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The multiscale entanglement renormalization ansatz (MERA) provides a constructive algorithm for realizing
wave functions that are inherently scale invariant. Unlike conformally invariant partition functions, however,
the finite bond dimension χ of the MERA provides a cutoff in the fields that can be realized. In this paper, we
demonstrate that this cutoff is equivalent to the one obtained when approximating a thermal state of a critical
Hamiltonian with a matrix product operator (MPO) of finite bond dimension χ . This is achieved by constructing
an explicit mapping between the isometries of the MERA and the local tensors of the MPO. In terms of energy
scales, our results show that a finite bond dimension MERA is equivalent to introducing both an infrared and an
ultraviolet scale, characterizing relevant and irrelevant perturbations on the underlying conformal field theory.
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I. INTRODUCTION

Arguably, the central problem in the study of extended
quantum many-body systems—whether it is in the context
of high-energy physics or condensed-matter physics—is the
identification of the relevant degrees of freedom. A new per-
spective on this problem arose with the advent of tensor
network states (TNSs) [1]. The crucial feature of the TNS
approach is that it directly targets the quantum many-body
state and, in particular, its entanglement structure. In this sense
TNSs realize a compression or truncation of the exact quan-
tum state in terms of the most relevant entanglement degrees
of freedom. In particular, as the virtual (contracted) indices
of the tensors encode the entanglement structure, the bond di-
mension χ of these indices can be thought of as the systematic
control parameter of the entanglement compression achieved
by a particular TNS. Given their success thus far, it is desirable
to better understand the precise nature of this compression.

To describe critical quantum spin chains, the topic of
this paper, there are two distinct tensor networks that offer
such compression, namely, matrix product states (MPSs) and
the multiscale entanglement renormalization ansatz (MERA).
The MPS case underlies the very successful density matrix
renormalization group algorithm [2,3], and its success for
simulating critical systems stems from the fact that the fi-
nite bond dimension χ approximation plays the role of an
infrared (IR) cutoff by effectively adding a small relevant
perturbation to the critical system with an amplitude mono-
tonically decreasing as a function of χ . This allows us to
construct a theory of finite entanglement scaling for uni-
form (infinite) MPSs in a vein similar to finite length scaling
methods used in exact diagonalization or Monte Carlo [4–8].
Alternatively, matrix product operators (MPOs) have been
proven to provide a faithful approximation of thermal states
of quantum spin chain Hamiltonians at any finite temperature,
with a bond dimension scaling as a power of the inverse

temperature, thereby providing an avenue for finite temper-
ature scaling [9–12].

The MERA approach takes a completely different path:
the central idea is to define a scale-invariant tensor network
for which all correlations decay algebraically by construc-
tion, directly aiming at representing the critical ground state
[13–18]. The bond dimension χ of the MERA controls the
number of variational parameters, but its physical meaning
has never been clarified. The main contribution of this paper
is to elucidate the meaning of χ and to equate it to the bond
dimension needed to approximate a thermal state efficiently
using an MPO. This solves one of the major open problems
in the theory of the MERA and provides a justification for the
finite χ truncation. Notice that while it has been shown that
one can construct MERA states directly from the application
of the tensor network renormalization (TNR) procedure on the
half-finite Euclidean path integral with open physical indices
[19], regarding the role of the bond dimension, this merely
shifts the question to the role of the bond dimension in TNR.

As demonstrated in [20–22], MERA approximations for
critical systems can be understood naturally in scale space: the
MERA is a realization of the conformal plane to a strip map,
or, equivalently, a map from physical to scale space. We will
demonstrate that the half-infinite subsystem density matrix
reduces to a thermal (strip) state in scale space, ρscale = e−βH̄ ,
for a Hamiltonian H̄ belonging to the same universality class
as the original critical Hamiltonian H for which the MERA
was optimized. The emerging picture is one where a finite
χ MERA yields a particularly efficient MPO approximation
for thermal states. Our numerics indicate that χ is controlling
both an IR and ultraviolet (UV) cutoff of the conformal field
theory (CFT) Hamiltonian H̄ . Furthermore, the (single-site)
MERA scaling operator appears as the transfer matrix of this
strip state, which relates the MERA procedure for extracting
scaling dimensions to Cardy’s finite-size scaling [23–25]. Fi-
nally, motivated by the MPO compression view, in the last
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FIG. 1. (a) The MERA expression for the reduced density matrix
on the right infinite half line. (b) The MPO expression for the reduced
density matrix in scale space ρscale, constructed out of the isometries
and their conjugates. (c) The corresponding transfer operator for
the partition function that is equal to the single-site MERA scaling
operator.

part of this paper we propose and implement an algorithm
for the construction of isometries and corresponding scaling
operators from direct MPO approximations of the thermal
state in terms of the original Hamiltonian H .

