61-sg.n Filling factor of sg.n Phase transition

sg.14-class β 4n FEDL → DNLβ ⊕ 2DPγ ⊕ 2DPα

sg.19 4n FEDL → 2DN x ⊕ 2DN y ⊕ 2DN z
sg.29-class β 8n FEDL → CWNCα/WNLTBZα ⊕ CWNLγ /WNCTBZγ

1. 2DPγ and 2DPα mean that two DPs along the kα = π ∩ kγ = π line are possible to exist when some FEDL protected by R2β symmetry
crosses this line.
2. Similarly, 2DNα (α ∈ {x, y, z}) indicates that 2 DNs are possible to exist when the contractible/noncontractible FEDL in the kα = π plane
is simultaneously protected by R2γ /R2β symmetry.
3. In the case of SG.61-sg.29-class β transition, CWNCα and WNLTBZα are short for concentric Weyl nodal chain and Weyl nodal loop
noncontractible in the kα = π plane, while CWNLγ and WNCTBZγ are short for concentric Weyl nodal loop and Weyl nodal chain
noncontractible in the kγ = π plane, respectively. “A ⊕ B” indicates nodal phenomena A and B are independent with each other, and can
be available simultaneously, while “A/B” indicates nodal phenomena A and B are alternative under some transition. Figure 10 shows how the
FEDLs evolve under SG.61-sg.29-class β transition.

kα = 0 plane is the only Gα invariant plane. Thus, the FEDL
defined in the kα = π plane does not exist in this supergroup
(SG.73). We remind the readers that all our discussions and
derivations about Ĝα and Ĝβ to deduce the FEDLs are based
on the primitive lattice vectors, i.e., the zero and nonzero
components of �τ and �τ ′ in Ĝα and Ĝβ are in the unit of the
primitive lattice vectors. If these components change under
the primitive lattice vectors of corresponding supergroups, the
discussions and deductions above will no longer stand and
the FEDLs will disappear. In terms of the supergroup SG.73
(of subgroup SG.61), we find the primitive lattice vectors of
the subgroup SG.61 are different from that of the supergroup
SG.73. This difference leads to different expressions of �τ and
�τ ′ in Ĝα and Ĝβ in the supergroup SG.73, thus, the FEDLs dis-
appear in the supergroup. After enumerating all supergroups
of SG.57, SG.60, SG.61, and SG.62 with �τ and �τ ′ in Ĝα and
Ĝβ unchanged in the bases of the corresponding primitive
lattice vectors, we find SG.205 is another SG, and the only
supergroup, possessing FEDLs.

As a result, there exist five and only five SGs satisfying
these conditions above, namely, SG.57, SG.60, SG.61, SG.62
and SG.205. Furthermore, we find that the fillings which
realize a band insulator for all these groups are 8n, and the
Dirac nodal loop comes from the band crossings between
PT related doublets 8n + 3 ⊕ 8n + 4 and PT related doublets
8n + 5 ⊕ 8n + 6, suggesting these Dirac nodal loops appear
at the Fermi level when systems of these SGs are half-filled.
Here (8n + 3) ⊕ (8n + 4) doublet is the PT related doublet
composed of the (8n + 3)th and (8n + 4)th bands according to

the order of energy. As a result, we call these systems FEDL
materials.

C. Configurations of FEDLs in SG.57,60,61,62,205

In the following, we focus on the configurations of the
FEDLs in all these SGs, among which SG.60 [83], SG.61 [86]
and SG.62 [84,85] have been proposed in the earlier works.
According to the above discussion, we deduce the schematic
figures of all the FEDLs for the five SGs, as shown in Fig. 3.
Here we have chosen the cases that all the Dirac nodal loops
are separated and contractible in the BZ for simplicity in the
figure. The words “contractible in the BZ” (“noncontractible
in the BZ”) mean that the Dirac nodal loop can (cannot) be
compressed to an infinitesimal Dirac nodal loop surrounding
the fourfold “S”-type TRIM. If some FEDL is noncontractible
in the BZ, it means that this FEDL cannot be translated into
the first BZ without touching any boundary of the BZ. Thus,
the noncontractible FEDL is no other than the FEDL travers-
ing the BZ. Fig. 3 shows the FEDLs separated and contractible
in the BZ. However, FEDLs in each SG can touch each other
and can be noncontractible in the BZ [83,86]. It is natural for
us to explore all the possible configurations of the FEDLs.

