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Kinetics and luminescence of the excitations of a nonequilibrium polariton condensate
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We extend the description of the nonequilibrium Gross-Pitaevskii equation for microcavity polaritons by
including not only the kinetics of the nonresonantly pumped exciton reservoir but also that of the collective
excitations—called bogolons—above the condensate. Quasiequilibrium Hartree-Fock-Bogoliubov-Popov self-
energies are used to describe the condensate and the bogolons. With nonequilibrium Green functions, the
quantum Boltzmann equation of the bogolons in a frame moving with the condensate, together with the coupled
Gross-Pitaevskii equation can be derived. The resulting scattering rates contain vertex corrections in form of
symmetrized products of the u and v pairing functions of all involved scattering states. Corresponding results
have been derived for ultracold atoms by A. Griffin, T. Nikuni, and E. Zaremba [Bose-Condensed Gases at
Finite Temperatures, 1st ed. (Cambridge University Press, Cambridge, New York, 2009)] Furthermore, we show
that the results of the quantum kinetics also determine the luminescence spectrum including the ghost branch.
The kinetics is solved numerically, the resulting condensate, the bogolon distribution, and the luminescence are
calculated temporally and spatially resolved after the switch-on of a cw nonresonant pump beam with a Gaussian
profile. It is studied in detail to which extent the bogolons approach a local thermal equilibrium.

DOI: 10.1103/PhysRevB.102.165126

I. INTRODUCTION

A great simplification of the description of a spatially and
temporally varying polariton condensate was obtained by cut-
ting the polariton spectrum into a photonlike part in which the
condensation takes place and into a higher-lying uncondensed
excitonlike reservoir [1]. In other words, one disregards de-
tails of the polariton spectrum and treats instead essentially the
two branches of the photons and the excitons which constitute
the polariton as separate entities. The polariton condensate
in the photonlike branch is described by a Gross-Pitaevskii
equation [2] as for cold atoms [3], while the nonresonantly
excited excitons act as a reservoir which is usually described
by a rate equation for the excitons [1]. We have generalized the
description of the reservoir by a quantum kinetic derivation
which results in a quantum Boltzmann equation for the ex-
citon reservoir [4] and self-consistently calculated transition
probabilities between reservoir (r) and condensate (c). As the
dominant gain mechanism, the particle-particle scattering has
been treated. However, a single scattering event is in general
not sufficient to bring a polariton from the reservoir down into
the condensate. A more realistic picture evolves if the scatter-
ing from the reservoir into excited states above the condensate
is taken into account. In other words, the kinetics can be
made more complete by including the Bogoliubov excitations
of the condensate, called bogolons (b). The hierarchy of the
excitation kinetics is then

r → b → c . (1)
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We treat the case of a relatively large negative detung in order
to open up a sufficiently large enrgy range for the considered
bogoln relaxation kinetics. For a CdTe microcavity with a
Rabi splitting of 28 meV a detuning of −6 meV is assumed
which results in an energy depth of the photonlike branch
below the resevoir of 13 meV.

For ultracold atoms, Griffin et al. [5] treated the Gross-
Pitaevskii equation coupled to a Boltzmann equation for the
Hartree-Fock-Popov excitations of the condensate. Extending
this work Griffin et al. [6] formulated the kinetics of the
excitations above the condensate in the Bogoliubov-Popov
spectrum. Independently, Gust and Reichl [7] also derived the
bogolon kinetics with the same results using a combination of
Liouville equation techniques and the pairing theory.

Assuming an adiabatic approximation the gap-free
Bogoliubov-Popov spectrum with a slowly varying space- and
time-dependent condensate density n0(R, T ) is given by [8]

eb,k = h̄ωb,k =
√

e2
k + 2g0n0(R, T )ek , (2)

where g0 is the p-p interaction matrix element, and ek =
h̄2k2/2m is the free particle energy. In contrast to the Bogoli-
ubov theory, which is only valid if n0/n � 1, the Popov theory
remains at least qualitatively correct for variations of n0 from
0 to n. The slowly varying condensate density is obtained from
the solution of the Gross-Pitaevskii equation for the conden-
sate wave function. The nonequilibrium modifications of the
Bogoliubov spectrum at small k-values due to the coupling
to the reservoir [1,9] can also be build in this spectrum as
discussed further in Appendix B.

The bogolon distribution nb,k (R, T ) which is a function
of the 2D momentum k is in general also a slowly varying
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FIG. 1. Extended relaxation scheme by including the bogolon
scattering. The reshaping of the bogolon spectrum by the conden-
sation is not shown.

function in the 2D space coordinate R and the time T . To
include the variation of the bogolon distribution with R, T is
important, because often structured beams are used to pump
the coupled reservoir. Besides, the coupled condensate often
shows rather nontrivial structure formation. Thus the bogolon
distribution should be described by a quantum Boltzmann
equation. Considering only particle-particle scattering, which
is dominant in a condensed system as shown by Roumpos
et al. [10], the quantum Boltzmann equation of the collective
excitations has the form

∂nb,k

∂T
+ ∇k (ek + U (R, T ))∇Rnb,k

−∇R(ek + U (R, T ))∇knb,k = dnb,k

dT

∣∣∣
scatt

. (3)

U (R, T ) is an external potential and the scattering rates are
according to Fig. 1

dnb,k

dT

∣∣∣
scatt
= −γknb,k + dnb,k

dT

∣∣∣
r−b
+ dnb,k

dT

∣∣∣
b−b
+ dnb,k

dT

∣∣∣
b−c

. (4)

Here the radiative decay is included by the first term. The
damping coefficient γk = γc|Ck|2 is the escape probability per
unit time for a bogolon to leave the cavity as a photon. Ck

is the photon Hopfield coefficient and γc is the cavity loss
constant. Modifications of the Boltzmann equation due to a
moving condensate will be discussed later. The derivation
of the bogolon scattering rates needs a combination of the
pairing theory with the standard quantum kinetic theory for
a self-consistent derivation of the scattering rates from the
Kadanoff-Baym equation for the kinetic component of the
nonequilibrium Keldysh-Green functions.

A corresponding quantum Boltzmann equation for the un-
condensed reservoir excitons coupled to the condensate has
already been derived by us previously [4], which is commonly
simplified to a rate equation with the assumption of thermal
equilibrium in the reservoir.

As already derived for ultracold atoms the resulting bo-
golon scattering rates have the usual form of Fermi’s golden
rule with the initial and final states bogolon distribution func-
tions and the self-consistently determined Bogoliubov-Popov
energies. However, the bogolon scattering matrix elements

have vertex corrections in terms of a symmetrized products
of the uk, vk pairing functions of all involved states. We use
for our studies these vertex corrections in the particularly
transparent form of Gust and Reichl [7].

