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Laser pulse driven control of charge and spin order in the two-dimensional Kondo lattice
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Fast and dynamical control of quantum phases is highly desired in the application of quantum phenomena
in devices. On the experimental side, ultrafast laser pulses provide an ideal platform to induce femtosecond
dynamics in a variety of materials. Here we show that a laser pulse driven heavy fermion system can be tuned to
dynamically evolve into a phase, which is not present in equilibrium. Using the state-of-the-art time-dependent
variational Monte Carlo method, we perform numerical simulations of realistic laser pulses applied to the Kondo
lattice model. By tracking spin and charge degrees of freedom we identify a dynamical phase transition, within
the partially Kondo screened phase, from a charge ordered into a metallic state, while preserving the spin order
of the system. We propose using high-harmonic generation and nonequilibrium optical conductivity to identify
the dynamical phase transition in an ultrafast experiment.
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I. INTRODUCTION

Heavy fermion systems are one prototypical class of
strongly correlated materials. The most important micro-
scopic mechanism in these systems is the Kondo effect, which
is determined by the strength of the local Kondo coupling.
It can be tuned by conventional means, such as external or
chemical pressure [1]. At the same time, the Kondo coupling
also leads to an effective interaction, known as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction, between the local
moments mediated via the conduction band electrons. The in-
terplay between localized magnetic moments and conduction
electrons is the driver behind unconventional superconduc-
tivity, competing phases, and quantum criticality. As such,
heavy fermion materials share commonalities with many other
strongly correlated electron systems, such as cuprates and
organic or iron-based superconductors.

Experimental advances in nonlinear optics and ultrafast
spectroscopy allow for unprecedented access to nonequilib-
rium physics of these strongly correlated materials. By using
these techniques, many new and exciting phenomena have
been discovered in recent years, such as light-induced super-
conductivity in cuprates [2], the generation of Higgs and order
parameter oscillations [3–6], and the dynamical coupling of
ferroelectric and ferromagnetic order [7]. The search for new
quantum phases, which can only be obtained by photoinduc-
tion, is an ongoing quest in modern solid state physics [8–10].
It is guided by the idea of tailoring specific properties of
materials on demand, for applications in electronic devices.

Although much of the progress focuses on nanostructures,
complex oxides, and oxide heterostructures (e.g., cuprates,
manganites, and multiferroics), heavy fermion systems have
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been investigated in ultrafast experiments as well [11–13].
However theoretical understanding of the transient nonequi-
librium dynamics in these systems is still scarce. Many
experiments can be explained by an effective temperature
model [13–15], which describes the local excitation by an
instantaneous heating process. This approach is limited in
describing the possible nonequilibrium phase transitions, be-
cause it is only sensitive to thermodynamic phases which are
also present in equilibrium. Furthermore effective temperature
models, by construction, are not able to describe quantum co-
herence effects, which are an important aspect for the coherent
control of quantum matter.

Even away from the quantum critical region, i.e., within
the quantum coherence regime, interesting physics emerges
such as non-Fermi-liquid electronic excitations. The effects
of optical pumping in this area are largely unexplored and
offer a unique opportunity to investigate the ensuing many-
body nonequilibrium dynamics. Here we use state-of-the-art
numerical simulations to investigate the unitary time evolution
of a driven Kondo system, by means of the time-dependent
variational Monte Carlo method [16–26]. Specifically we in-
vestigate the two-dimensional Kondo lattice model, which
is used to model heavy fermion physics, at quarter filling.
Studies by equilibrium variational Monte Carlo [27] and
dynamical mean-field theory [28,29] have confirmed the pres-
ence of a coexisting charge density and spin order in this
system. A graphical representation of the ground state is
given in Fig. 1(a). Coexisting charge and spin order has
also been confirmed experimentally in rare-earth intermetal-
lic compounds [30,31]. By shaking the ground state with
a strong laser field, we investigate the stability of both or-
der parameters depending on the pulse intensity. We show
that a dynamical phase transition can be induced by the
pulse, leading to a purely spin-ordered phase, with suppressed
charge order. This phase is absent in the thermodynamic
phase diagram, and therefore goes beyond the description
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FIG. 1. Charge and spin order in the ground state and during the laser pulse excitation. (a) Graphical representation of the ground state of
the Kondo lattice model for J = 3thop at quarter filling. Size of the blue circles is proportional to the charge density in the conduction band.
Spin order is depicted for the f electrons. (b) Momentum dependence of the static charge structure factor in the ground state. (c) Momentum
dependence of the static spin structure factor in the ground state. (d) Charge structure factor time evolution for a pulse with peak amplitude
A0 = 0.75. (e) Spin structure factor time evolution for a pulse with peak amplitude A0 = 0.75.