1. Configurations of FEDLs in SG.57

As shown in Figs. 4(a) and 4(c), there are two different
configurations of FEDLs in the ky = π plane in SG.57, named
as contractible FEDLs and noncontractible FEDLs in the BZ.
The corresponding connections of the bands satisfying the

TABLE VI. The symmetry-breaking transitions of SG.62.

SG.62-sg.n Filling factor of sg.n Coordinate transformation Phase transition

sg.11 4n CFEDL → I
sg.14-class a 4n {a, b, c}sg.14 = {−b, a, b + c}SG.62 FEDL → DNL
sg.14-class b 4n {a, b, c}sg.14 = {b, c, a}SG.62 FEDL → 2DPs
sg.19 8n FEDL → 2 DN s
sg.26 4n {a, b, c}sg.26 = {b, c, a}SG.62 FEDL → I
sg.31 4n {a, b, c}sg.31 = {−b, a, c}SG.62 FEDL → CDNL
sg.33 8n {a, b, c}sg.33 = {a, −c, b}SG.62 FEDL → CDNC

1. If the two crossing points of FEDL along R-S are protected by R2z, two DPs/DNs (denoted by 2DPs/2DN s) appear under SG.62-sg.
14-class b/SG.62-sg.19 transition, respectively.
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TABLE VII. The symmetry-breaking transitions of SG.205.

SG.205-sg.n Filling factor of sg.n Phase transition

sg.61 8n {CFEDLs,FEDLTBZs,DNN} → {CFEDLs,FEDLTBZs,AFEDLs}
sg.148 2n {CFEDLs,FEDLTBZs,DNN} → I
sg.198 8n {CFEDLs,FEDLTBZs,DNN} → {6DN s, 6DN s,I}

1. CFEDLs/FEDLTBZs indicate that the FEDLs are contractible/noncontractible in the BZ, respectively, while DNN represents the Dirac
nodal net schematized in Fig. 6(e). AFEDLs indicate the DNN can be tuned to arbitrary configuration of FEDLs in SG.6 under SG.205-sg.61
transition.
2. 6DN s indicate that six fourfold DNs related with each other by R3[111] symmetry may appear at three R2α invariant lines, S-R, T-R, and U-R,
respectively, when the FEDLs are protected by the R2α symmetries. Otherwise, these FEDLs will be gapped. Even though the FEDLs may be
gapped under the SG.205-sg.198 transition, the filling that realizes a band insulator remains unchanged to be 8n, which indicates the system is
still half filled and semimetallic.

compatibility relations are shown in Figs. 4(b) and 4(d), re-
spectively. According to the compatibility relation along R-T,
we emphasize here that Dirac nodal chain (a Dirac nodal chain
is an one-dimensional nodal configuration which is composed
of two Dirac nodal loops touching with each other at some
isolate point in the BZ) composed of the two FEDLs touching
at some isolated point along R-T is prohibited.

2. Configurations of FEDLs in SG.60

There are two FEDLs in SG.60, with one lying in kx = π

plane, while the other lying in kz = π plane. They are pro-
tected by Gx and Gz, respectively.