An alternative approach would be to start from the coupled
exciton-photon equations. Maybe this formulation would al-
low to include more polariton features, but it would lack the
advantage to include directly the well-developed kinetics of
excitations in atomic systems into our treatment. Therefore,
we did not pursue this approach.

Compared to the earlier applied semiclassical rate equa-
tions for the polariton condensation kinetics [11–13] there
are two major advances. Firstly, we include now the quan-
tum statistically modified spectrum above the condensate. The
separation of the polariton spectrum in a photonlike part and
an exciton reservoir allows to include the modified Bogoli-
ubov spectrum analytically.

Secondly, we allow in contrast to earlier studies of the con-
densation kinetics by rate equations in terms of a semiclassical
Boltzmann kinetics slow spatial variations of the condensate,
the population of the bogolons, and the nondegenerate popu-
lation of the reservoir. The spatial variations make the physics
of condensed systems much richer, they allow to treat the dy-
namics of topological defects such as vortices and solitons as
well as spontaneous structure formation [4,14]. Including the
excitations above the condensate is an improvement compared
to the nonequilibrium Gross-Pitaevskii equation with conden-
sate and reservoir only [1,4]. The price for this improvement
is naturally an increase in the complexity of the description.
However, the recent observations [15,16] of the luminescence
of the bogolons need such a theory for their description.

Our approach also differs from more recent attempts to
include the bogolons in terms of a stochastic Gross-Pitaevskii
equation in which the scattering rates between the condensate
and the excited states characterize the second moments of
the fluctuations [17,18]. A complete inclusion of the whole
bogolon kinetics is not possible in such an approach. Naturally
each treatment of the condensation kinetics in terms of the
homogeneous Gross-Pitaevskii equation needs some form of
kinetic symmetry breaking. We include it by using stochastic
infinitesimal initial conditions, but we do not use fluctuations
which are present during the whole evolution of the conden-
sate.

In the following, we discuss briefly how the quantum
Boltzmann equation for the bogolons can be derived from
the Kadanoff-Baym equation for the kinetic component of the
Keldysh nonequilibrium Green function. We list the resulting
scattering rates and discuss why the Boltzmann equation has
to be formulated in a frame moving with the condensate. This
is particularly important for nonresonantly excited microcav-
ity polaritons in which often complex structure formation
takes place by a flowing condensate. The coupled nonequi-
librium Gross-Pitaevskii equation for the condensate wave
function will be listed with the bogolon-condensate scattering
rate. We show that the luminescence spectrum is given also
by the kinetic component of the bogolon Green function.
We solve the resulting bogolon and condensate kinetics for a
CdTe-type polariton microcavity excited nonresonantly with a
continuously switched-on stationary Gaussian pulse. A richly
structured bogolon distribution is obtained. The approach of
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the bogolons to a local thermal equilibrium is examined in
detail by fitting the calculated bogolon distribution at various
space and time points with a local equilibrium distribu-
tion. The resulting luminescence spectra including their ghost
branches are determined.

II. THE QUANTUM BOLTZMANN EQUATION
FOR BOGOLONS

For the derivation of the quantum Boltzmann equation
for the bogolons from the Kadanoff-Baym equation for the
kinetic component G<(t, t ′) of the Keldysh nonequilibrium
Green functions, one can follow the common quantum ki-
netic theory [19]. The essential point is that for the bogolons
the generalized Kadanoff-Baym ansatz has to be extended to
a two-by-two matrix form. By these means, the anomalous
spectral properties of the bogolons are taken approximately
into account. Because we want to get a kinetic description
for the build-up of the polariton condensate with increasing
nonresonant pumping via the exciton reservoir to a fully de-
veloped polariton condensate, we have to use an extension of
the Bogoliubov theory which holds only, if the majority of the
particles are already in the condensate. Popov [8] showed that
a gap-free spectrum can be obtained if also the contributions
of the noncondensate are taken into account in the Hartree-
Fock approximation of the self-energies of the condensate and
the excitations. This formulation allows describing at least
qualitatively the condensate threshold region in contrast to
the simple Bogoliubov description. This approach has been
studied in detail for condensed atomic systems by Griffin
et al. [6].

Writing the boson field operator as

�(�r, t ) = �0(�r, t ) + ψ (�r, t ), (5)

where �0(�r, t ) = 〈�(�r, t )〉 is the condensate wave function
and ψ (�r, t ) the operator of the uncondensed particles. Because
we have to take anomalous correlations into account, we use
the convenient spinor notation with the components(

ψ (�r, t )1

ψ (�r, t )2

)
=

(
ψ (�r, t )

ψ†(�r, t )

)
. (6)

The nonequilibrium Green functions (GF) become 2 × 2 ma-
trices

G(�r, t ; �r′, t ′)i j = −i〈Tcψ (�r, t )iψ
†(�r′, t ′) j〉 , (7)

where Tc is the time ordering on the Keldysh contour. A
similar matrix extension has been used for the quantum ki-
netics of a two-band semiconductor [19]. According to the
four possibilities of the order of the two-time arguments on
the forward and backward running parts of the contour, we
get four types of nonequilibrium GF. We choose the following
GF’s:

G<(�r, t ; �r′, t ′)i j = −i〈ψ†(�r′, t ′) jψ (�r, t )i〉 . (8)

For i = j = 1 this lesser function G<(�r′, t ′; �r, t )11 is the par-
ticle correlation function in space and time. Its diagonal limit
�r′ = �r and t ′ = t yields simply the time evolution of the parti-
cle density. Its off-diagonal behavior describes the long-range
spatial and temporal decay of correlations in the excitation
field. The function G<(�r′, t ′; �r, t )11 determines not only the

nonequilibrium quantum kinetics of the polaritons, but it also
describes the luminescence from the excitations above the
polariton condensate in the microcavity.

In addition to these kinetic GF’s, two spectral Beliaev
GF’s:

Gr (t, t ′)i j = −i�(t − t ′)〈[ψ (t )i, ψ
†(t ′) j]〉 , (9)

which is the retarded GF. The advanced GF can be obtained
with the relation Ga(t, t ′)�i j = Gr (t ′, t ) ji, thus one can choose
G<(t, t ′)i j and Gr (t, t ′)i j as the basic physical GF’s. The
Kadanoff-Baym equation [20] derived in the real-time formal-
ism [19] is an equation for the equal time GF G<(t, t ). The
right-hand side (r.h.s.) of the equation contains in the scatter-
ing self-energies the two-time kinetic component of the GF.
To close the equations one uses a generalized Kadanoff-Baym
ansatz which expresses approximately the off-diagonal kinetic
GF in terms of a product of off-diagonal spectral functions
and a time-diagonal kinetic GF. In our matrix formalism, the
generalized Kadanoff-Baym ansatz is [19]

G<
i j (t, t ′) = i

∑
l

(
Gr

il (t, t ′)G<
l j (t

′, t ′) − G<
il (t, t )Ga

l j (t, t ′)l j
)
.