by an effective temperature model. Analysis of the underly-
ing many-body dynamics shows that the transient electronic
structure is strongly modified during the pulse, leading to a
dynamical closure of the charge gap. Finally we suggest us-
ing optical conductivity and high-harmonic generation (HHG)
spectroscopy as an experimental signature for the dynamical
phase transition.

II. MODEL AND METHOD

The Kondo lattice model is defined by

H = −thop

∑
〈i, j〉,σ

(c†
iσ c jσ + H.c.) + J

∑
i

si · Si. (1)

The first term is the kinetic energy of the conduction electrons;
the second term is the Kondo coupling of the conduction
band electron spin si to the local SU (2) moments Si of the f
electrons. In the following we use e = c = h̄ = a = 1, where
a is the lattice spacing. Unless otherwise noted, we use the
hopping thop as our unit of energy and 1/thop as our unit of
time.

Although much attention has been given to electron filling
factors close to the half-filled case in the recent literature
[28,32], we are focusing on the quarter filled case for J =
3thop, where the electron density is given by n = 1/2. Note
that it was shown that also for other parameters charge
and magnetic order coexist [27,28,33], although the exact
ground state phase diagram is still a matter of debate. Since
our excitation mechanism does not rely on a specific geo-
metric form for the charge or spin sector, we expect that
our results also carry over to other parameter regimes as
well.

We include a time-dependent EM field by the well estab-
lished Peierls substitution [34–36]

thop → thopeiA(t )(ri−r j ), (2)

where A(t ) is the time-dependent vector potential.
We choose a diagonal polarization A(t ) = A(t )(ex + ey)

and parametrize the pulse according to A(t ) = A0 exp[−(t −
tc)2/(2t2

d )] cos(ωt ). Here A0 is the pulse amplitude, tc the
center, td the width, and ω the frequency of the pulse.

Note that by considering the Kondo lattice model we disre-
gard a possible charge degree of freedom for the f electrons.

In the original Anderson model, part of the f -electron spectral
weight is mobile in the paramagnetic phase. The electromag-
netic field would couple to this spectral weight near the Fermi
energy. In the antiferromagnetically ordered phase we neglect
this contribution.

Method

We use variational Monte Carlo (VMC) and its time-
dependent version (tVMC) to compute ground state and
time-evolved properties of the system, respectively. In our
simulations we choose a square lattice of size 8 × 8 with peri-
odic (antiperiodic) boundary conditions in the x (y) direction
to fulfill the closed shell condition in the noninteracting case.
Note that larger systems can be simulated for pure ground
state properties. The time evolution however demands much
more computational effort and is therefore the restricting
factor.

The variational wave function we employ in VMC and
tVMC is given by

|�〉 = PGPJ |φ〉, |φ〉 =
( ∑

α,β=〈c, f 〉

Ns∑
i, j

fi jα
†
i↑β

†
j↓

)Ne/2

|0〉.

(3)

Here |φ〉 is the Pfaffian wave function for conduction band
and f electrons. The variational parameters in the Pfaffian
wave function are given by the fi j . The correlation factors PG

and PJ are of Gutzwiller and Jastrow type. For f electrons the
Gutzwiller factor is the only relevant correlation factor, as it
permits only single occupancy of the lattice sites, effectively
casting the f degrees of freedom to a single spin-1/2, as
relevant for the Kondo lattice model. The variational parame-
ters are subject to a 2 × 2 sublattice structure [37]. To obtain
the ground state we optimize the variational parameters using
stochastic reconfiguration [38].

We employ the time-dependent variational principle onto
the wave function to compute the time dependence of the vari-
ational parameters [39]. Specifically, we minimize the norm

min
α

∥∥∥(
1 − |�〉〈�|

〈�|�〉
)(

i
d

dt
|�〉 − H|�〉

)∥∥∥, (4)
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depending on the variational parameters α. This leads to the
equation of motion

dα

dt
= −i(S)−1g, (5)

where the S matrix and the vector g are functions of the energy
as well as the derivative of |�〉 with respect to the variational
parameters. These quantities are computed using Monte Carlo
sampling and Eq. (5) is solved using the MINRES-QLP algo-
rithm [40] at each time step. Note that the tVMC approach has
been benchmarked for fermionic systems against exact diago-
nalization in Ref. [18]. For details on the tVMC approach we
refer the reader to Supplemental Material S1 [41].