To obtain some intuitive pictures, we list several possible
band connections according with the compatibility relation
along U-R, which gives a Dirac nodal chain from Figs. 5(a)–
(c), and two separated FEDLs from Figs. 5(d) and 5(e),
respectively. Reminding of the earlier work [69], one may
consider a third configuration of the FEDLs, i.e., the Dirac
nodal links. A Dirac nodal link is a one-dimensional nodal
configuration which is composed of two Dirac nodal loops
locked with each other. The hypothetical Dirac nodal link
appears when these two separated FEDLs go close, and then
cross with each other. Thus, the crossing point of the Dirac
nodal link near R is protected by Gz, while the crossing point
near U is protected by Gx. Band crossings protected by Gz

can only come from bands between P̄2P̄2(2)(P̄4P̄4(2)) and
P̄3P̄3(2)(P̄5P̄5(2)), where P̄i is an irreducible representation of
the little group at P. The notation can be looked up on the
Bilbao Crystallographic Server [96,97]. However, both bands
P̄2P̄2(2)(P̄4P̄4(2)) and P̄3P̄3(2)(P̄5P̄5(2)) are simultaneously
valence bands or conductance bands, as a result, Dirac nodal

link can be obtained by bands below or above the Fermi level,
while cannot be obtained by bands between 8n + 3 ⊕ 8n + 4
doublet and 8n + 5 ⊕ 8n + 6 doublet at the Fermi level.

In addition, the Dirac nodal loop encircling R in the kx = π

plane is either contractible or noncontractible in the BZ along
the kz axis. We define a new ζ2 index as

ζ2 = n+(S) − n+(R)

2
mod 2 (7)

to tell whether this Dirac nodal loop is contractible in the
BZ or not. In Eq. (7), n+(R) and n+(S) represent the num-
ber of occupied bands with +1 Gx eigenvalue at R and S,
respectively. ζ2 = 0 indicates that this Dirac nodal loop is
noncontractible in the BZ, while ζ2 = 1 indicates this Dirac
nodal loop is contractible in the BZ. This new ζ2 index can be
obtained as follows. Let us focus on the FEDL in the kx = π

plane. Suppose this FEDL is contractible in the BZ, it means
that there exists a band crossing (originating from this FEDL)
between bands with the opposite Gx eigenvalues along R-S.
This band crossing will change the order of the bands near
the crossing point, making the number of the occupied bands
with gx = +1 at R larger/smaller than that at S by 2, i.e.,
n+(R) − n+(S) = ±2, which gives ζ2 = 1. In the contrary, if
this FEDL is noncontractible in the BZ, it means there is no
band crossing between bands with the opposite Gx eigenval-
ues along R-S. Thus, n+(R) − n+(S) = 0, which gives ζ2 = 0.
We also remind that we have neglected the existence of an
occasional Dirac nodal loop. If bands with the opposite Gx

eigenvalues near the Fermi level cross twice along R-S, it
also gives ζ2 = 0. In this case, there exists another occasional
Dirac nodal loop encircling the FEDL in the kx = π plane.

FIG. 9. The evolution of FEDLs in SG.60 under (a) SG.60-sg.29, (b),(c) SG.60-sg.30, and (d) SG.60-sg.33 transitions. The red loops
denote how the FEDLs split under these transitions. We remind the readers that the Weyl nodal loops surrounding U are in the kz = π plane,
while those surrounding R are in the kx = π plane.
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FIG. 10. The evolution of the FEDLs in SG.61 under SG.61-sg.29-class b transition. We remind the readers that the Weyl nodal loops
surrounding S and U in Figs. 10(a)–10(c) are in the kx = π plane and kz = π plane, respectively.

