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We report here the properties of single crystals of La2Ni2In. Electrical resistivity and specific heat mea-
surements concur with the results of density functional theory calculations, finding that La2Ni2In is a weakly
correlated metal, where the Ni magnetism is almost completely quenched, leaving only a weak Stoner enhance-
ment of the density of states. Superconductivity is observed at temperatures below 0.9 K. A detailed analysis
of the field and temperature dependencies of the resistivity, magnetic susceptibility, and specific heat at the
lowest temperatures reveals that La2Ni2In is a dirty type-II superconductor with likely s-wave gap symmetry.
Nanoclusters of ferromagnetic inclusions significantly affect the subgap states resulting in a nonexponential
temperature dependence of the specific heat C(T ) at T � Tc.
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I. INTRODUCTION

Electronic correlations lead to an array of different ordered
and disordered phases in metals. These phases are especially
interesting when they occur on low-dimensional or geomet-
rically frustrated lattices. If the correlations are not strong
enough to render the system fully insulating, the stabilization
of increasingly localized electronic states and the associated
magnetic moments adds a compelling complexity to the phase
behaviors of correlated metals. Finding isostructural, and even
isoelectronic, systems where the relationships between the
different phases and behaviors can be explored in a controlled
way is of great importance. The R2T2X (R = rare earth, T
= transition metal, X = main group, pnictogen, chalcogen)
family has proven particularly useful, due to its unique crystal
structure [1–3]. The lattice of f -electron bearing rare-earth
atoms R consists of planes of orthogonal dimers, as in the
Shastry-Sutherland lattice (SSL), that are stacked along the c
axis. Depending on the relative distances between the rare-
earth moments in the plane or perpendicular to the plane,
two-dimensional systems of isolated SSL planes [4,5] can be
realized, or alternatively spin ladder systems [6,7]. For R2T2X
(R = Ce,Yb), the f electrons of the rare earths can also display
mixed valence behaviors [8–13], indicating that coupling of
the f electrons to extended states can lead to the overall sup-
pression of magnetic moments. It is expected that the interplay
of strong quantum fluctuations due to the unique R2T2X lattice
[13–15], as well as proximity to the delocalization of the f
electrons via the Kondo effect, can result in the destabilization
of ordered phases, and to the formation of quantum critical
points (QCPs) where the host systems are transitioning among
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different phases [9,13,16–18]. Given this richness of behavior
when the rare earth R has f electrons, it is surprising that
relatively little is known about compounds from this family
where R = La,Lu,Y, where there are no valence f electrons.
Here, there is the possibility of instead studying d-electron
magnetism and correlations that are associated with the T
atoms. At present, 21 compounds have been identified where
R = Y,La,Lu, T = Ni,Cu,Au,Pt,Pd,Rh, and X = Mg,In,Pb,Cd.
However, there has been relatively little study of the physical
properties of these compounds [11], and to our knowledge
none of these studies have been carried out on single crystals.

Of the known R2T2X compounds with R = Y,La,Lu, it
seems likely that compositions with T = Ni have magnetic
character. For that reason, we focused initially on La2Ni2In.
Previous measurements were carried out on polycrystalline
samples [11], where the possibility of small inclusions of mul-
tiple phases, and the lack of a well-defined conduction path
could potentially complicate interpretation. We report here a
detailed study of the basic properties of La2Ni2In crystals.
Electrical resistivity measurements find that this compound
is metallic. Density functional theory (DFT) calculations of
the electronic structure reveal that there is considerable charge
transfer associated with the Ni d states, which are well below
the Fermi level. Thus, the manifestations of the d-electron
character are very weak. Specific heat measurements concur
that the mass enhancement of the quasiparticles is quite small,
in good agreement with the DFT calculations. Measurements
of the magnetic susceptibility confirm the weak magnetism
predicted by the DFT calculations, revealing that there are no
localized magnetic moments, and the only intrinsic part of the
magnetic susceptibility is the temperature-independent Pauli
susceptibility with a minimal Stoner enhancement. Overall,
La2Ni2In is a weakly correlated metal, with minimal mag-
netic character. We find that it undergoes a transition to a
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superconducting state below 0.89 K. A detailed analysis of the
specific heat, electrical resistivity, and magnetic susceptibility
in the superconducting state was carried out, revealing that
La2Ni2In is a conventional type-II superconductor in the dirty
limit.

II. METHODS

Single crystals of La2Ni2In were synthesized using a LaNi
self-flux. The precursor LaNi was prepared using a solid-
state reaction. Stoichiometric amounts of La (99.9%) and
Ni (99.995%) were cut into small pieces and placed into an
Al2O3 crucible, sealed under ∼250 mbar argon atmosphere in
a quartz tube and successively heated to about 1100 ◦C for
40 h. The above steps were carried out under a protective
argon atmosphere to prevent lanthanum from oxidizing. After
synthesis the precursor was ground into a powder.

The precursor and elemental In (99.999%) were mixed
in a ratio of 6:1 and placed in a Canfield crucible set (two
Al2O3 crucibles separated by a strainer) and then sealed as
described above. The sealed quartz tubes were heated in an
open furnace over the course of 3 h to 770 ◦C, where they
remained for 5 h to ensure adequate mixing of the reactants.
Growth of La2Ni2In single crystals took place while lowering
the temperature over a period of 15 h down to 725 ◦C. At
this temperature the still liquid self-flux was separated from
the crystals by placing the batch upside down in a centrifuge
and spinning it at 2000–3000 rpm for about 15 s. Using this
procedure we were able to grow needlelike single crystals
of La2Ni2In. Typical dimensions of the crystals are about
0.5 × 0.5 × 4 mm3. An image of the five single crystals used
for heat capacity measurements is shown in Fig. 1(a).