(10)

In the Popov approximation, there are no equal-time kinetic
anomalous functions, i.e., no anomalous populations are in-
cluded: G<

i j (t, t ) = G<
ii (t, t )δi j . These are the main ingredients

with which a quantum Boltzmann equation for the bogolons
can be derived starting from the Kadanoff-Baym equation
for G<

11(t, t ). For a detailed description of this approach, see
Griffin et al. [6].

The spectral functions of a condensed system in
the Bogoliubov-Popov approximation are described in
Appendix A. In Appendix B, we briefly describe how the
Bogoliubov spectrum is modified in terms of dissipative self-
energies due to the coupling of a nonresonant pump reservoir.
Our GF results agree with corresponding results derived
from a Gross-Pitaevskii equation coupled to a reservoir rate
equation by Wouters and Carusotto [1] and by Szymanska,
Keeling, and Littlewood [9].

As Griffin et al. [6] have shown, one has to eliminate the
rapidly varying condensate phase θ (R, T ) by a unitary trans-
formation before one can make a power expansion in terms
of derivatives with respect to the slowly varying coordinates.
The commutator on the left-hand side of the Kadanoff-Baym
equation yields after a frequency integration

∂nb,k

∂T
+ ∇k

h̄
(ek + h̄k · vs)∇Rnb,k

−∇R(ek + h̄k · vs) · ∇k

h̄
nb,k = dnb,k

dT

∣∣∣
scatt

, (11)

where nb,k = nb(k, R, T ) is the bogolon distribution function
and vs = ∇θ (R, T )h̄/m0 is the condensate velocity. This ex-
pression is simply the total time derivative of the distribution
function well-known from the Boltzmann classical kinetic
theory for dilute gases in a moving frame. The shift term
h̄k · vs(R, T ) can be understood classically as a momentum
transform to a moving frame k′ = k − mvs/h̄ from the Boltz-
mann equation (3) with no external potential U (R, T ). The
transformation to the moving frame is necessary because the
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boson scattering integrals—which we will describe next—
will cause a relaxation towards the lowest momentum states
k → 0. However, the condensate is moving with the momen-
tum m0vs. To eliminate this mismatch, one has to make a
transformation t the moving frame.

The various scattering processes have to be described by
direct and exchange scattering self-energies as worked out
by Griffin et al. [6]. Independently Gust and Reichl [7] also
derived the scattering rates of the bogolons, based on a den-
sity matrix approach developed originally by Kirkpatrick and
Dorfman [21]. As far as we can check the results of both
groups agree. In the following, we will use the scattering
rate in the form of Ref. [7] because they are written in a
well-organized and reliable form derived directly using a com-
puter algorithm: These scattering rates for the collision of two
bogolons—compare Eq. (4)—have two contributions

dnb,k1

dT

∣∣∣
b−b
= dnb(k1)

dT

∣∣∣2−2

b−b
+ dnb(k1)

dT

∣∣∣1−3

b−b
. (12)

The first term describes the usual number-conserving
bogolon-bogolon scattering, while the second term describes
the scattering between states with one bogolon and three bo-
golons.

dnb(k1)

dT

∣∣∣2−2

b−b
=−4π

h̄

∑
k2,k3,k4

× g2δk1+k2,k3+k4δ(ωk1 +ωk2−ωk3−ωk4 )
(
F 2−2

1,2;3,4

)2

× (nb(k1)nb(k2)(1+nb(k3))(1+nb(k4))

− (1+nb(k1))(1+nb(k2))nb(k3)nb(k4)) , (13)

where

F 2−2
1,2;3,4 = u1u2u3u4 + u1v2u3v4 + u1v2v3u4

+ v1u2u3v4 + v1u2v3u4 + v1v2v3v4 (14)

is the amplitude of the spectral weight factor. We used the
short hand notation ui = u(ki ), vi = v(ki ).

The momentum dependence of the interaction matrix ele-
ment g caused by the polariton Hopfield coefficients has been
neglected for simplicity. It should also be noted that the con-
tribution of the phonon scattering to the bogolon relaxation
kinetics is not included.

Except for the vertex corrections F 2−2 the result has the
same structure as the semi-classical rate equation. The ver-
tex corrections are given by products of uk and vk , which
stem from the spectral Beliaev GF’s used in the generalized
Kadanoff-Baym ansatz for the kinetic GF’s in the scattering
rates. The four propagators of the two incoming and two
outgoing particles enter into the scattering rate of the form
�<G>. In the ultracold atom literature [6], this scattering
rate is called C22[ f ], because two bogolons are scattered into
two other bogolon states. The fact that the absolute square of
F 2−2

1,2;3,4 enters into the scattering rate shows that whatever the
value of the u’s and v’s are the effective interaction matrix
element squared g2(F 2−2

1,2;3,4)2 remains always positive as it
should. Note that the spectral weight factor reduces without
a condensate to 1, because ui → 1, vi → 0.

Because the Bogoliubov transformation is not number-
conserving and negative energy branches result, there are also

terms in which one bogolon is scattered into three and vice
versa. Their scattering rate is

dnb(k1)

dT

∣∣∣1−3

b−b
= −4π

h̄

∑
k2,k3,k4

g2 1

3

× δk1,k2+k3+k4δ(ωk1 −ωk2 −ωk3 −ωk4 )
(
F 1−3

1,2;3,4

)2

× [nb(k1)nb(k2)nb(k3)(1+nb(k4))

− (1+nb(k1))(1+nb(k2))(1+nb(k3))nb(k4)] ,

(15)

where

F 1−3
1,2;3,4 = u1u2u3v4 + u1u2v3u4 + u1v2u3u4

+ v1v2v3u4 + v1v2u3v4 + v1u2v3v4 . (16)

These scattering rates may be important to change the number
of excitations. This term is labeled usually as C13[ f ], but to
our knowledge, their role for the bogolon kinetics has not
been investigated in detail. Note that F {1−3} → 0, if n0 → 0.
In atomic condensed gases this scattering rate plays a minor
role because the gas of excitations is often close to thermal
equilibrium. For condensed microcavity polaritons, this scat-
tering process may be more important because these systems
are further from equilibrium.