3. Configurations of FEDLs in SG.61

SG.61 contains three screw axes, the inversion, and three
glide mirrors, as shown in Table II. The subscripts satisfy
(α, β ) = {(x, y); (y, z); (z, x)}, which presents a cyclic per-
mutation relation. As a result, there exists a FEDL on each
surface of the BZ surrounding S, T, and U, respectively. Sim-
ilar with the FEDL in the kx = π plane of SG.60, each FEDL
of SG.61 can be either contractible or noncontractible in the
BZ, which can also be distinguished by three (ζ2x, ζ2y, ζ2z )
indexes

ζ2x = nx
+(S) − nx

+(R)

2
mod 2,

ζ2y = ny
+(T ) − ny

+(R)

2
mod 2,

ζ2z = nz
+(U ) − nz

+(R)

2
mod 2. (8)

In Eq. (8), nx
+(S)/ny

+(T )/nz
+(U ) and nx/y/z

+ (R) represent the
numbers of occupied bands with +1 Gx/y/z eigenvalue at
S/T/U and R, respectively. ζ2α = 0 indicates the Dirac nodal
loop in the kα = π plane is noncontractible in the BZ, while
ζ2α = 1 indicates this Dirac nodal loop is contractible in the
BZ. As a result, FEDLs shown in Figs. 6(a), 6(b) 6(c), and
6(d) indicate the corresponding {ζ2x, ζ2y, ζ2z} equals {1, 1, 1},
{0, 0, 0}, {1, 1, 0}, and {1, 0, 0}, respectively.

It should be noted that when {ζ2α, ζ2β} = {0, 1} for some
system, the Dirac nodal loops in the kα = π and kβ = π

planes may touch each other, and thus, a Dirac nodal chain
forms, such as the AgF2 system in SG.61 [86].

4. Configurations of FEDLs in SG.62

There is only one FEDL in the kx = π plane, and it
must be contractible in the BZ because there is only one
four-dimensional irreducible representation along X-U-R of
SG.62. Thus, bands between 8n + 3 ⊕ 8n + 4 doublet and

8n + 5 ⊕ 8n + 6 doublet must be gapped along X-U-R, lead-
ing the FEDL contractible in the BZ.

5. Configurations of FEDLs in SG.205

SG.205 can be seen as a cubic case of SG.61 as a result
of SG.205 = SG.61 ⊗ R3[111]. R3[111] denotes the threefold
rotation along the body-diagonal direction. Thus, these three
FEDLs are simultaneously either contractible in the BZ or
noncontractible in the BZ and related to each other by the
R3[111] symmetry, as shown in Figs. 6(a) and 6(b), respectively.
More interestingly, we find that the separated FEDLs may
meet with each other at R, as schematized in Fig. 6(e). In this
case, this special FEDL at R is sixfold degenerate [77].

Similar with SG.60 and SG.61, we can introduce ζ2 =
ζ2x = ζ2y = ζ2z as

ζ2 = nx
+(M ) − nx

+(R)

2
mod 2 (9)

to distinguish the three different configurations in SG.205.
ζ2 = 1 indicates that the three FEDLs are contractible in the
BZ, while ζ2 = 0 indicates the three FEDLs are noncon-
tractible in the BZ or just connect with each other at R. To
further identify whether the FEDLs are composed of three
separated Dirac nodal loops noncontractible in the BZ or con-
nected with each other at R when ζ2 = 0, more calculations
along M-R are needed. In the following, we will use IrN2 as
an example to illustrate this.

To justify the FEDLs in each SG, we calculate band struc-
tures of K2SnBi in SG.57, Hf2Co3Si4 in SG.60, AgF2 in
SG.61, AgAsF7 in SG.62, and IrN2 in SG.205, as shown in
Figs. 7(a)–7(d) and Figs. 8(a) and 8(b), respectively. We can
see the hourglass dispersions protected by the corresponding
glide-mirror symmetry from the band structures in each SG,
which indicates they are indeed FEDL materials. Especially
for the case of Pa3̄ IrN2, the FEDL lies close to M-R and
touches this line at R, as the black line shows in Fig. 8(b). It

TABLE VIII. FEDL materials in SG.57.