III. RESULTS

The pulse parameters that we use are A0 = 0.5, 0.75, 1.0;
ω = 1.0thop; tc = 15.0/thop; and td = 5.0/thop. Note that these
parameters are well within the reach of experimental setups.
Taking the lattice spacing from CeRhIn5, in which a coexist-
ing charge density wave with antiferromagnetic ordering was
induced by a magnetic field [42], a = 0.4656 nm [43], and
assuming a typical bandwidth of about 1 eV for the conduc-
tion electrons leads to a hopping parameter of thop = 0.125 eV.
Therefore the laser pulse frequency corresponds to 30 THz
and the pulse width to 52 fs. The laser amplitude corresponds
to a maximal electric field E0 ∝ 26.6 MV/cm. The energy
that is deposited in a single layer by the laser is computed
in Supplemental Material S2 [41]. Note that a choice of a
smaller laser field frequency (e.g., in the regime of typical
Kondo coherence energy) does not affect the conclusion.

A. Ground state properties at quarter filling

To characterize the ground state properties, we compute the
spin and charge structure factors

SS (q) = 1

NS

∑
i, j

〈Si · S j〉eiq(ri−r j ), (6)

SN (q) = 1

NS

∑
i, j

〈(ni − 〈ni〉)(n j − 〈n j〉)〉eiq(ri−r j ), (7)

where Si denotes the local f -electron spin. They are shown
in Figs. 1(b) and 1(c), respectively. We see strong peaks in
the spin structure factor at q = (0, π ) and q = (π, 0) [and
equivalently at q = (π, 2π ) and q = (2π, π )], indicative of
antiferromagnetic order, which is not of the conventional Néel
type. Note that the peak height is slightly different for x
and y direction, due to the different boundary conditions; see
also the methods section. The charge structure factor shows a
single strong peak at q = (π, π ), corresponding to a checker-
board type charge order. The unusual spin order leads to a
magnetic unit cell, which is 4 times larger than the geometric
unit cell. This ground state has been confirmed in [27–29].
The charge-ordered phase is an insulator, with a charge gap
	c ≈ 0.4thop at J = 3thop [27]. Note that this coexistence of
charge and spin order is specific to the 1/4-filled region.
The real-space dynamical mean field theory calculations have
shown coexistence of incommensurate spin density wave and
charge density wave phases for other doping values and inter-
action parameters [28].
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FIG. 2. Time evolution of the spin and charge structure factor.
(a) Comparison of the peaks in the spin structure factor for different
laser pulse amplitudes. The shaded background is proportional to the
squared pulse profile. (b) Comparison of the peak in the charge struc-
ture factor for the same parameters as in (a). See methods section for
the definitions of the relative peak height S̃s and S̃n.

B. Laser excitation

The system is perturbed with a laser pulse and we track
the dynamics in the spin and charge sectors. An overview of
the time evolution of the spin and charge structure factors is
shown in Figs. 1(d) and 1(e), for a pulse amplitude of A0 =
0.75. As the pulse progresses, the peaks in the charge and
spin order are strongly suppressed by the pump pulse. The re-
maining Brillouin zone remains largely unaffected, indicating
that the pulse primarily modifies the dominating charge and
magnetic fluctuations. To make more quantitative statements
the time dependence of the peaks is investigated. We define
the peak heights as

S̃s(t ) = Ss((0, π ), t ) + Ss((π, 0), t )
2

− mean
q∈q̃

[Ss(q, t )], (8)