For the scattering between the excitations b and the con-
densate c, one gets

dnb(k1)

dT

∣∣∣1−2

b−c
= −4π

h̄

∑
k2,k3

g2|�(R, T )|2

× [
2δk1+k2,k3δ

(
ωk1 + ωb,k2 − ωk3 − ωc

)
× (

F 1−2
k1,k2,k3

)2
(nb(k1)nb(k2)(1 + nb(k3))

− (1 + nb(k1))(1 + nb(k2))nb(k3))

+ δk1,k2+k3δ
(
ωk1 + ω−ωb,k2 − ωk3

)
× (

F 1−2
k3,k2,k1

)2
(nb(k1)(1 + nb(k2))(1 + nb(k3))

− (1 + nb(k1))nb(k2)nb(k3))
]
. (17)

where the vertex correction F 1−2
k1,k2,k3

is given by the sym-
metrized product of the three involved Bogoliubov coeffi-
cients

F 1−2
k1,k2,k3

= u1u2u3 − u1v2u3

− v1u2u3 + u1v2v3 + v1u2v3 − v1v2v3. (18)

This scattering rate is also called Beliaev-Landau scattering.
Again the result differs from the semiclassical form only by
the vertex correction in terms of symmetrized products of
the u, v coefficients. This term is usually called C12[ f ] be-
cause two bogolons are scattered one into the condensate and
the other into another state of the excitations. This scattering
rate which determines the growth and decay of the condensate
has been analyzed best in the literature of atomic gases. How-
ever generally speaking—compared to atomic condensates
which are mostly close to equilibrium—nonequilibrium prop-
erties and quantum-kinetic effects are much more prominent
in the nonresonantly pumped micro-cavity polariton systems.
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Finally, the scattering from the reservoir into the excited
states is deduced from a scattering self-energy diagram with
three nondegenerate reservoir lines. The result is

dnb(k)

dT

∣∣∣
r−b

= −2π

h̄

∑
k′,q

g2
r−b,q

× δ(ωb,k + er,k′ − er,k−q − er,k′−q)u2
k

× (nb(k)nr (k′)(1 + nr (k+q))(1 + nr (k′−q))

− (1 + nb(k))(1 + nr (k′))nr (k+q)nr (k′−q)) .

(19)

Here, only the spectral function u2
k enters this scattering rate

because only the bogolon GF G11 enters into the product of
the scattering-self-energy and the GF. Gain is obtained from
the second line of the population factors if a reservoir particle
with momentum k + q is scattered into a bogolon state with
momentum k, while another reservoir particle with momen-
tum k′ − q is scattered into an unoccupied state nk′ = 0, so
that the reverse process is not possible. This completes the
scattering rates of the bogolon kinetics.

III. NONEQUILIBRIUM GROSS-PITAEVSKII EQ
COUPLED TO BOGOLONS

Next, we formulate the equation for the condensate wave
function coupled to the excitations above the condensate fol-
lowing the diagrammatic approach of Ref. [4]. Additionally
to the self-interaction within the condensate, we take the
Hartree-Fock interaction with the bogolons into account as
discussed above. The coupling term is given by the difference
of the scattering self-energies �>

1
2

− �<
1
2

according to Eq. (8)

of Ref. [4]. The resulting nonequilibrium Gross-Pitaevskii
equation is(

ih̄
∂

∂T
+ h̄2∇2

2mc
− U (R, T ) − g0|�(R, T )|2

)
�(R, T )

= 2g0
(
nb(R, T ) + Nr (R, T )

)
�(R, T )

+ ih̄

2
(Rc + iPc − γc)�(R, T ) , (20)

where we have taken the Hartree-Fock exchange energy due
to the interaction with the bogolons and the reservoir excitons
into account. In a stationary and homogeneous situation, the
chemical potential is in accordance with (A18) μ = n0g0 +
2g0nb. The real and imaginary parts of the scattering ampli-
tude Rc and Pc are given by the sum of contributions from the
bogolons to the condensate and by the direct scattering from
the reservoir into the condensate

Rc = Rc−b + Rc−r, Pc = Pc−b + Pc−r , (21)

where

Rc−b = −
∑

k

dnb(k)

dT

∣∣∣1−2

b−c

1

|�(R, T )|2 , (22)

because of particle conservation and

Pc−b = −
∑

k

dnb(k)

dT

∣∣∣1−2

b−c

1

|�(R, T )|2
∣∣∣∣∣
πδ(
e)→P(
e)

. (23)

The imaginary part of the scattering amplitude Pc−b describes
the dispersive shift connected with the c − b scattering rate
[22]. It is obtained by adding a principal value integral to
the expressions with the energy conserving delta-functions
in (17) using the Dirac identity 1/(
e − iγ ) → iπδ(
e) +
P(1/
e). For a direct scattering from the reservoir into the
condensate, the corresponding complex scattering amplitude
Rc−r + Pc−r has been given in Ref. [4]. The GP equation
still is a homogeneous equation, which requires a dynamical
symmetry breaking, e.g., in terms of fluctuations or at least
with a small but finite initial value for the condensate wave
function. As for the Boltzmann equation, we will transform
the GP equation to the moving coordinate system by writing
�(r, t ) = |�(r, t )| exp(i�(r, t )), where the amplitude |�(r, t )|
is the condensate wave function in the moving frame. Its
equation can simply be obtained from (20).

Because we concentrate on the bogolon kinetics, we treat
the reservoir by a simple rate equation.

dNr (R, T )

dT
= P(R, T ) − γrNr −

∑
k

dnb(k)

dT

∣∣∣
r−b

− dNr

dT

∣∣∣∣
r−c

, (24)

where the reservoir-bogolon scattering rate is given by (19).
The reservoir-condensate scattering rate has been given in
Ref. [4].

IV. TIME-RESOLVED LUMINESCENCE

As already mentioned the linear Bogoliubov spectrum of
the polaritons has been observed in luminescence measure-
ments of Utsunomiya [23]. Recent time-resolved lumines-
cence experiments [10,24] have seen the luminescence from
the negative branches (ghost branches), as well. The pos-
sibility of observing ghost branch luminescence has been
analyzed before by Byrnes et al. [25]. In our context, the mo-
mentum, frequency, time- and space-resolved luminescence
spectrum can be obtained from the particle correlation func-
tion G<

11(k, ω, R, T ). The negative frequency part of G<
11 needs

for the calculation of the luminescence special consideration.
Due to the negative energy eigenvalues with respect to the
condensate, the two times on the Keldysh time contour of
the nonequilibrium GF are effectively reversed. Thus for the
term proportional to v2

k one has to replace G<
11 −→ −G>

11 =
i(nb,k + 1)A11, so that one gets the following luminescence
spectrum:

I (k, ω, R, T )=|Ck|2
(

2�u2
knb,k

(ω − ωb,k )2+�2
+ 2�v2

k (nb,k + 1)

(ω + ωb,k )2+�2

)
.

(25)

For an equilibrium theory with temperature-dependent GF’s
of the luminescence of condensed excitons, the nega-
tive frequency had to be taken into account in the
frequency-dependent Bose distribution: n(−ω) = 1/(e−βω −
1) = −(n(ω) + 1), as used by one of us [26,27]. This replace-
ment yielded again a spectrum of the form (25).