Powder x-ray diffraction (XRD) patterns were recorded
with a Bruker D8 Focus diffractometer in the Bragg-Bretano
configuration using a Co cathode. The program FULLPROF was
used to refine the powder diffraction patterns. Measurements
of the electrical resistivity and specific heat were obtained
using a Physical Property Measurement System from Quan-
tum Design equipped with a He3/He4 dilution refrigerator
insert. Measurements of the magnetic susceptibility were done
using a Magnetic Property Measurement System 3 also from
Quantum Design and equipped with a He3 insert.

Band structure calculations were performed using the
linear augmented plane wave code WIEN2K [19]. For the cal-
culations of the zone-center phonons the VASP pseudopotential
package was used [20]. The gradient-corrected density func-
tional of Ref. [21] was used in all calculations.

III. NORMAL STATE PROPERTIES

A. Sample characterization

The as-grown single crystals of La2Ni2In were structurally
characterized by powder x-ray diffraction. The diffraction pat-
tern and its refinement are compared in Fig. 1. All recorded
diffraction peaks can be indexed within the reported tetrag-
onal structure [3], which has the space group P4/mbm. The
absence of extrinsic diffraction peaks rules out crystalline
impurity phases with concentrations larger than �1 %. The re-
fined lattice parameters and atomic coordinates are presented
in Table I. In particular, the refined a and c lattice constants for

FIG. 1. (a) Optical microscope image of five single crystals of
La2Ni2In. (b) The refined crystal structure of La2Ni2In. The unit cell
(thin gray lines) is shown in (top) top view and (bottom) perspective
view. Gray solid lines depict the nearest-neighbor Ni distance of
0.253 nm. (c) Measured powder XRD pattern of as-grown La2Ni2In,
and its refinement using the reported tetragonal structure with space
group P4/mbm. Bragg peak positions are indicated.

our single crystals lie within the range of values reported for
annealed polycrystalline samples [11,22]. This indicates that
the presence of defects and/or nonstoichiometry in the latter is
rather limited. We attribute the minor differences between the
observed and refined intensities in the XRD pattern to possible
vacancies and/or site exchange, which are not uncommon in
polycrystalline R2T2X compounds [23]. Finally, we found no
indication of a phase with an orthorhombic structure, as re-
ported earlier [23]. In fact, forcing the orthorhombic structure
for the Rietveld refinement requires additional peaks that are
not observed in our measured data. A comparison between
the tetragonal and orthorhombic refinements can be found in
Appendix A.

Like most of the R2T2X compounds, La2Ni2In adopts
the tetragonal Mo2FeB2-type structure with space group

TABLE I. Results of the XRD Rietvelt refinement.

Lattice parameters a (nm) c (nm) c/a

Single crystal 0.76448(2) 0.389149(14) 0.5009

Atomic coordinates x y z

La (4h) 0.17708 0.67708 0.5
Ni (4g) 0.61708 0.11708 0.0
In (2a) 0.0 0.0 0.0
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FIG. 2. Density functional calculation results for La2Ni2In. (a) Density of states as a function of energy E relative to the Fermi energy EF.
(b) Fermi surface calculated using the tetragonal crystal structure determined from our XRD analysis. The colors refer to Fermi level crossings
of bands with the same colors (c). (c) Electronic band structure plotted along high-symmetry directions.

P4/mbm, which is an ordered derivative of the U3Si2 structure
where the X atom occupies one of the two inequivalent U
sites. Figure 1(b) shows that, like the R atoms, the Ni atoms
form dimers with the closest Ni-Ni distance (solid gray bonds)
of 0.253 nm. The dimers form a square lattice in the a-b plane,
where the closest interdimer distance is 0.541 nm. The Ni-Ni
distance along the c axis is 0.389 nm, indicating a quasi-two-
dimensional environment for the Ni subsystem.

B. Density functional calculations of the electronic structure

We have performed ab initio band structure calculations
using the experimentally determined tetragonal structure of
La2Ni2In. The calculated density of states (DOS) and Fermi
surface of La2Ni2In are depicted in Fig. 2. In view of
the above-mentioned proposal of an orthorhombic structural
variant [23], we have as well attempted a full structural
optimization in both crystallographic groups. The tetrago-
nal P4/mbm structure optimized into a = 0.7663 nm and
c = 0.3906 nm, with the internal parameters, in the order of
Table I, being 0.1772, 0.6772, 0.6181, and 0.1181. The or-
thorhombic Pbam structure optimizes into a = 0.7643, b =
1.5595, and c = 0.3903 nm, with La 4g (0.6068, 0.2840,
0) and (0.7438, 0.5361, 0), Ni 4h (0.5565, 0.4251, 0.5)
and (0.3044, 0.3189, 0.5), and In 4h (0.4259, 0.1276, 0.5).
Curiously, the latter structure is lower in energy by ≈
30 meV/formula, consistent with the orthorhombic structure
found in polycrystalline samples [23], but not in our single-
crystal samples, where the tetragonal structure is stabilized.
We will use the results from the tetragonal refinement for our
analysis of La2Ni2In.