II. FROM REAL SPACE TO SCALE SPACE,
FROM THE PLANE TO THE STRIP

We consider the half-line density matrix to be realized by a
ternary MERA with bond dimension χ , which is numerically
optimized on a particular spin Hamiltonian at a critical point.
As illustrated in Fig. 1(a), by contracting the ket and bra to
the left of the origin, we obtain the reduced density matrix ρ

defined on the real-space interval x ∈ [0,+∞]. All tensors to
the left of the causal cone of the origin site drop out due to
the unitary and isometric restrictions on the tensors, resulting
in the explicit expression ρ = W ρscaleW +. Here ρscale is the
MPO in Fig. 1(b), with the MPO tensors constructed out of the
MERA isometries and their conjugates at the different layers
labeled by the renormalization group (RG) log scale s. W is
the full isometry from the physical real-space indices on the
right half line to the virtual indices in scale space that are cut
by the right causal cone. For a critical MERA ρscale will be
translation invariant up to the first few s-dependent isometries
that capture the nonuniversal UV behavior of the state.

To understand the bulk properties of ρscale we now have to
turn to continuum CFT considerations. First, one can verify
that W maps local operators at position x in physical space
to local operators at the position s ∼ ln(x)/ ln(3) in scale
space. The 1/ ln(3) factor arises from a ternary MERA coarse
graining three sites to one. Following [20], we are then led to
identify W with (a discretized version of) the conformal plane
to the strip map,

z → w = β

2π
ln z, (1)

with β = 2π/ ln(3), z = x + it , and w = s + iτ . From the
Hamiltonian perspective W realizes a canonical (isometric)
map from the original CFT Hilbert space on the half-line
subsystem x ∈ [0,+∞] to a new CFT Hilbert space on the
full line s ∈ [−∞,+∞], which transforms the original den-

sity matrix ρ = exp−2π
∫ +∞

0 dx x T00(x) into a translation-invariant
Gibbs (strip) state:

ρstrip = W +ρ W = exp−β
∫ +∞
−∞ds T̄00(s), (2)

where T̄00(s) is the energy density operator on the new Hilbert
space.

The above CFT considerations then lead us to the predic-
tion that the bulk density matrix in scale space ρscale should
converge for increasing bond dimension to a thermal (strip)
density matrix ρstrip with inverse temperature β = (2π )/ ln(3)
of a CFT Hamiltonian H̄ belonging to the same universality
class as the original Hamiltonian for which the MERA was
optimized:

ρscale = exp− 2π
ln(3) H̄ . (3)

This is the central equation of this paper as it allows us to
understand the success of finite χ MERA approximations in
terms of finite bond dimension MPO thermal state compres-
sions. From the work of [9,10] we know that that thermal
states of local Hamiltonians can, indeed, be efficiently approx-
imated by an MPO. Approximating a thermal spin chain of
length L at temperature β with a precision ‖ρex − ρD‖ = ε can
be achieved with a bond dimension χ that scales as O((L/ε)β )
in the worst case. Numerical studies for specific critical spin
chains with central charge c show that this scaling is even
more favorable [11,12] and lead to a scaling polynomial in
β, as can also be understood from the result that ground states
of critical spin systems can be well approximated using MPSs
[26]. Along the lines of [27–29], those results can be extended
to the uniform (infinite) limit, and a polynomial scaling is
obtained for approximating the local reduced density matri-
ces. Going back to the case of the MERA, we have hence
demonstrated that the finite bond dimension MERA tensors
approximate the exact tensors efficiently in scale space in
the sense that the bond dimension scales polynomially in the
precision required, hence justifying the finite bond dimen-
sion χ in the MERA. Below we verify this numerically for
MERA simulations on the Ising model. In particular we study
the spectrum of the entanglement Hamiltonian − ln ρscale and
show that the finite bond dimension introduces relevant (IR)
and irrelevant (UV) perturbations to the CFT Hamiltonian,
which both decay away (super)polynomially in χ .

Before discussing the numerics let us point out that Eq. (3)
ties in nicely with Cardy’s seminal results on finite-size scal-
ing for CFTs. From the conformal plane to strip map he
shows that the correlation functions on the strip should decay
exponentially; in particular the transfer matrix T on the strip
(with periodic boundary conditions) should have the spectrum

T = exp− 2π
β

�
, (4)

with � being the scaling dimensions of the local primary
operators and their descendants [23–25]. As shown explicitly
in Fig. 1(c), upon proper identification of the indices the trans-
fer matrix of ρscale indeed precisely reduces to the single-site
MERA scaling (super)operator S that is used to extract the
scaling dimensions from the MERA simulation according to
S = exp− ln(3)�.