With the discussed reformulation for the negative fre-
quency part, the luminescence spectrum is positive definite,
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as it should be. The result (25) agrees with the result of
Byrnes et al. [25]. The first term yields the normal lumines-
cence which can also be observed below the condensation
threshold, while the second term describes the ghost branch
luminescence which is only present in the condensed phase.
Ck is again the Hopfield coefficient for the photon compo-
nent of the polariton because only the photon component
can emerge from the cavity. The luminescence spectrum can
also be seen as bogolon-assisted photon emission processes
of the condensate. The first term describes the radiative decay
of a condensed particle simultaneously absorbing a bogolon
(∝nb,k), and the second term is due to the emission of a photon
and the spontaneous and stimulated emission of a bogolon
(∝(1 + nb,k )).

Thus with the results of our quantum kinetics, we can at the
same time determine temporal development of the polariton
luminescence. The measured luminescence spectrum close to
the condensate has been inspected by Assmann et al. [28] but
a conclusive result about the modification has not been ob-
tained. The recently observed ghost branch luminescence high
above the condensate threshold [23] is not based on specific
nonequilibrium modifications of the Bogoliubov spectrum but
is rather natural for a Bose condensed system.

The Bogoliubov coefficient vk describes the coupling of
the condensate to a pair of bogolons with opposite momenta.
This process is for higher momentum states responsible for the
depletion of the condensate. The resulting scaling of the ghost
branch spectrum which is due to depletion of the condensate
has recently been observed by Pieczarka et al. [16].

Future luminescence measurements of the excited states
with improved resolution may allow detecting the nonequi-
librium modifications of the bogolon spectrum for small k
values.

V. NUMERICAL RESULTS

In this section, we present numerical solutions of the fol-
lowing set of coupled equations: (a) the reservoir rate equation
(24), (b) the bogolon quantum Boltzmann equation (3), and
(c) the Gross-Pitaevskii equation for the condensate wave
function (20). The nonresonant Gaussian pump beam which
excites the reservoir

P(R, T ) = P0e−(R/R0 )2
tanh(T/T0) (26)

is switched on in T0 = 1 ps and has a radius of R0 = 3 μm.
The stationary pump power for all shown results is P0 =
1.5Pc, where Pc is the threshold pump power. We will use
the parameters of a CdTe-type microcavity with a quadratic
cross-section of length L = 12.6 μm. The spectrum of the
excitation is limited to k1 � k � 2 μm−1 because at the higher
border the dispersions of the bogolons and the reservoir cut
each other. The material parameters used in our calculations
are those listed in Ref. [22]. The numerical evaluations have
been performed using 64 × 64 grid points in real space and
9 × 9 grid points in momentum space.

For the solution of the Gross-Pitaevskii equation (33), we
use the split-step Fourier transform by writing the condensate
wave function as

�(R, T + dT ) = iF−1
{
e−i h̄k2

2m dTF
[
e−i V (R,T )

h̄ dT �(R, T )
]}

,

(27)

where V (R, T ) is given by

V (R, T ) = g

[
|�(R, T )|2 + 2

( ∑
k

nb(k, R, T ) + Nr (R, T )

)]

+ ih̄

2
(Rc(R, T ) + iPc(R, T ) − γc) . (28)

Here, F is the Fourier transform. At T = 0, the wave function
is initiated with noise

�(R, T = 0) = aibr , (29)

where a and b are random variables.
The numerical treatment of the kinetics together with trans-

port is known to be notoriously difficult and leads often to
the violation of the particle number conservation [29]. It is
therefore essential to reformulate the drift term in such a way
that it displays the number conservation explicitly.

∂nb(R, k)

∂T

∣∣∣∣
drift

= (∇k/h̄)(ek + h̄k · vs) · ∇Rnb(R, k))

−∇R(ek + h̄k · vs) · (∇k/h̄)nb(R, k)

= ∇R · [((∇k/h̄)(ek + h̄k · vs))nb(R, k)]

−(∇k/h̄) · [(∇R(ek + h̄k · vs))nb(R, k)]

= ∇R jR(R, k) − (∇k/h̄) jk (R, k) , (30)

with the currents in real and momentum space

j(R
k )(R, k) =

(((∇k/h̄)
∇R

)
(ek + h̄k · vs)

)
nb(R, k). (31)

Now we have derived the drift term in the form of a conti-
nuity equation. If one takes the 2D volume integrals over the
r and k space, one gets for the first term with the Gauss law a
surface integral over the sample with the normal components
of the current j1,n. These currents are zero on the surface.
Similarly the second term yields after the k integration a
surface integral in k space, again these integrals vanish so that
the total bogolon number is conserved by the drift term:

∂Nb(T )

∂T

∣∣∣∣
drift

= 0 . (32)

With this formulation, one can follow the procedure of Smo-
larkiewicz [29], where a small diffusion term is added to
guarantee stability for the numerical evaluation on a discrete
lattice.

Figure 2 shows the resulting build-up of the conden-
sate population N0(T ) = ∫

d2Rn0(R, T ) (red line), and the
excited states, i.e., the total number of bogolons Nb(T ) =∫

d2R
∑

k nb,k (R, T )/S (green line). The area S is that of the
inner square where the condensate is mostly concentrated, as
will be discussed in more detail when we present the spa-
tial distribution of the condensate and the excitations below.
Here n0(R, T ) is the condensate density, while nb,k (R, T ) is
the number of excitations at a given momentum, position,
and time. For the chosen pump strength of 1.5Pc above the
critical pump strength Pc, one sees first a rapid build-up of the
excitations at about 0.1 ns. Because the switch-on time of 1
ps is much shorter than the exciton or photon cavity lifetime,
a pronounced over-shoot of the number of excitations Nb(T )
occurs, followed by a stationary region which is determined
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FIG. 2. Time development of the number of particles in the
condensate N0(T ) = ∫

d2Rn0(R, T ) (red line) and number of all
bogolons Nb(T ) = ∫

d2R
∑

k nb,k (R, T )/S (green line) for a pump
power of P0 = 1.5Pc. S has been taken as the area of an inner square
where most of the condensate is located.

by the balance of the pump and loss rate. During this time
interval, the bogolons still relax toward lower energies until
the condensation occurs after about 0.7 ns. After condensation
the number of bogolons decrease to their stationary value.
In the following, we will show various results of the kinetics
for the stationary regime after the condensation.

In Fig. 3, the dispersions (without shifts) are shown for
the unperturbed polaritons and the bogolons for the spatial
position with the maximal condensate density of 1010 cm−2.
The inset shows the linear regime of the Bogoliubov-Popov
spectrum above condensation. First, we will discuss the spatial
distributions of the condensate and the bogolons.