S̃n(t ) = Sn((π, π ), t ) − mean
q∈q̃

[Sn(q, t )], (9)

where q̃ are all momentum space points in direct neighbor-
hood to the peak positions in the Brillouin zone. We compare
the effect of different pulse amplitudes. The results are given
in Fig. 2.
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Our first observation is that the pulse suppresses both peaks
during the time evolution. Increasing the pulse amplitude in
general leads to a stronger suppression. The time domain in
which the peak height shows the strongest decrease coincides
with the maxima in the pulse line shape (see shaded regions
in Fig. 2), reflecting the influence of the laser pulse onto the
electronic and magnetic structure. Depending on the response
of the system, we can distinguish three different regimes: (1)
For weak pulses, A0 = 0.5, both charge and spin order are
suppressed but stay finite after the pulse. We see slow oscilla-
tions in the time domain, even after the pulse has ended. Note
that low-intensity high-frequency oscillations are expected on
top of the overall dynamics due to the finite system size. (2)
In the intermediate regime at A0 = 0.75 the charge order in
Fig. 2(b) is strongly suppressed and on average close to zero,
while the spin order, Fig. 2(a), is still larger than 30% of
the ground state value. (3) Further increasing the intensity
to A0 = 1.0 also suppresses the spin order, while the charge
order shows stronger oscillations but with an average close to
zero.

These results are to be contrasted with the thermal phase
diagram [27], in which thermal fluctuation first suppress spin
order, while the critical temperature for the charge order is
much higher. The direct coupling of the EM field to the charge
is a possible explanation for this behavior: while the spin de-
grees of freedom of the f electrons are only indirectly affected
through the Kondo coupling, the conduction band electrons
react directly to laser pulse. In contrast thermal fluctuations
do not distinguish between charge and spin sector. Hence the
naive expectation that the laser pulse simply heats the system
does not hold in this case.

Note that the suppression of the peaks in the charge and
spin sector correspond to a suppression of the order parame-
ters in the thermodynamic limit. Thus our simulations directly
hint at a dynamic phase transition in time, controllable by the
pulse amplitude.

To get a deeper microscopic understanding of the dy-
namics, we also calculated the time evolution of the double
occupancy and the momentum distribution,

nq(t ) = 1

2Ns

∑
i, j,σ

〈c†
iσ c jσ 〉(t )eiq(ri−r j ). (10)

The double occupancy, shown in Fig. 3, displays a strong
oscillatory behavior during the pulse duration. While for the
lowest pump amplitude the double occupancy almost recovers
to its equilibrium value, higher pump amplitudes lead to a
significant change and increase. Note that the value of the
double occupancy for the metallic, noninteracting system is
1/16 = 0.0625. Thus, judging only from the observed time
evolution of the double occupancy, the system becomes more
metallic for stronger pump pulses.

This observation is supported by the time evolution of
the momentum distribution, shown in Fig. 4. In equilibrium,
Fig. 4(a), the momentum distribution has a smooth depen-
dence on momentum, indicative of an insulating behavior.
During the pulse evolution the momentum distribution stays
smooth as a function of momentum, but weight is trans-
ferred away from the center of the Brillouin zone to the outer
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FIG. 3. Double occupancy of the conduction electrons during
and after the laser pulse. Comparison for different laser pulse am-
plitudes. The shaded background is proportional to the squared pulse
profile.

regions; see Fig. 4(b). This corresponds to the creation of free
charge carriers and thus a breakdown of the charge insulator.

To further verify the dynamical melting of the charge in-
sulator we investigate the small momentum dependence of
the charge structure factor Sn(q) in Supplemental Material
S3 [41]. We observe a change of the scaling from quadratic
to linear, which is also observed for the equilibrium Mott
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FIG. 4. Momentum distribution in the ground state and during
the laser pulse. (a) Momentum distribution of the conduction elec-
trons in the ground state of the Kondo lattice model for J = 3t and
quarter filling. (b) Difference between the momentum distribution in
the ground state and at t = 15 for a laser pulse with A0 = 1.0.
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FIG. 5. Time evolution of the local spin correlation 〈Sc · S f 〉.
Comparison of charge-rich sites A and charge-poor sites B. Laser
intensities are A0 = 0.5 and A0 = 0.75.

transition in the Hubbard model [44–46]. We conclude that
the dynamical phase transition is accompanied by a meltdown
of the insulating state.