The Ni-based states form a broad band between �−2 and
−1 eV [Fig. 2(a)]. The breadth of the band reflects a combi-
nation of hybridization and charge transfer, indicating that Ni
likely has little magnetic character. There is a robust density
of states at the Fermi level EF , confirming that La2Ni2In is
metallic. The Ni d states contribute little weight at EF , and so
we conclude that the metal will have at most weak magnetic
correlations. Accordingly, we also performed fixed spin mo-
ment calculations to determine the Stoner-renormalized spin
susceptibility, which appears to be about 33% higher than
the Pauli susceptibility. This is a modest Stoner enhancement,
typical for nonmagnetic metals such as Al. While Ni is often

magnetic or close to magnetic in many of its compounds,
magnetism is almost completely quenched in La2Ni2In.

The Fermi surface of La2Ni2In is depicted in Fig. 2(b). The
five sheets of the Fermi surface correspond to band crossings
that are evident in the electronic band structure [Fig. 2(c)]. It
is notable that two of these sheets show little dispersion along
�-M, possibly suggesting a weak two-dimensionality that is
not inconsistent with the layered character of the La2Ni2In
crystal structure (Fig. 1). The calculated plasma frequencies
along the crystallographic a and c directions are 3.31 and
3.98 eV, corresponding to the Fermi velocities of 0.19 × 108

and 0.23 × 108 cm/s, respectively. In addition, we calculated
the frequencies of the zone-center phonons, which can be
found in Appendix B.

C. Specific heat

The temperature dependence of the specific heat C(T ) of
La2Ni2In is presented in Fig. 3. C rises monotonically with
increasing temperatures T between 0.05 and 300 K, reaching
the Dulong-Petit value of 3nR with n = 5 atoms per formula
unit (f.u.) around 300 K. However, our data are not well de-
scribed by the standard Debye model alone. Since the Debye
model only accounts for acoustic modes, this may suggest
that low-energy optical modes may be present in La2Ni2In.
This expectation was confirmed in our calculations of the
zone-center phonon spectrum (see Table III, Appendix B),
where a number of low-lying optical modes were found. This
motivated us to model the measured specific heat C using a
Debye-Einstein model:

C = Ce + mCD + (1 − m)CE. (1)

The weighting factor m enforces the requirement that the
acoustic and optical modes must together provide a fixed
amount of specific heat 3nR at sufficiently large T . The as-
sumption behind the formulation in (1) is that the acoustic
modes are described by the Debye term. The single Einstein
mode provides an empirical equivalence for the spectrum of
optical modes, whose computed values are given in Table III
of Appendix B. The electron and phonon contributions to
the specific heat are given by Ce = γ T and the Debye and
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FIG. 3. Specific heat C(T ) of La2Ni2In as a function of temper-
ature T between 0.05 and 300 K. The red line is a fit to the data
using the model defined in the main text. 3nR denotes the Dulong-
Petit constant with n = 5. Inset: Specific heat C/T as a function
of T 2 between 1 and 4.5 K. The solid green line is a fit to the
expression C(T ) = γ T + βT 3, yielding a Sommerfeld coefficient of
γ = 13.01(3) mJ mol−1 K−2.

Einstein terms

CD = 9nNAkB

(
T

TD

)3 ∫ TD/T

0

x4

(ex − 1)(1 − e−x )
dx,

CE = 3nNAkB

(
TE

T

)2 1

(eTE/T − 1)(1 − e−TE/T )
,

respectively, with the Sommerfeld coefficient γ , Avogadro’s
constant NA, Boltzmann’s constant kB, and TE the Einstein
temperature. The data are well described with the following
parameters: γ = 11.3(3) mJ mol−1 K−2, TD = 211 ± 1 K,
TE = 85 ± 1 K, and m = 0.82(1).

We also extracted γ and TD from a linear fit to C/T as
a function of T 2 at low temperatures between 1 and 4 K
(see inset of Fig. 3) using the expression C(T ) = γ T + βT 3,
with β = 12π4/5nNAkB/T 3

D . This procedure resulted in γ =
13.01(3) mJ mol−1 K−2 and TD = 226 ± 1 K, which are in
reasonable agreement with the values found in the more com-
prehensive fit above. In the following we will use the values
obtained from the low-temperature fit. The derived Sommer-
feld coefficient corresponds to 5.52(3) states/eV/f.u. at the
Fermi level, which is 38% larger than the value from our
DFT calculations (≈ 4.0 states/eV/f.u.). Given the apparent
absence of magnetic correlations in the DFT calculations, we
conclude that this mass renormalization is a consequence of
electron-phonon coupling, with a magnitude λm∗/m = 0.38.

D. Electrical resistivity

Figure 4 shows the electrical resistivity ρ(T ) of La2Ni2In
as a function of temperature T in the range of 0.15–400 K.
The measuring current was applied along the crystallographic
c axis. The room-temperature value ρ300 K = 63 μ�cm

TABLE II. Normal and superconducting properties of La2Ni2In.
The abbreviations “calc” and “expt.” attached to some of the vari-
ables distinguishes theoretical from experimental results.