In Fig. 4, the resulting stationary condensate wave function
is displayed 2.1 ns after switch-on: the amplitude is described

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

e k
 (

m
eV

)

k (μm-1)

 0.1  0.2  0.3
 0

 0.025

 0.05

 0.075

FIG. 3. Dispersion of the unperturbed polaritons (full red line),
and that of the bogolons (green dashed line) under stationary con-
ditions for the maximum condensate density of n0(R) = 1010 cm−2.
Shifts are not shown. (Inset) Dispersions for small momenta.
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FIG. 4. Amplitude (contour plot), phase (grey scale) and super-
fluid velocity (vector field) of the condensate wave function 2.1ns
after onset of the excitation.

in terms of a contour plot with a central dip and 4 peaks in
the corners of an inner square, where the condensate is mostly
concentrated. In the outer area, one sees a series of smaller
maxima parallel to the sides of the sample. The superfluid
velocity is shown by arrows, with a fast flow away from the
center area to the outer regions. The phase is indicated by
a grey scale, with lines of a phase jump where the white
and dark areas meet. The ends of these phase jump lines are
connected with vortices and antivortices, as will be seen more
clearly in the following figure.

In Fig. 5, the flow patterns of the condensate are seen
particularly well. The inner region is dominated by a flow
away from the center turning in the outer region to areas with

FIG. 5. Streamlines for the condensate flow.
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FIG. 6. Condensate distribution n0(R) (red) along the diagonal
of the sample x = y and the corresponding bogolon distribution
nb(R, T ) = ∑

k nb,k (R, T )/S 5 ps (green line) and 200 ps (dashed
blue line) after condensation.

pronounced vorticity. Along the boundaries of the sample, a
row of vortex-antivortex pairs can be seen.

In Fig. 6, we plot the condensate and bogolon densities
along the diagonal x = y of the sample. Here the coherent
wave character of the condensate becomes even more evident.
The condensate (red line) has a minimum at the center due
to the rapid flow of the condensate but also of the bogolons
out of this area. The first maximum is reached in the corners
of the inner square at about x = y = ±2 μm, while it has
a richer, finer structures in the outer regions, as seen, e.g.,
from the four relatively pronounced side peaks in the corners
of the sample (see also Fig. 4). Because the condensate is
mostly confined to the inner square S = 4.8 μm × 4.8 μm, we
normalized the condensate density with this area. Note that we
simplified the problem for the condensate and the excitations
by using periodic boundary conditions. This was necessary for
the application of the split-step Fourier transform method for
the solution of the GPE and using the standard Bogoliubov
theory for the excitations. As a consequence, the condensate
wave function � at the boundary does not vanish. We also
show the bogolon density summed over all k states at two
times, showing that their spatial distribution still changes 5 ps
after the condensation, while they are already close to a local
equilibrium distribution. Note also there is a pronounced de-
viation from a symmetric bogolon distribution, particularly at
early times.

Figure 7 the spatial distribution of all excitations above the
condensate nb(R, T ) = ∑

k nb,k (R, T )/S is shown. This distri-
bution has pronounced square patterns, which result from the
motion due to the drift terms. The distribution in the central
part in between the condensate peaks is relatively smooth and
weakly populated by the bogolons, which pile up about 3 μm
away from the center. In the regions with pronounced vorticity
rapid spatial variations of the bogolon distribution are seen.

An important question is to which degree the bogolons
reach a local thermal equilibrium well in the stationary
regime. Because in our kinetics phonon scattering is not in-
cluded, the bogolon temperature is only determined by the
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FIG. 7. Distribution of the bogolon density nb(R) = ∑
k nb,k (R)/S.

mean energy of the bogolon gas. Experimentally, a thermal
equilibrium bogolon distribution has been observed only in
microcavities with a trap and with particular long polariton
lifetimes (�270 ps), even if the excitation occurred outside
the trap in which the condensate took place [30].

Because the collision integrals conserve energy, momen-
tum and particle number (at least approximately because the
number-conserving scattering rates dnb(k)/dT |2−2

b−b are found
to be considerably larger than the number-nonconserving
scattering rates dnb(k)/dT |1−3

b−b), the local equilibrium Bose-
Einstein distribution has in general 3 parameter fields, namely,
the inverse temperature β(R, T ) = 1/kBTb(R, T ), the drift ve-
locity vd (R, T ), and the chemical potential μ(R, T ).

nle
k (R, T ) = 1

eβ(R,T )[eb,k (R,T )−h̄k·ud (R,T )−μ(R,T )] − 1
. (33)

We have already seen from Fig. 7 that there are a rel-
atively homogeneous inner square and a rather structured
outer region with considerable vorticity. If local equilibrium
would be established everywhere in the sample, one could
derive from the quantum Boltzmann equation the equations
for the corresponding conserved quantities, i.e., number den-
sity, momentum density, and energy density together with
the equation for the superfluid velocity vs. Furthermore one
could use the thermodynamic relations between thermody-
namic functions that enter these equations. By these means,
one could formulate a two-fluid model for the polaritons in
analogy to the Landau description of superfluid 4He. So far,
however, the observed processes have been too fast for de-
scribing them in terms of a two-fluid model.

To check whether the calculated distributions reached at all
in the stationary regime, here at 2.1ns after switch-on, we first
consider examples of the relatively spatially homogeneous
center part, starting with the distribution at the center of exci-
tation, where according to Fig. 6 the condensate has a dip due
to the rapid outflow. Thus the left panel of Fig. 8 the calculated
bogolon distributions are shown in momentum space for the
spatial center point x = y = 0. The calculated distributions
are marked by symbols, the fits to local equilibrium (33) are
shown by lines. To guide the eye, symbols and lines in the kx

direction are plotted in the same color, while in the ky direction
the same symbols are used. It is seen that at this central point
the local equilibrium is reached perfectly.
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FIG. 8. Fits of the calculated bogolon distribution in k space
(symbols) with a local equilibrium distribution (lines). Points with
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value have the same color. The left figure is for the central position
x = 0, y = 0. The right figure is for the example of a small side peak
of the condensate at x = −3.8 μm, y = −1.4 μm.

A second example is given in the right part of Fig. 8
for a small side peak of the condensate at the position
x = −3.8 μm, y = −1.4 μm. Also at this position, the fit of
the local equilibrium distribution to the calculated distribution
works reasonably well.

In the outer regions of the sample, the bogolon distributions
exhibit relatively large spatial variations and considerable vor-
ticity. In Fig. 9, fits of the calculated bogolon distribution to
the local equilibrium distribution are shown for positions in
which a relatively large drift velocity shifts the peak of the lo-
cal equilibrium distributions appreciably. We show in the left
part of Fig. 9 an example for the position x = −4.6 μm, y =
−5.2 μm where we obtain a drift velocity in x direction corre-
sponding to a drift momentum kd,x = 0.2 μm−1. In the right
part of Fig. 9, we show for the position x = −2.2 μm, y =
−3 μm an example which yields the large drift vector kd,x =
0.96 μm−1. Still, the fits to local equilibrium are possible but
they get less accurate for larger drift velocities.