Materials Materials Materials Materials

Cs(C;100,1) Pr3(GaNi)2(C;000,2) ReN2(C;000,3) YbCrSb3(C;000,3)
K2SnBi(C;000,0) Pr3(GeRu)2(C;000,1) K5Hg7(C;000,0) ThTl(T;000,1)
CaAlPd(C;100,2) La3(GaNi)2(C;100,1) HfGa(C;000,1) Na8In6Au11(C;000,3)
Ca4MgAl3(C;000,1) Y3(SiRh)2(C;000,1)

1. C/T indicates the configuration of the FEDLs in SG.57 is composed by two contractible/noncontractible FEDLs in the BZ, respectively.
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TABLE IX. FEDL materials in SG.60.

Materials Materials Materials Materials

Fe2N(S;C;110,0) ReO2(C;C;110,2) RbCuCl3(C;C;110,2) Al3FeSi2(S;C;110,3)
Mn2N(S;C;110,3) Si2Ni7P5(C;C;110,1) Hf2Co3Si4(C;C;110,3)

1. S/C means that the FEDLs are composed by two separated Dirac nodal loops or only one Dirac nodal chain, while C/T indicates the FEDL
in the kx = π plane is contractible or noncontractible in the BZ, respectively.

means that the corresponding FEDL is no other than the Dirac
nodal net, as schematized in Fig. 6(e).

IV. EVOLUTIONS OF FEDLS UNDER
SYMMETRY-BREAKING BUT

TRANSLATION-INVARIANT TRANSITIONS

In the above, we have deduced all possible configurations
of the FEDLs in the five SGs and classify them accordingly.
Furthermore, it is well known that perturbations like strains,
external magnetic fields, circularly polarized lights, and so
on, can serve as useful methods to tune the band structures
in condensed matter systems. Generally, these perturbations
will break some symmetries, and then, how the FEDLs in the
five SGs evolve under these perturbations remains a question.
In the following, we will explore the evolutions of these
FEDLs under maximal-subgroup symmetry-breaking transi-
tions which respect the translation symmetries. Suppose all
the transitions are obtained by the adiabatic perturbations,
which indicates that no new band crossings occur in this
progress. Furthermore, it should be noted that we have ne-
glected what and how the perturbations are applied to get the
corresponding transitions.

Firstly, taking SG.57 as an example, we can get all types
of symmetry-breaking transitions of SG.57 from the Bilbao
Crystallographic Server. We denote the transition as SG.57-
sg.n, where “sg.n” denotes some maximal subgroup of SG.57
with k index = 1 (k index = 1 indicates that the corresponding
transition does not break any translation symmetry). If the
FEDL crosses the R-T line, band crossings from the FEDL
along this line must be simultaneously protected by either the
R2x or the Gz symmetry (besides the Gy symmetry) from the
compatibility relation. Furthermore, if the separated FEDLs in
the ky = π plane are protected by the Gz along R-T, the sepa-
rated FEDLs are in fact separated Dirac nodal chains. It should
be noted that for the case of separated Dirac nodal chain, it
can be divided into two parts, i.e., the FEDL in the ky = π

plane and the accidental Dirac nodal loop in the kz = π plane.
The evolutions of them can be deduced independently. In the
following discussions, we will only focus on the evolution of

TABLE X. FEDL materials in SG.61.

Materials

AgF2(111;2)

1. There exists only one FEDL material in SG.61 from the Materials
Project. The configuration of the FEDLs contains an hourglass Dirac
nodal chain traversing the BZ. More details can be obtained from the
earlier work [86].

FEDLs, while the evolution of the accidental Dirac nodal loop
in the kz = π plane is neglected.