Parameter Unit Value

Tc K 0.89
Hc2(0) Oe 1918
ξ (0) nm 34.4
ξ calc

0 nm 245
ξ calc(0) nm 42.3

mfp nm 10
Hc1(0)/(1 − N ) Oe 14.0
H calc

c1 Oe 13.7
λcalc

L nm 250
λcalc

L0 nm 50
κGL 7.3
γn mJ mol−1 K−2 13.01
β mJ mol−1 K−4 0.84
TD K 226
λMM 0.461
λtr 0.395
λm∗/m 0.38
ωa

p eV 3.31
ωc

p eV 3.98
N (0) states/eV/f.u. 3.96
χPauli 10−4emu/mol 1.3
χcalc 10−4emu/mol 1.7
χexpt. 10−4emu/mol 2.1
�C/γnTc 1.21
�(0)/kBTc 1.26

FIG. 4. Temperature dependence of the electrical resistivity ρ(T )
of La2Ni2In, with the measuring current I applied along the crystal-
lographic c axis. The data (blue symbols) are well described by the
heuristic model (red line) with an exponential factor as discussed in
the main text. Inset: Low-temperature region of ρ(T ), showing the
difference between our heurisitc fit and the fit to the model reported
by Milewits et al. [24] using an exponential term (green line).
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TABLE III. Calculated phonon energies of La2Ni2In at the center
(� point) of the Brillouin zone.

No. Phonon energy

THz 2π THz cm−1 meV

1 4.22229 26.52944 140.8405 17.462
2 4.20341 26.41078 140.2106 17.3839
3 4.00624 25.17197 133.6339 16.5685
4 4.00624 25.17197 133.6339 16.5685
5 3.78668 23.79244 126.3102 15.66047
6 3.54148 22.25177 118.131 14.64638
7 3.54148 22.25177 118.131 14.64638
8 3.52643 22.15721 117.629 14.58414
9 3.28964 20.66944 109.7307 13.60488
10 3.28964 20.66944 109.7307 13.60488
11 3.07298 19.30812 102.5037 12.70884
12 3.06187 19.23831 102.1331 12.66289
13 2.98852 18.7774 99.68617 12.35952
14 2.80868 17.64744 93.68741 11.61576
15 2.80827 17.64488 93.67381 11.61408
16 2.80827 17.64488 93.67381 11.61408
17 2.70542 16.99868 90.24323 11.18874
18 2.70542 16.99868 90.24323 11.18874
19 2.55974 16.08329 85.38359 10.58622
20 2.41802 15.19286 80.65641 10.00012
21 2.34038 14.70504 78.06667 9.67904
22 2.34038 14.70504 78.06667 9.67904
23 2.11171 13.26824 70.43892 8.73332
24 2.10024 13.19619 70.05642 8.68589
25 1.78281 11.20173 59.46814 7.37311
26 1.53756 9.66074 51.2873 6.35882
27 1.53756 9.66074 51.2873 6.35882

identifies La2Ni2In as a good metal, while the residual resis-
tivity ratio (RRR) ρ300 K/ρ2 K = 4 indicates significant defect
scattering at low temperatures that is evidenced by the
rather large residual resistivity ρ0 � 16 μ�cm (inset Fig. 4).
Nonetheless, the absolute values of ρ0 in our single crystals
are smaller than those reported in polycrystalline samples by
factors of 3–5 [11]. While this may reflect a higher defect con-
centration in the polycrystalline samples, we have also noticed
the formation of a low-conductivity passivated surface layer
on our single crystals when they are exposed to air over time.
The greater surface area of polycrystalline samples, combined
with the uncertain current paths, could plausibly lead to sig-
nificantly higher resistivity in polycrystalline samples than in
freshly prepared single crystals.

The resistivity of single crystals decreases monotonically
with decreasing temperature, as expected in a good metal
(Fig. 4). The decrease at high temperatures initially has a sub-
linear slope, leading to an inflection point around 30 K. The
resistivity approaches its residual value ρ0, but below 0.89 K
the resistance drops sharply to zero, indicating a transition into
a superconducting state. This transition is extremely sharp,
having a width �Tc ≈ 80 mK.

The normal state resistivity ρ(T ) in the range 2–30 K is
reasonably well described by scattering of weakly correlated
quasiparticles from acoustic phonons, as described by the

Bloch-Grüneisen law:

ρ(T ) = ρ0 + ρD(T ), (2)

ρD(T ) = A

(
T

TD

)5 ∫ TD/T

0

x5dx

(ex − 1)(1 − e−x )
, (3)

where TD = 226 K is the Debye temperature taken from the
specific heat analysis. This fit agrees reasonably well with the
measured ρ(T ) between 0.89 and 30 K, but not above 30 K.
Inspired by the analysis of the specific heat, we added an Ein-
stein term, ρE(T ) = B(TE/T ) /(eTE/T − 1)(1 − e−TE/T ), to the
fit. However, this did not lead to any appreciable improvement
in the goodness of fit.

Adding an exponential term, B exp(−T0/T ), that accounts
for umklapp processes assisted by a specific phonon with an
energy T0 [24,25], improves the agreement between the fit and
the data, but does not make it perfect (see green line in Fig. 4,
inset). The Mott-Jones expression [26,27] was also consid-
ered, but it did not reproduce the curvature of the experimental
data. Curiously, adding an exponential factor, as in

ρ(T ) = [ρ0 + ρD(T )][1 + c exp(−T0/T )], (4)

generates an essentially perfect fit to the data (Fig. 4), with
the following parameters: ρ0 = 15.7(1) μ� cm, TD = 226 K
(taken from the Debye-Einstein fit to our specific heat data),
A = 36.1(2) μ� cm, c = 1.49(1), and T0 = 42.4(4) K. It is
interesting that T0 is essentially half the value of the Einstein
mode temperature TE = 85 K that was determined from the fit
to the specific heat.