C. Dynamical Kondo screening

The local Kondo singlet formation plays a critical role in
the stabilization of the charge-ordered phase [27]. Specifically
the unusual spin ordering wave vector allows for a stronger
Kondo effect on the charge-rich sites, while the charge-poor
sites exhibit magnetic ordering, as seen in Fig. 1. An estimate
for the competition between magnetic order and the Kondo
effect is given in Supplemental Material S4 [41]. This raises
the interesting question of how the interplay between the
Kondo screening and the magnetic sublattice is affected by
the laser pulse. We investigate the spin correlations 〈Si · si〉,
which is a measure for the local singlet formation, between
the conduction band electrons and the magnetic moments on
the charge-rich A and charge-poor B sublattice as function of
time during laser irradiation. The results are shown in Fig. 5.
We observe that the effect of the laser pulse is different for
the sublattices: While for the A sites the local correlation is
reduced, it is enhanced for the B sites. The effect is not as pro-
nounced for the weak pulse A0 = 0.5. However, already for
the intermediate pulse A0 = 0.75, it is strong enough to level
out the differences between A and B sublattices on average. A
comparison to the time evolution of the charge structure factor
in Fig. 2(b) reveals the connection to the time evolution of the
charge order. Due to the laser excitation, a charge balance is
established and the previously charge-rich sites are depleted
and consequently the local spin correlation is reduced. The
opposite happens for the previously charge-poor sites. Note
that the laser pulse does not break the local singlet formation.
It rather dynamically modifies the charge background so that
the overall spin singlet formation is affected only weakly.

D. Pump-probe optical conductivity

To observe the dynamics after a strong pump pulse, a probe
pulse is applied after a time delay 	t . In our simulation we
explicitly simulate the effect of the probe pulse and compute
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FIG. 6. Real part of the optical conductivity in and out of equi-
librium. Computed from a probe pulse in equilibrium and after a
pump pulse with amplitude A0 = 1.0. Probe pulse parameters are
A0 = 0.05, ω = 2.0 thop, and td = 1.0/thop at quarter filling. The time
delay between pump and probe pulse is 	t = 20/thop.

the resulting optical conductivity with a procedure developed
in Ref. [47]; see also Supplemental Material S5 [41]. Note
that the pump pulse parameters are chosen such that we have
a maximal resolution for frequencies ω = 0 to ω = 5thop,
capturing the complete electronic bandwidth. We compare
the nonequilibrium results with the optical conductivity in
equilibrium. The results are shown in Fig. 6.

In agreement with previous results, the ground state is in-
sulating and shows two strong absorption peaks at ω ≈ 0.6thop

and at ω ≈ 3.3thop. Drastic changes occur after a pump pulse:
(1) A finite Drude peak develops at ω = 0, indicative of a
metallic state. (2) The absorbtion peak at ω ≈ 0.6thop vanishes
completely. (3) The peak at ω ≈ 3.3thop shifts toward lower
energies. A possible microscopic explanation for the complete
reorganization of the electronic response is the dynamical
phase transition from an insulating to a conducting state. Thus
not only static properties, such as the structure factors, are
strongly affected by the pump pulse, but also typical excita-
tion spectra which can be related uniquely to the underlying
phases by means of their elementary excitations. Note that the
photoinduced insulator-metal transition originates from the
collapse of the charge order in the Kondo coherence regime,
while the spin order as well as the Kondo singlet formation
are robust against the laser pulse.

E. High-harmonic generation

The effect of the single pump pulse can be used to obtain
insight into the nonequilibrium dynamics of the system. We
therefore compute the charge current, which is induced by the
pump pulse. The result is shown in Fig. 7(a). For weak pump
fluence, A0 = 0.5, the response of the system is primarily
linear in the EM field, while we see clear nonlinearities in the
current for stronger fluence, e.g., A0 = 1.0. We traced these
nonlinearities back to the generation of higher harmonics,
which can be observed in the current emission spectroscopy,∣∣∣∣FT

[
dJc(t )

dt

]∣∣∣∣
2

(ω), (11)
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FIG. 7. High-harmonic generation during the laser pulse. (a) In-
duced current for different laser pulse amplitudes. (b) High-harmonic
generation spectrum for the same currents as in (a). Vertical lines
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where FT denotes the Fourier transformation of the dipole
acceleration dJc(t )/dt along the diagonal with a window
function; see Supplemental Material S6 [41]. We observe that
odd harmonics are generated by the pump pulse in the system;
see Fig. 7(b). It is expected that photoexcited charge carriers
create a nonlinear optical response in solids [48,49]. The lack
of even harmonics is a consequence of the inversion symmetry
of the system [50,51]. While the fundamental harmonic is
only weakly dependent on the pulse amplitude, higher har-
monics show a strong dependence on the pulse amplitude. In
the third harmonic we see an increase in the signal by more
than one order of magnitude by doubling the laser amplitude
from A0 = 0.5 to A0 = 1.0. For low pulse intensities, the third
harmonic shows a clear two peak structure. It is known that in
noninteracting multiorbital systems the electronic band struc-
ture can have a strong effect on the HHG spectra [52,53]. By
contrast we attribute the two-peak structure in our case to the
strong correlations in the system, which leads to the formation
of charge order. This is in accordance with the broadening of
the signal upon dynamical closing of the charge gap due to the
pump pulse. We checked that such a double-peak structure is
absent in the noninteracting system, i.e., for J = 0 without
charge order. The effect in the fifth harmonic is even stronger:
in the weak-pulse regime the fifth harmonic cannot be distin-
guished from the background, while it shows a strong peak
once the charge and spin order are suppressed.