A. SG.57-sg.11 transition

The corresponding perturbation of SG.57-sg.11 transition
breaks R2x/y and Gx/y symmetries, while R2z, Gz, and the
inversion symmetries are reserved. Filling that realizes a
band insulator for subgroup sg.11 is 4n, which indicates the
symmetry-enforced nodal phenomena of the subgroup are
within bands from the (4n + 1)th to the 4(n + 3)th bands.
These symmetry-enforced nodal phenomena are different
from the FEDLs within bands from the (8n + 3)th to the
(8n + 6)th bands at the Fermi level. As a result, whether
these systems become insulators or topological semimetals
depends on how the FEDLs evolve. Furthermore, the key for
the evolution of the FEDLs is to tell whether the FEDLs are
protected by the preserved symmetries at the corresponding
high-symmetry �k points. The reason is direct, the degeneracy
from the FEDL will be gapped if it is no longer protected by
any reserved symmetry.

(1) R2z invariant lines, R-S and T-Y: From the corre-
sponding compatibility relations, PT related states possess
the opposite R2z value. Then, there exist only one irreducible
representation along these two lines in sg.11, which indicates
FEDLs along these lines will be gapped under SG.57-sg.11
transition.

(2) Gz invariant line, R-T: When the FEDLs are separated,
they must go across R-T. From the corresponding compatibil-
ity relation, we find that PT related states along this line share
the same Gz value. Then, there exist two irreducible represen-
tations with different Gz values along R-T in sg.11. Thus, band
crossings from the FEDLs along R-T can be protected by Gz,
which indicates that the FEDLs may be separated Dirac nodal
chains. The part of accidental Dirac nodal loops (if they exist)
protected by Gz in the kz = π plane is reserved, while the part
of FEDL in the ky = π plane is gapped under SG.57-sg.11
transition.

In summary, the FEDLs in ky = π plane will be gapped,
while the accidental Dirac nodal loops in kz = π plane (if they
exist) are reserved under the SG.57-sg.11 transition. The cor-
responding phase transitions induced by symmetry-breaking
perturbations are listed in Table III.

B. SG.57-sg.14 transition

The corresponding perturbation breaks R2x, R2z, Gx, and
Gz symmetries, while the R2y, Gy, and inversion symmetries
are reserved. In this case, the FEDLs remain to be acciden-
tal Dirac nodal loops because the reserved symmetries are
sufficient for Dirac nodal loops in the ky = π plane. How-
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TABLE XI. FEDL materials in SG.205.

Materials Materials Materials Materials

CuS2(C;111,2) Te2Ir(C;111,3) AuN2(C;111,0) IrN2(N;111,0)
IrS2(C;111,3) CuTe2(C;111,3) CoTe2(C;111,3) CoS2(C;111,2)
CoSe2(C;111,2) RhS2(C;111,3) CuSe2(C;111,2) Sb2Au(C;111,3)
Te2Rh(C;111,3) RhSe2(C;111,3)

1. C/T/N indicates that the FEDLs consist of three separated FEDLs contractible/noncontractible in the BZ, or only one whole Dirac nodal
net, respectively. The first-principles calculations indicate IrN2 is the only material possessing the Dirac nodal net as schematized in Fig. 6(e).

ever, it should be noted that the Dirac nodal loops are no
longer filling enforced. Thus, the contractible FEDLs and
noncontractible FEDLs will evolve into contractible and non-
contractible Dirac nodal loops, respectively.

C. SG.57-sg.28 transition

The corresponding perturbation breaks the R2y, R2z, Gx,
and inversion symmetries, while R2x, Gy, and Gz symmetries
are reserved. The absence of the inversion symmetry will
break the double degeneracy induced by PT , thus, each FEDL
will split into two Weyl nodal loops. As a result, for the case
of contractible FEDLs, each FEDL evolves into two concen-
tric Weyl nodal loops, while for the case of noncontractible
FEDLs (i.e., FEDLs traversing the BZ), each FEDL evolves
into two Weyl nodal loops traversing the BZ.

D. SG.57-sg.29 transition

Similar with the SG.57-sg.28 transition, each FEDL will
split into two Weyl nodal loops as a result of the breaking
of the inversion symmetry. Furthermore, there exists 
 =
Gy ∗ T enforced double degeneracy along the R-T line, which
indicates that for the case of separated FEDLs, the concentric
Weyl nodal loops from the same FEDL touch each other along
the R-T line, leading to two concentric Weyl nodal chains.