This fit leads to the linear coefficient dρ(T )/dT =
0.10 μ�cm/K at large T . Using the Drude formula for the
phonon-limited resistivity, we find for the transport electron-
phonon coupling constant [28] λtr = (dρ/dT )ω2

p/4.01, where
(dρ/dT ) is the high-temperature resistivity coefficient in
units μ�cm/K. Taking the calculated plasma frequency along
the c axis ωp = 3.98 eV, we deduce the λtr = 0.395, in
good agreement with the value λm∗/m = 0.38 from the DFT
calculations.

E. Magnetic susceptibility

Although our DFT calculations indicate that La2Ni2In is
not appreciably magnetic, measurements of the magnetic mo-
ment as a function of the magnetic field applied along the
crystallographic c axis at various temperatures (Fig. 5) re-
veal nonlinearities at low fields that are suggestive of weak
ferromagnetism. Hysteresis is observed in M(H ) at low tem-
peratures, with a magnitude that decreases with increasing
temperature and the dc magnetic susceptibility χ = M/H is
strongly temperature dependent when measured in low fields,
but this temperature dependence weakens appreciably in high
fields (see Appendix C, Fig. 10).

The magnetization M(H ) isotherms that are presented in
Fig. 5 are illuminating about the nature of the ferromagnetism
that is observed in La2Ni2In. In the spirit of the Arrott plot
[29], M(H ) is linear at high fields, and the spontaneous mo-
ment M0 can be estimated by extrapolating to zero field. The
temperature dependence of M0 is plotted in Fig. 6, showing
that M0 decreases slowly from its value of ∼2.5 × 10−4μB/Ni
at 1.8 K to ∼0.5 × 10−4μB/Ni at 300 K. These data indicate
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FIG. 5. Magnetization M(H ) of La2Ni2In as a function of mag-
netic field H for various selected temperatures T , as indicated and the
effective susceptibility χ0 (black filled diamonds), determined from
M(H ) as described in the text. Measurements were carried out on
a stack of six coaligned crystals, and the magnetic field is applied
parallel to the crystallographic c axis. Extrapolating the high-field
data to H = 0 (solid black line) gives the indicated intercept M0, and
the slope χ0.

that the onset of ferromagnetism occurs well above 300 K,
and the very slow development of M0 and the lack of its
saturation well below the apparent Curie temperature TC is
inconsistent with the order-parameter behavior observed in

FIG. 6. The temperature dependence of the spontaneous magne-
tization M0 (blue diamonds). The data are compared to two models
of the ferromagnetic nanoclusters: exponential distribution of clus-
ter sizes (green line) and exponential distribution with additional
Gaussian distribution to describe ultrasmall clusters (red line). See
Eq. (5) and discussion in the text. Measurements of different samples
(Appendix C) find that the distribution of nanocluster sizes does not
change appreciably among crystals taken from the same batch, al-
though the total amount of magnetic material does differ moderately.

pristine, bulk ferromagnets. The most likely interpretation of
these data is that the ferromagnetism originates with a con-
taminant phase that was introduced during the synthesis on
the surface or as an inclusion in our single crystals. Elemental
Ni with TC = 627 K that was not completely reacted in the
initial LaNi precursor seems a likely possibility. The measured
value M0 ∼ 2.5 × 10−4μB/Ni in La2Ni2In could be explained
by the presence of less than 0.04% of elemental Ni, with
M0(Ni) ∼0.63μB/Ni [30]. This is far less than could be
detected by XRD or most analytical methods.

We find that the temperature dependence of M0 in Fig. 6
can be explained quantitatively by assuming the presence of
nanoscale clusters, each containing a few to a few dozens
of magnetic ions. If the Curie temperatures of the individual
nanoclusters are distributed by a function F (TC), that is, the
probability to find a ferromagnetic Ni ion in a cluster with
TC = θ is F (θ ), the residual magnetization M0(T ) can be
calculated by a simple formula:

M0(T ) = m0

∫ ∞

T
F (TC)

√
1 − T 2

T 2
C

dTC, (5)

where m0 represents the average concentration of ferro-
magnetic Ni atoms and their average magnetic moment.
We first assumed the simplest possible scenario, F (TC) =
θ−1 exp(−TC/θ ), i.e., an exponential distribution with the
width θ . We can then fit all experimental data very well
except for the lowest temperature (Fig. 6, green solid line,
m0 = 1.65 × 10−4μB/Ni, θ = 300 K). The deviation of the
lowest temperature points from this distribution, suggests that
a large number of clusters have very small Curie temper-
atures. Indeed, it has been suggested [31] that the critical
temperature of Ni nanoclusters goes down precipitously when
the cluster size becomes smaller than a few nanometers, and
drops to zero with clusters of the order 1–1.5 nm. To account
for this effect we have added a sharp Gaussian to the as-
sumed distribution function, namely, F (TC) = exp(−TC/θ ) +
4.75 exp[−(TC/θ ′)2], where θ ′ = θ/10. The physical mean-
ing is that approximately 30% of all ferromagnetic Ni form
ultrasmall clusters of only a few nanometers in size, which
have a Curie temperature of less than 30 K. This modified
distribution fits the entire range perfectly, as can be seen by
the red curve in Fig. 6.