We have studied the properties of ρscale at different MERA
bond dimensions χ for the transverse-field Ising model at its
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FIG. 2. (a) The log spectrum of the MPO ρscale [Fig. 1(b)],
ω = − ln ρscale, in the thermodynamic limit for the bulk isometries
optimized on the critical Ising model for different bond dimensions
χ . (b) The comparable log spectrum for bulk isometries initialized
differently (see text). In each case the blue solid line shows the linear
dispersion with gradient β = 2π

ln 3 .

critical point, H = ∑
i −σ x

i+1σ
x
i − σ z

i . First, we numerically
optimized all the MERA tensors by minimizing the energy
〈�| H |�〉 with a new gradient optimization-based algorithm
[30], including two nonscale invariant UV layers, imposing
the explicit Z2 symmetry of the Ising model [31,32]. Then
we considered the MPO expression for ρscale constructed out
of the (scale-independent) bulk isometries [Fig. 1(b)]. Us-
ing standard MPS techniques, we then constructed an MPS
approximation of the fixed point of the MPO in the thermody-
namic limit and used the MPS particle momentum eigenstate
ansatz [33] to approximate the one-particle excitations on top
of the fixed point.

In Fig. 2 we show the resulting log spectrum, ω =
− ln ρscale for MERA optimizations on the Ising model for dif-
ferent χ . Notice a subtlety involving a MERA gauge choice:
depending on this choice one ends up with an isometry that
gives rise to a positive or non-positive scaling operator S, and
a dispersion relation of the type of Fig. 2(a) or 2(b) [34].
These can be interpreted as corresponding to ferromagnetic
or antiferromagnetic H̄ .

From the prediction (3) we would expect a momen-
tum regime with a linear spectrum, ω(k) = βk, with β =
2π/ ln(3). For the different χ values we indeed find a lin-
ear regime in very good agreement with this prediction. As
mentioned above, the bond dimension χ introduces relevant
(IR) and irrelevant (UV) perturbations to the CFT result. The
relevant perturbation introduces a small mass gap for k → 0,
which for growing χ decreases as an approximate power law,
as can be seen in Fig. 3(a) (red pluses). We note this is not
an artifact of our MPS approximation of the fixed point as
these results were well converged in the MPS bond dimension.
Finite χ also leads to a divergence from linear dispersion at
large k. We associate a UV energy scale � by making the iden-
tification, ω(π ) = β� sin(π/�). This choice corresponds to
an Ising dispersion relation on a coarse-grained lattice with
O(�) sites blocked into one effective site. In Fig. 3(b) we see
that �−1 again decays away rapidly, although the behavior
is not clearly polynomial in that case. In the proper scaling
regime both relevant and irrelevant perturbations give power
corrections to CFT scaling dimensions obtained from finite-
size scaling (4) [24,35,36]. In fact our numerical results on
the scaling dimensions [Figs. 3(c) and 3(d)] point towards a
dominant relevant perturbation with scaling dimension 1, e.g.,

FIG. 3. For our Ising model simulations with isometries obtained
from MERA optimizations (red pluses) and from direct MPO com-
pressions (blue crosses). (a) The IR gap in the dispersion relation.
(b) The inverse UV cutoff �−1 in the dispersion relation. (c) and
(d) The error in the first two scaling dimensions �i. All are given as
a function of the number of variational parameters N , with N = χ4

in the MERA case (χ ∈ [2, 11]) and N = 16D2 in the direct MPO
case (D ∈ [1, 80]).

a perturbation on the transverse magnetic field in the Ising
model [35], as the errors in the scaling dimensions have a
polynomial decay in N similar to that of the mass gap ω(0)
[Fig. 3(a)]. This remains true for the higher scaling dimen-
sions, with, e.g., fitted polynomial decays ∼N−1.02 (N−1.11)
and ∼N−1.10 (N−1.03) for the next two scaling dimensions �3

and �4. Here the results in parentheses refer to the direct MPO
results that we will discuss now.

III. FROM THERMAL STATES TO ISOMETRIES
AND SCALING OPERATORS

The results above suggest that a MERA optimization is,
in effect, performing an indirect compression of a thermal
state for a critical Hamiltonian in terms of an MPO of the
particular form in Fig. 1(b). We now consider a specific direct
MPO compression scheme. In particular we have followed
the approach of [37] by evolving the infinite-temperature state
with the Hamiltonian in imaginary time using time-evolving
block decimation in a second-order Trotter approximation,
with a time step �t = β

20000 [38]. In this way we have con-
structed an MPO approximation for ρ = exp−βH/2, for which
the tensors in the proper (left-canonical) gauge are isometric.
Upon multiplication of this MPO with its Hermitian conjugate
we arrive at an MPO approximation for ρ = exp−βH of the
specific form in Fig. 1(b).