In a simple model the creation of high harmonics is a
two-step process: First charge carriers are excited from the

ground state to a conduction band. In the second step they are
accelerated by the finite electric field, leading to an intraband
current. Due to the strong field, electrons are Bragg scattered
at the zone boundaries, leading to Bloch oscillations and
radiation of photons with odd multiples of the laser driving
frequency. In the noninteracting case, the cutoff frequency
for the appearance of high harmonics scales linearly with the
maximal amplitude of the laser field [54] but in interacting
systems or in the presence of disorder, the HHG signal can be
strongly modified [55,56]. In our case, the strong change in
the electronic state, i.e., the melting of the charge order due to
the laser pulse, leads to a significant enhancement of the HHG
spectrum.

We conclude that there is a strong feedback effect on
the high harmonics depending on the internal dynamics of
the charge and spin orders. Besides measurements of optical
conductivity, this could serve as an experimental indicator to
identify the different dynamical regimes induced by the pump
pulse.

IV. DISCUSSION

In this paper we have investigated the dynamics of the spin
and charge degrees of freedom in the 2D Kondo lattice model
driven by a strong laser pump field. The interplay between
charge density and spin order can be strongly influenced by
the light field, allowing us to dynamically manipulate the ba-
sic characteristics of the system. By tuning the laser intensity,
we have shown that charge fluctuations can be dynamically
suppressed in favor of spin order, effectively inverting the
temperature phase diagram of the model and allowing us to
modify the system with an additional independent parameter
besides pure heating. The dynamical phase transition is ac-
companied by a meltdown of the charge gap, as evidenced
by microscopic observables such as double occupancy and
momentum distribution. By computing the time evolution of
the local spin correlation we show that the Kondo effect shows
an intricate connection to the time evolution of the charge
structure. Most importantly the laser does not break the Kondo
singlets but establishes a uniform charge background to which
the local moments couple. Finally we have demonstrated that
time-resolved optical conductivity and high-harmonic gener-
ation can be used as an experimental characterization tool for
the dynamical phase transition.

Our work provides a mechanism for the ultrafast manipu-
lation of coexisting charge and spin orders in Kondo systems,
offering a way to explore transient and hidden phases, which
cannot be attained by conventional methods, such as tempera-
ture or pressure. In the spirit of “quantum phases on demand”
[57], this provides a theoretical approach for the application of
tailored ultrashort laser pulses to strongly correlated materials.

Many questions are raised by our results, which are to be
explored. An important basic condition for our study is the
assumption that the charge character of the local moments
can be neglected. It is an interesting problem to relax this
condition in order to directly study the laser-induced breaking
down of the Kondo singlets, e.g., by explicitly considering
the Anderson lattice model. While the system we investigated
exhibits a coexisting charge and spin order, heavy fermion
systems also display unconventional superconductivity and
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antiferromagnetism [58–60], and the coexistence of both,
which could be tuned in a similar fashion. It is important
to note that a phase transition is hard to distinguish from
a crossover in a nonequilibrium setup and that there is no
consensus in the literature on how to define a nonequilibrium
phase transition. While the notion of nonanalytical points in
the Loschmidt echo [61] applies in the thermodynamic limit,
there are also indications that a fundamental change in the
excitation spectrum indicates a transition to a new phase [62].
Here we use the time dependence of properties, such as the
structure factors, as well as the change in the quasiparti-
cle spectrum in the optical conductivity to observe a strong
change in the physics of the system, which is similar to what
is observed in an equilibrium phase transition. Still one has to
be cautious with this interpretation because an exact transition

point cannot be deduced from our results. An important open
question is the timescale for the induced dynamical phase
transition, for which the effect of electronic relaxation, quan-
tum criticality, and impact of coupling to lattice phonons are
of interest.
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