The slope of the M(H ) isotherms involved in the extrap-
olation of the spontaneous moment M0 gives the effective
susceptibility χ0, which is plotted in the inset to Fig. 5. Within
the accuracy of our measurement and analysis, χ0 approaches
a temperature-independent value of ∼2.1 × 10−4 emu/mol
below 200 K. We take this value as an estimate of the
Pauli susceptibility that would be found in the absence of
any ferromagnetic contamination. Using the calculated den-
sity of states, which is 4.0 states/eV/f.u., we compute a
bare Pauli susceptibility χPauli = 1.3 × 10−4 emu/mol, which
when compared with the experimental value of χ0 indi-
cates that there is a moderate magnetic enhancement of the
Pauli susceptibility in La2Ni2In. The measured χ0 agrees
rather well with calculations of the Stoner-renormalized spin
susceptibility, which appear to be about 33 % higher than
the calculated Pauli susceptibility, i.e., 1.7 × 10−4 emu/mol.
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FIG. 7. Temperature dependence of the specific heat of La2Ni2In below 1.3 K. (a) The electronic part of the specific heat is normalized
by the product of the Sommerfeld coefficient γ and the superconducting transition temperature Tc Ce/γ Tc, and is plotted as a function
of T/Tc. The inset shows an enlarged view of the low-temperature region. Red line indicates fit by the Dynes model, described in the
text. (b) Semilogarithmic plot of Ce/γ Tc as a function of the normalized inverse temperature Tc/T of La2Ni2In as well as the two BCS
superconductors Sn and V for comparison [33]. Black line is the BCS model; red line is the Dynes model. (c) The suppression of the
superconducting jump at Tc in the specific heat C is measured with the magnetic field H ⊥ c. Values of the field are as indicated. (d) Derived
Hc2-(T/Tc ) phase diagram, combining values of Tc from specific heat, magnetization, and resistivity measurements. The inset shows the
temperature dependencies of the electrical resistivity, measured at different fixed fields. Solid lines represent the WWH model, as discussed in
the main text.

However, note that in itinerant systems, the mean-field DFT
calculations tend to overestimate, not underestimate χ [32].

IV. SUPERCONDUCTING PROPERTIES

A. Specific heat

We begin our analysis of the superconductivity in La2Ni2In
with the specific heat measurements. The contribution of the
nuclear Schottky effect to the low-temperature specific heat
Cnuc is described in Appendix D. The phonon contribution
Cph was determined by fitting the measured data C between
1 and 4 K to the expression C(T ) = γ T + β1T 3 + β2T 5. The
electronic contribution to the specific heat Ce = C − Cnuc −
Cph divided by the product of the normal state Sommerfeld
coefficient γ and the critical temperature Tc is plotted as a
function of the normalized temperature T/Tc in Fig. 7(a). The

normal state Ce decreases linearly with T as expected for a
conventional metal, until a jump in C(T ) at T = Tc occurs
that signals a second-order phase transition into the supercon-
ducting (SC) state. The transition is very narrow, as previously
indicated, confirming bulk SC and a high degree of sample
quality.

The magnitude of the specific heat jump �C/Cn ≈ 1.21 is
about 15 % smaller than the value of 1.43 given by the BCS
model in the weak-coupling limit, with Cn the normal state
specific heat at the transition. In order to better understand this
behavior as well as the evolution of Ce below Tc, we examined
the dependence of Ce/γ Tc, plotted as a function of inverse
temperature [Fig. 7(b)]. While the behavior of Ce(T ) in the
vicinity of Tc and down to ≈Tc/4 is well described by the
exponential function predicted by the BCS model, significant
deviations are observed at lower temperatures T < Tc/6.
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The nonexponential temperature dependence of Ce(T ) that
is highlighted in Fig. 7(b) can be described by a sum of an
exponential and a linear residual term, suggesting that Ce(T )
in our crystals is affected by the presence of quasiparticles
with energies E < �. This can indicate either an uncon-
ventional pairing symmetry with a nodal order parameter or
subgap states in an s-wave superconductor. The subgap states
at E < � are not accounted for in the BCS model, in which
Ce(T ) is given by

Ce(T ) = 1

2T 2

∫ ∞

0

[
E2 − T

2

∂�2

∂T

]
N (E )dE

cosh2(E/2T )
. (6)

Here N (E ) = N0E/
√

E2 − �2 at E > � and N (E ) = 0 at
E < � is the BCS density of states, and N0 is the DOS
per spin at the Fermi surface in the normal state. Because
N (E ) vanishes at E < �, Eq. (6) gives an exponential tem-
perature dependence of CBCS

e (T ) ∼ γ Tc
√

�/T exp(−�/T ) at
T � �.

In many materials, the BCS gap singularities in N (E ) at
E = � are smeared out. The resulting quasiparticle subgap
states occurring at E < � have traditionally been addressed
in the literature using the phenomenological Dynes model in
which [34,35]

N (E ) = N0Re
E − i�√

(E − i�)2 − �2
. (7)

Here a pair-breaking parameter � accounts for a finite quasi-
particle lifetime h̄/�, resulting in a finite DOS N (0) =
N0�/� at E = 0.