Next, we present at least for the inner area where the
fits to the local equilibrium distributions are quite good the
resulting parameter fields. In Fig. 10, we show the result-
ing drift velocity field ud (R) and compare this velocity field
of the excitations with the superfluid velocity field of the
condensate vs(R) given by thick arrows. In general, the two
velocity fields are closely related, but one finds also regions
with strong differences. In Fig. 11, the resulting chemical
potential μ(R) is shown. In the region surrounding the inner
condensate minimum (with a slight asymmetry to the left) the
chemical potential takes larger negative values which indicate

-1
 0

 1
-1

 0

 1
10-1
100
101
102
103

-mvd/h-=0.20(μm-1)

kx  (μm -1
)

k y
 (μ

m
-1 )

f k

-1
 0

 1
 2

-1

 0

 1
10-1
100
101
102
103

-mvd/h-=0.96(μm-1)

kx  (μm -1
)

k y
 (μ

m
-1 )

f k

FIG. 9. Fits of the calculated bogolon distribution in k-space
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the vorticity zone. The left figure is calculated for x = −4.6 μm, y =
−5.2 μm. The fits yield a drift velocity corresponding to a momen-
tum of kd = 0.2 μm−1. The left figure is calculated for the position
x = −2.2 μm, y = −3 μm. A drift velocity corresponding to the
momentum of kd = 0.96 μm−1 is obtained.
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a classical region rather than a quantum phase region, while
it approaches zero in the vicinity of the condensate peaks.
In Fig. 12, the resulting temperature is plotted. Consistent
with the results for the chemical potential we find the highest
temperatures in the regions where the bogolon gas is most
classical, and low temperatures in the vicinity of the conden-
sate peaks. Finally, we show in Fig. 13 the fitting parameters
along the diagonal x = y. Here we see again that μ, T , and ud

are strongly varying functions of the position. In the center
where the condensate has a minimum the chemical poten-
tial has large negative values and the local temperature is
correspondingly high. Around the maxima of the condensate
population, μ approaches zero and the temperature is low. The
drift velocity (green arrows) follow more or less the superfluid
velocity (red arrows).

With these results, we have shown that under station-
ary conditions at least in the regions without large spatial
variations of the condensate wave function and the bogolon
distributions the excitations above the condensate reach a
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FIG. 11. Chemical potential of the bogolon gas obtained from
fits to a local equilibrium distribution.

165126-9



T. D. DOAN, D. B. TRAN THOAI, AND H. HAUG PHYSICAL REVIEW B 102, 165126 (2020)

-2
-1

0
1

2
x (μm) -2

-1

0

1

2

y (
μm

)

 10
 30
 50
 70

T
b 

(K
)

 10  30  50  70
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local equilibrium distribution.

local equilibrium, while in the strongly structured regions a
fit to local equilibrium distributions was getting less accurate.

Finally, we want to present the resulting lumines-
cence spectra in Fig. 14. Below the onset of conden-
sation (see the left part of Fig. 14) only the upper
branch of the luminescence spectrum is seen with a
mainly quadratic spectrum. Above condensation (see right
part of Fig. 14) both the positive branch on the high-
frequency side of the condensate as well as the negative
branch, also called the ghost branch, are visible and
resemble the spectra which have been observed [15,16]. In
practice, the observation of the relatively weak bogolon lumi-
nescence is difficult because of the proximity to the strong
condensate luminescence. As discussed above the bogolon
luminescence can alternatively be understood as an optical
decay of a condensate particle assisted by the absorption
of a bogolon on the high-energy side, and assisted by the
spontaneous and stimulated emission of a bogolon below the
condensate line. Because the ghost branch is proportional to
the square of the Bogoliubov coefficient vk which is propor-
tional to the condensate density it is, in particular, a strong
signature of the presence of a polariton BEC.

In conclusion, we have extended the treatment of BE con-
densed exciton polaritons in semiconductor microcavities by
including the kinetics of the excitations above the condensate,
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FIG. 14. Normalized bogolon luminescence plotted in a logarith-
mic scale before the onset of condensation (left part) and after the
onset of condensation (right part), respectively.

called bogolons. We have shown the bogolons reach under
stationary excitations local equilibrium only partially, namely,
only in regions with weak spatial variations. The results of the
bogolon kinetics yield directly the time- and space-resolved
luminescence spectrum including the ghost branch. We did
not intend to adjust details of the bogolon-condensate kinetics
to get an agreement with available experimental observations,
e.g., by introducing also the scattering by phonons, but tried
to demonstrate the basic features of the coupled bogolon-
condensate kinetics.
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APPENDIX A: SPECTRAL GREEN FUNCTIONS IN THE
BOGOLIUBOV-POPOV APPROXIMATION

We briefly discuss the retarded GF’s for a condensed
boson system in equilibrium and a general nonequilibrium
system. After a Fourier transform with the spatially rapidly
varying relative coordinates are with ψ (r, t ) = ∑

k ak (t )eik·r
suppressing for simplicity the vector notation the normal and
anomalous retarded GF’s are defined as

Gr
11,k (t, t ′) = −i�(t − t ′)〈[a1,k (t ), a†

1,k (t ′)]〉
= −i�(t − t ′)〈[ak (t ), a†

k (t ′)]〉 (A1)

and

Gr
12,k (t, t ′) = −i�(t − t ′)〈[a1,k (t ), a†

2,k (t ′)]〉
= −i�(t − t ′)〈[ak (t ), a−k (t ′)]〉 . (A2)

This function is called pair function or anomalous GF. For a
mean-field self-energy

�k (t, t ′) = �k (t )δ(t − t ′), (A3)
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the retarded GF’s obey the following equations:

i
∂Gr

11,k (t, t ′)
∂t

∣∣∣∣
m f

= δ(t − t ′) + (ek + �11,k (t ))Gr
11,k (t, t ′)

+�12,k (t )Gr
21,k (t, t ′) , (A4)

where Gr
21,k (t, t ′) = Gr∗

12,k (t, t ′). For the retarded off-diagonal
GF Gr

12,k (t, t ′)∗ we get

i
∂Gr

12,k (t, t ′)
∂t

∣∣∣∣
m f

= (ek + �11,k (t ))Gr
12,k (t, t ′)

+�12,k (t )Gr
22,k (t, t ′) . (A5)

The singular mean field-self-energies in the Hartree-Fock-
Popov approximation are

�11(t ) = 2g0(n0(t ) + nb(t )) with nb(t ) =
∑
k �=0

nb(k, t ) ,

(A6)

�12 = g0�
2
0 (t ) . (A7)

In stationary equilibrium, the order parameter oscillates with
the chemical potential μ like

�0(t ) = e−iμt�0(t )st = e−iμt√n0 . (A8)

The anomalous self-energy varies thus under stationary con-
ditions

�12(t ) = e−i2μt�st
12 . (A9)