Similarly, we can deduce the evolutions of the FEDLs in
the other four SGs. Especially, in terms of SG.61, class {a,b,c}
of both SG.61-sg.14 and SG.61-sg.29 transitions corresponds
to the axis chosen as the special direction of the symmetry-
breaking perturbation, and the analyses are completely the
same for the three classes due to the cyclic permutation re-
lations shown in Table II. Furthermore, SG.205 can be seen
as a cubic case of SG.61, suggesting that the three FEDLs are
related to each other by the R3[111] symmetry. The analyses

of them are very similar, as shown in Tables V and VII,
respectively.

Thus, we can obtain the evolutions of the FEDLs in all
the five SGs under all these transitions, the results are listed
in Tables III–VII, respectively. Furthermore, some schematic
figures are given to visualise these evolutions, as shown in
Figs. 9 and 10, respectively.

V. POTENTIAL TIS AND TCIS FROM THE
FEDL MATERIALS

In the above, we have discussed the phase transitions of
the FEDL materials under symmetry-breaking but translation-
invariant perturbations. One may further ask if the FEDL
materials will become TIs or TCIs when the FEDLs are
gapped under the corresponding perturbations. In this section,
we list almost all the FEDL materials and the correspond-
ing symmetry indicators when they become insulators under
these perturbations. We import the nonmagnetic materials in
the corresponding SGs that are both registered in the online
crystal database the Materials Project [98] and the Inorganic
Crystal Structure Database (ICSD) [99]. By “nonmagnetic,”
we regard one material as nonmagnetic if its magnetic mo-
ment is not higher than 0.1 μB per unit cell (according to its
Materials Project record). Then, we select the half-filled ma-
terials (with the filling 8n + 4) after calculating the fillings of
all the materials. It is well known that each chemical element
possesses “x” electrons, “x” here is just the atomic number of
the chemical element. Thus, the filling of a material can be
obtained by summing the atomic numbers of all the atoms in
this system.

Fortunately, we find these insulators from the FEDL ma-
terials can be depicted with the (Z2, Z2, Z2; Z4) indexes, just
the same as centrosymmetric systems in SG.2. The values
of these indexes can always be calculated for the 8n + 4

FIG. 11. (a) The schematic figure of the FEDLs for AgF2 in SG.61. The evolution of FEDLs for AgF2 in SG.61 under (b) SG.61-sg.14-class
a, (c) SG.61-sg.14-class b, and (d) SG.61-sg.14-class c transitions, respectively. The blue discs along R-S represent Dirac points originating
from the splitting of the FEDL.

165135-11



DEXI SHAO AND CHEN FANG PHYSICAL REVIEW B 102, 165135 (2020)

FIG. 12. The evolution of FEDLs for AgF2 in SG.61 under (a) SG.61-sg.19, (b) SG.61-sg.29-class a, (c) SG.61-sg.29-class b, and
(d) SG.61-sg.14-class c transitions, respectively. The yellow discs originating from the splitting of the FEDL in the kx = π plane denote
the fourfold degenerate nodes (DNs) along R-S.

occupied bands and keep unchanged after these perturbations
are applied. It is based on the adiabatic assumption that even
though the degeneracies of the bands are violated under the
perturbations, no new band crossings occur and the order of
the bands keeps unchanged. The formula to calculate these
indexes is expressed as

Z2,1 ≡
∑

K∈TRIM
at {kx=π}

N−(K) − N+(K)

2
mod 2,

Z2,2 ≡
∑

K∈TRIM
at {ky=π}

N−(K) − N+(K)

2
mod 2,

Z2,3 ≡
∑

K∈TRIM
at {kz=π}

N−(K) − N+(K)

2
mod 2,

Z4 ≡
∑

K∈TRIM

N−(K) − N+(K)

2
mod 4. (10)

Using the above formula, we list the corresponding
(Z2, Z2, Z2; Z4) indexes of almost all the FEDL materials in
each SG, as shown in Tables VIII–XI, respectively.