To understand the features of Ce(T ) observed in our crys-
tals, we use the Dynes model in which Tc, �(T ), and Ce(T ) are
determined by Eqs. (E8)–(E11) given in Appendix E [36,37].
By numerically solving these equations, it is possible to fit
the experimental Ce(T ) data, as demonstrated in Figs. 7(a)
and 7(b). The Dynes model effectively captures both a non-
exponential residual Ce(T ) at low T and the reduction of
�C ≈ 1.2γ Tc at T = Tc, substantially different from the BCS
value �C = 1.43γ Tc. The fit was carried out for a dimen-
sionless pair-breaking parameter g = �/2πTc0 = 0.02, where
� is taken to be independent of T . Here � is about seven
times smaller than the critical value �c = �0/2 at which Tc

vanishes in the Dynes model (see Appendix E). In accordance
with Fig. 7, weak pair breaking at g = 0.02 produces a small
reduction of Tc by about 10 %, as compared to Tc0 at � = 0.
This suggests that Tc0 of our crystals would be close to 0.86 K
in the ideal case of � = 0. The overall expression of Ce(T )
that is calculated from Eq. (6) using the Dynes DOS with
g = 0.02 overall agrees very well with the experimental data.

Subgap states have been revealed by numerous tunnel-
ing experiments (see, e.g., a review [35] and the references
therein). Many mechanisms of subgap states have been
suggested in the literature, including inelastic scattering of
quasiparticles by phonons [38], Coulomb correlations [39],
anisotropy of the Fermi surface [40], inhomogeneities of the
BCS pairing constant [41], magnetic impurities [42], spatial
correlations in impurity scattering [42,43], or diffusive surface
scattering [44] (see, e.g., Ref. [45] for an overview of differ-
ent mechanisms). The weak ferromagnetism associated with
magnetic nanoclusters in La2Ni2In could potentially affect the

value of � in different ways. We could expect a significant
contribution to � from spin-flip magnetic scattering, as well
as the presence of localized states associated with magnetic
impurities [42]. Magnetic nanoclusters can also cause local
variations of the BCS pairing constant, resulting in a slight
broadening of the sharp transition characteristic of the BCS
and Dynes models, as well as an additional contribution to
� [41]. Irrespective of the mechanisms, this analysis gives
insight into how an underlying broadening of the DOS gap
peaks can account for the behavior of Ce(T ) observed in our
crystals. We note that Ce(T ) at T � Tc/2 is mostly determined
by thermally activated quasiparticles with energies E ≈ �,
but at lower temperatures Ce(T ) is dominated by quasipar-
ticles with E ∼ T � �, leading to a residual specific heat
Ci ∼ γ T �/� [37].

Beyond the effects of magnetic pair breaking by dilute
magnetic impurities [46,47], our fits based on the Dynes
model accurately describe the jump in the specific heat �C
at T = Tc and the overall temperature dependence of Ce(T )
within the superconducting state, while implying that Tc is
further reduced from the value determined by only magnetic
pair breaking. We will consider below the possibility that
this additional density of states is related to a nodal order
parameter in La2Ni2In.

B. Magnetism and the superconducting state

Figure 8 shows representative magnetization measure-
ments of La2Ni2In at temperatures ranging from 0.39 to
1.15 K. The data in Figs. 8(a) and 8(b) were corrected
for demagnetization effects due to the sample shape using
the expression for a rectangular cuboid in Ref. [48]. Bulk
superconductivity is evident from the sharp increase of
the magnetic susceptibility after zero-field cooling (zfc) as
depicted in Fig. 8(a). The SC region is characterized by a
SC volume fraction of 99 %, indicating virtually perfect
shielding. The sample also exhibits substantial shielding even
after cooling in field (fc), indicating that pinning of flux
vortices is small. The corresponding value of the Meissner
fraction is 55 %. Figure 8(b) shows the ac susceptibility
recorded with a field amplitude of 1 Oe and a drive frequency
of 1 kHz. A sharp peak is visible in the imaginary part of
the susceptibility χ ′′, corresponding to the SC transition. The
transition temperature, defined as the maximum in χ ′′, was
determined to be Tc = 0.79 K. Measurements at various drive
frequencies (not shown) found no frequency dependence of
the ac susceptibility.

The magnetization isotherms in the temperature range
0.39–0.74 K shown in Fig. 8(c) reveal La2Ni2In to be a
type-II superconductor, as evidenced by the linear shielding
at low fields (see dashed line in the inset). Above about 10 Oe
the shielding reduces as magnetic flux starts to penetrate the
sample and the system enters into the vortex state. Extracting
the lower critical field Hc1 from a linear fit to the low-field
magnetization results in the phase diagram shown in Fig. 8(d).
Its temperature dependence is well described by the Ginzburg-
Landau expression Hc1(T ) = Hc1(0)[1 − (T/Tc)2], resulting
in a rather small lower critical field value of Hc1(0) =
11.2(1) Oe. However, this values does not account for demag-
netization effects. The corrected value is Hc1(0)/(1 − N ) =
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FIG. 8. Measurements of the magnetization of La2Ni2In in the superconducting state. (a) Temperature dependencies of the dc field-cooled
(fc) and zero-field cooled (zfc) magnetic susceptibility near the superconducting transition temperature Tc. (b) Real (main figure) and imaginary
(inset) parts of the ac susceptibility χ ′ below 1 K, with field amplitude H∗ = 1 Oe and drive frequency 1 kHz. (c) Field dependencies of the
magnetization measured at fixed temperatures ranging from 0.39 to 0.74 K. The inset shows an enlarged view of the low-field data. The black
dashed line is a guide to the eye that emphasizes the linear part of M(H ). (d) Extracted values of the lower critical field presented as a function
of temperature T (solid symbols), including a fit to a Ginzburg-Landau expression (solid line) that is described in the main text.