Notice that the resulting isometries are not of the exact
MERA form: the two outer lower legs of the isometry have a
different bond dimension than the upper leg and center lower
leg. The outer legs have a fixed bond dimension d2 = 4 due to
the blocking of two lattice sites, each with local Hilbert space
dimension d = 2. The other two legs have a bond dimension
D which controls the level of compression. By blocking more
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FIG. 4. (a) The log spectra of the MPOs ω = − ln ρ for MPO
representations of the Ising thermal state at temperature β = 2π/ ln 3
for different D. (b) The velocity of the free boson describing the XXZ
model for different values of g as calculated from the log spectrum of
the D = 30 MPO; the solid line is the exact result [39]. (c) The Ising
scaling dimensions from the MPO transfer operator for periodic (red
circles) and twisted (green pluses) boundary conditions (at D = 80).
(d) The XXZ (periodic boundary) scaling dimensions for g = −1/2
(at D = 200).

physical sites one could also generate MERA isometries with
uniform bond dimension. Another obvious difference is that
we now directly target the thermal state of the original mi-
croscopic Hamiltonian H , in contrast to the MERA case for
which the entanglement Hamiltonian H̄ shares only the IR
properties with the Hamiltonian H on which the MERA is
optimized.

In Fig. 4 we show our results from this direct compression
scheme for thermal states. Besides the critical Ising Hamil-
tonian we have also considered the XXZ model. We were,
in principle, free to choose β but simply stayed with the
previous value β = 2π/ ln(3). Let us first discuss the Ising
results. From the generated MPO approximations at different
D we obtained the log spectrum Fig. 4(a) in the exact same
way as for the MPOs arising from the MERA simulations.
The scaling dimensions of Fig. 4(c) were obtained from the
transfer (scaling) operator according to (4). We also computed
the nonlocal scaling dimensions by adding a twist σz ⊗ σz

on one of the outer legs of the isometries; see [40] for the
same procedure on the MERA scaling operators. In Fig. 3 one
can see the IR and UV scale inferred from the direct MPO
results [inferred from the results in Fig. 4(a)] together with
the errors on the scaling dimensions. Notice that the UV scale
� should now converge to 4, in correspondence with the exact

microscopic Ising result on our blocked lattice. For the MERA
case, with growing local dimension χ we expect � → ∞.
Barring these specific differences, the overall behavior of the
bond dimension dependencies is very similar for both cases,
corroborating the view of the MERA optimization performing
an indirect MPO compression of a CFT thermal state.

We have also performed simulations on the XXZ Hamil-
tonian, H = ∑

i σ
x
i+1σ

x
i + σ

y
i+1σ

y
i − gσ z

i+1σ
z
i , along the full

critical line |g| < 1. Notice that for this model, in general
the velocity v(g) 
= 1. This implies a linear dispersion ω(k) =
βv(g)k/2 on our (two-site) blocked lattice. From our results
on the log spectrum of ρ we can fit a value for v(g) that agrees
nicely with the exact result [39], as can be seen in Fig. 4(b).
The velocity v(g) also shows up in the scaling dimension rela-
tion, which now reads S = exp− 4π

βv(g) �. Figure 4(d) shows the
g = −0.5 results from this scaling operator. The XXZ model
is significantly more challenging than the Ising model; this is
reflected in the fact that a significantly higher bond dimension
is needed to accurately determine its scaling dimensions.

IV. CONCLUSION AND OUTLOOK

Our results demonstrate that the finite bond dimension χ

approximation of the MERA is of the same nature as the
finite bond dimension χ MPO approximation of a thermal
state of a critical Hamiltonian, with χ controlling both IR
and UV perturbations to the CFT. This points to an algorithm
for creating critical MERA states from MPO compressions, as
the conformal symmetry implies that the very same building
blocks of the thermal MPO in scale space also make up the
MERA plane to strip map. We have shown how to obtain
the isometries; the complete algorithm, of course, also re-
quires a similar construction for obtaining the disentanglers.
But notice that the MPO expression in Fig. 1(b) corresponds
to a special cut. One can verify that arbitrary cuts lead to
MPO expressions for ρscale that also involve the disentanglers,
giving rise to non-translation-invariant transfer matrices that,
depending on s, take the form of the single-site scaling oper-
ator or the left, center, or right double-site scaling operators.
This shows how to obtain the disentanglers: by minimizing the
breaking of translation invariance for MPOs corresponding
to such general cuts [41]. From the (bulk) disentanglers, in
combination with the isometries, one can then also obtain
the operator product expansion coefficients [17], overcoming
the main limitation of the thermal MPO approach that we
presented here.
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