To reach a stationary solution for the two nonequilibrium
Dyson equations the stationary solutions of the spectral func-
tions have to vary as

Gr
12,k (t, t ′) = eiμ(t+t ′ )Gr,st

12,k (t, t ′) ,

Gr
11,k (t, t ′) = e−iμ(t−t ′ )Gr,st

11,k (t, t ′) , (A10)

i.e., all energy has to be shifted by the chemical potential.
This corresponds to a transition to a grand canonical Hamilto-
nian which guarantees the conservation of the mean particle
number in equilibrium. Using the symmetry properties of
the GF’s, the corresponding Dyson equations for a stationary
equilibrium system take the standard textbook form

i
∂Gr,st

11,k (t, t ′)

∂t

∣∣∣∣
m f

= δ(t − t ′) + (ek − μ + �st
11,k (t ))Gr,st

11,k (t, t ′)

+�st
12,k (t )Gr,st∗

12,k (t, t ′) (A11)

and

−i
∂Gr,st∗

12,k (t, t ′)

∂t

∣∣
m f = (

ek − μ + �st
22,k (t )

)
Gr,st∗

12,k (t, t ′)

+�st
12,k (t )Gr,st

11,k (t, t ′) , (A12)

where we used Gr,st∗
22,k (t, t ′) = Gr,st

11,k (t, t ′). Naturally the upper
index st—which we introduced for clarity—is in the conven-
tional equilibrium theory not written explicitly. After a Fourier
transformation, these functions can be put into the form

Gr
11(k, ω) = u2

k

ω − ω1,k + iγ
− v2

k

ω − ω2,k + iγ
(A13)

and

Gr
12(k, ω) = − ukvk

ω − ω1,k + iγ
+ ukvk

ω − ω2,k + iγ
(A14)

with the Bogoliubov coefficients with u2
k − v2

k = 1

u2
k = 1

2

(
ek + g0n0

ω1,k
+ 1

)
, v2

k = 1

2

(
ek + g0n0

ω1,k
− 1

)
,

(A15)
where the bogolon energies are

ω1,2,k = ±
√(

ek − μ + �st
11,k

)2 − ∣∣�st
12,k

∣∣2
. (A16)

With the Hugenholtz-Pines theorem [31] μ = �st
11 − �st

12 the
spectrum for small momenta becomes phononlike

ω1,2,k = ±
√

e2
k + 2ek�

st
12 . (A17)

For the Popov approximation, the Hugenholtz-Pines theorem
is automatically fulfilled

μ = �st
11 − �st

12 = n0g0 + 2g0nb . (A18)

For illustration, in thermal equilibrium, this relation is written
with the total number of particles n = n0(T ) + nb yields

μ = 2ng0 − n0(T )g0 = ng0

(
1 +

( T

Tc

) 3
2
)

, (A19)

where the Popov relation

n0(T ) = n − nb = n

(
1 −

( T

Tc

) 3
2
)

(A20)

has been used.
Thus one finds a gap-less spectrum

ω1,2,k = ±
√

e2
k +2g0n0ek = ±eb,k . (A21)

In contrast to the Bogoliubov approximation, the Popov ap-
proximation can be used also in the vicinity of Tc. The only
difference is that n0 is in the Popov approximation replaced
in thermal equilibrium by the temperature-dependent n0(T ),
or in the kinetic theory by the self-consistently calculated
condensate population n0 which is in general still a slowly
varying function of the central space and time coordinates.
We will use the spectral functions in the Popov approximation
for the development of the kinetics. With weak spatial and
temporal variations of the condensate density the spectral
functions also become functions of R and T : Gr (R, T, k, ω)
and Ga(R, T, k, ω), respectively. Because the boson condition
is u2

k − v2
k = 1, one can express these coefficients in terms of

hyperbolic functions:

uk = cosh(ϕk ), vk = sinh(ϕk ) . (A22)

APPENDIX B: NONEQUILIBRIUM MODIFICATION
OF THE SPECTRAL FUNCTIONS

Finally, we want to treat the modifications of the eigen-
modes by the coupling to the reservoir which has been derived
from the Gross-Pitaevskii equation [1,9]. For this purpose, we
consider two limits of the ratio of the lifetimes of the excitons
in the reservoir and the polaritons in the ground state.
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1. Short reservoir lifetime

If the lifetimes of the reservoir excitons are short in com-
parison to the cavity lifetime one can at least approximately
eliminate the reservoir variable adiabatically. This case has
been considered in the previous investigations of Syman-
ska et al. [9] and Wouters, Carusotto [1] in terms of a
nonequilibrium Gross-Pitaevskii equation. Here we consider
the dissipative parts of the self-energies of the retarded GF’s
due to the coupling to the reservoir:

�′′
11 = �′′

12 = −i� . (B1)

From (A11) and (A12), one gets

(ω − (ek + n0g0 − i�)Gr
11 + (n0g0 − i�)Gr∗

12 = 1,

(n0g0 + i�)Gr
11 + (ω + (ek + n0g0 + i�)Gr∗

12 = 0 . (B2)

From the determinant of this system of equations

Det = (ω + i�)2 − (ek + n0g0)2 + n2
0g2

0 + �2 , (B3)

one finds the damped eigenfrequencies

ωne
1,2,k = −i� ±

√
ω2

b,k − �2 . (B4)

This nonequilibrium spectrum has no real solution for k values
smaller than ωb,k < �. It connects at this point the positive
and negative branch of the excitations [1,9]. This modification
of the polariton spectrum will be important in connection
with the luminescence from the negative branch, also called
the ghost branch. The coefficients u2

k and v2
k given by (A15)

remain unchanged, only the modified eigenfrequencies (B4)

have to be inserted instead of the unperturbed Bogoliubov
spectrum.

2. Short microcavity lifetime

Typical cavity lifetimes are of the order of 10−11 s, i.e.,
short to typical exciton lifetimes of 10−9 s. In this case which
has also be considered by Byrnes et al. [25], one has the
following normal dissipative self-energies:

�′′
11 = −i�, �′′

12 = 0 . (B5)

In this case, we have only diagonal damping terms in (B2),
i.e., the infinitesimal damping γ of the retarded GF’s is now
the finite damping �. The resulting nonequilibrium bogolon
spectrum is

ωne
1,2,k = ±

√
ω2

b,k + �2 . (B6)

Now the spectrum has a gap at small k values, the upper
branches for negative and positive k values connect smoothly
at k = 0, and correspondingly for the negative branches.

So far the investigations of the luminescence spectra [28]
are not conclusive which of the two nonequilibrium spec-
tra is realized in the best present-day GaAs- or CdTe-type
micro-cavities. Thus, in our kinetics, we will use the sim-
ple unmodified spectrum (A21), because the main features
of the luminescence, including the appearance of the ghost
branch, will be shown to be independent of these finer
modifications.
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