For the case of FEDL materials in SG.62, we have listed the
corresponding Z4 index in the Supplemental Material [100],
with the three other Z2 indexes Z2x ≡ Z2z ≡ 1, Z2y ≡ 0. The
values of these three Z2 indexes are always fixed, which can be

FIG. 13. The evolution of FEDLs for SrIrO3 in SG.62 under
(a) SG.62-sg.14-class a, (b) SG.62-sg.14-class b, (c) SG.62-sg.19,
(d) SG.62-sg.31, and (e) SG.62-sg.33 transitions, respectively.

seen from the following. We find only bands at U contribute
to the Z2x(= Z2z ) index, because bands are always fourfold
degenerate with the parities p = 2 × (+1) ⊕ 2 × (−1) at the
other TRIMs in the kx = π and kz = π planes. Furthermore,
bands are fourfold degenerate with the parities p = 4 × (+1)
or p = 4 × (−1) at U, which indicates N−(U) − N+(U) ≡
2 + 4m for the fillings of 8n + 4, as a result, Z2x = Z2z = 1.
In addition, the four TRIMs in the ky = π plane are all four
degenerate with the parities p = 2 × (+1) ⊕ 2 × (−1), which
gives Z2y = 0.

VI. TWO EXAMPLES: AgF2 IN SG.61 AND SrIrO3 IN SG.62

AgF2 in SG.61 is an interesting FEDL material, which
has been studied in the earlier work [86]. In the following,
we will illustrate how this FEDL material evolves to various
topological semimetals.

According to Eq. (8), we get {ζ2x, ζ2y, ζ2z} = {1, 1, 0} from
the first-principles calculations, which indicates the FEDLs in
the kx = π ∪ ky = π and kz = π planes are contractible and
noncontractible in the BZ, respectively. Combined with the
band structures shown in Fig. 7(c), we find the contractible
FEDL in the kx = π plane touches the noncontractible FEDL
in the kz = π plane at some point along R-M′′, leading to a
Dirac nodal chain traversing the BZ, as shown in Figs. 11(a).
Using Table V, and keep in mind that the node from the
Dirac nodal chain along R-T is not protected by R2x sym-
metry, while the node along R-S from the FEDL in the
kx = π plane is protected by R2z symmetry, we can easily
deduce the final nodal phenomena under all the SG.61-sg.n
symmetry-breaking transitions, as shown in Fig. 11 and 12,
respectively.

SrIrO3 in SG.62 is the well-known perovskite-class mate-
rial which possesses the FEDL state [81,82]. We also deduce
the evolutions of the FEDL under all maximal-subgroup tran-
sitions which respect the translation symmetries, as shown in
Fig. 13.

VII. CONCLUSIONS

We propose the FEDL state in nonmagnetic systems and
find it exists in five and only five SGs (SG.57, SG.60, SG.61,
SG.62, and SG.205). Then we explore the possible configu-
rations of the FEDLs in each SG. Band structures of K2SnBi
in SG.57, Hf2Co3Si4 in SG.60, AgF2 in SG.61, AgAsF7 in
SG.62, and IrN2 in SG.205 have been calculated to show
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the FEDLs in each SG. Furthermore, we study the evolutions
of the FEDLs under various perturbations which respect the
translation symmetries and find that the FEDL materials can
serve as perfect parent materials of both topological semimet-
als with nodal points/loops, and TIs/TCIs. At last, almost all
the FEDL materials are listed, among which we have chosen
AgF2 in SG.61 and the well-known perovskite-class material
SrIrO3 in SG.62 as two examples to illustrate how we can ob-
tain various topological semimetals from the FEDL materials.
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