14.0(1) Oe, with N = 0.2 for the sample used in Figs. 8(c)
and 8(d).

Upon application of a magnetic field the SC transition is
continuously suppressed to lower temperatures, as shown in
Fig. 7(c). For fields above 500 Oe, SC is fully suppressed
and normal metallic behavior is recovered over the depicted
temperature range. Extracting transition temperatures from
the inflection points of the curves and plotting them as a
function of the reduced temperature results in Fig. 7(d), where
we also included data obtained from measurements of the
magnetization and resistivity at various applied fields (see
inset). The Hc2 data are described well by the single-band
Werthamer, Helfand, and Hohenberg (WHH) theory [49]. The
fit to the data yields an average upper critical field of Hc2(0) =
1918(19) Oe at T = 0. Hence, we can evaluate the Ginzburg-
Landau (GL) coherence length ξ (T ) = ξ (0)(1 − T/Tc)−1/2

using the WHH relation Hc2(0) = 0.69φ0/2πξ 2(0), where φ0

is the magnetic flux quantum. This yields ξ (0) = 34.4(2) nm.

It is instructive to compare the T = 0 values of the GL
coherence length ξ (0) and the BCS coherence length ξ0 =
0.12h̄vF/kBTc at T = 0, to determine whether La2Ni2In is in
the clean limit [50]. Using the calculated vF ≈ 0.2 × 108 cm/s
and Tc0 = 0.86 K from the specific heat data, we get ξ0 ≈
245 nm, about seven times larger than ξ (0). Such a large
difference between ξ (0) and ξ0 indicates that our La2Ni2In
crystals are in the dirty limit, where the mean free path due
to nonmagnetic impurities 
mfp is much shorter than ξ0. In-
deed, an estimate of 
mfp from the residual resistivity and
the calculated plasma frequency and Fermi velocity gives

mfp ≈ 10 nm and 
mfp/ξ0 � 0.04. The evaluation of the GL
coherence length in the dirty limit ξ (0) = 0.855(ξ0
mfp)1/2

[50] yields ξ (0) ≈ 42.3 nm, about 24% larger than ξ (0)
extracted from the Hc2 data. Thus, the conclusion that our
samples are in the dirty limit is qualitatively consistent with
our Hc2 and transport measurements. This value should be
considered to be an upper bound, since a more accurate

165125-9



MAIWALD, MAZIN, GUREVICH, AND ARONSON PHYSICAL REVIEW B 102, 165125 (2020)

evaluation of ξ (0) requires taking into account scattering
from magnetic impurities, subgap states, and strong-coupling
corrections.

Next, we analyze the lower critical field Hc1 using the GL
relation:

Hc1 = φ0

4πλ2
L

(
ln

λL

ξ
+ 1

2

)
, (8)

where λL is the London penetration depth and the factor of
1/2 accounts for the vortex cores. Evaluation of λL0 = h̄c/ωp

in the clean limit 
mfp � ξ0 gives λL0 ≈ 50 nm for the field
along the c axis. Using the more appropriate dirty limit ex-
pression, λL = λL0

√
1 + ξ0/
mfp = 250 nm in Eq. (8), leads

to Hc1 ≈ 13.7 Oe, which is quite close to the experimental
value of 14.0 Oe. Corrections to λL due to magnetic impurities
and subgap states were estimated to be no more than ≈6%
(see Appendix E).

The values ξ (0) = 34.4 nm and λL(0) = 250 nm were
used to obtain the GL parameter κGL = λL/ξ ≈ 7.3, providing
additional confirmation that La2Ni2In is a type-II supercon-
ductor. These estimates suggest that if a sample of La2Ni2In
were available without impurities, it would be a type-I su-
perconductor, since ξ0 = 245 nm and λL = 50 nm lead to a
value of κGL ≈ 0.2 that is much smaller than the critical GL
value 1/

√
2. The putative transition from a type-I to a type-II

superconductor induced by impurities is hardly surprising,
given the large BCS coherence length ξ0 ≈ 245 nm, and the
low Tc of La2Ni2In. Strictly speaking, we cannot rule out
the possibility that pristine La2Ni2In could exhibit unconven-
tional pairing symmetries associated with sign changes in the
order parameter. However, the strong impurity scattering in
our samples would effectively suppress any nodal states, were
they present. For this reason, we used the model of an s-wave
superconductor with subgap Dynes states in our analysis of
the specific heat data.

The results for the Debye temperature TD = 226 K and
critical temperature Tc0 = 0.86 K allow us to estimate the
strength of the electron-phonon coupling from the McMillan
equation [51]:

λMM = 1.04 + μ∗ ln(TD/1.45Tc0)

(1 − 0.62μ∗) ln(TD/1.45Tc0) − 1.04
,

with the Coulomb repulsion parameter assumed to be μ∗ =
0.13. We get a value of λMM = 0.46, reasonably close to our
previous estimates above. This indicates that La2Ni2In is a
superconductor in the weak- to intermediate-coupling regime.
The value derived above is in agreement with the mass renor-
malization deduced from specific heat and from λtr, which
are 0.38 and 0.395, respectively. A slightly larger value of
the McMillan λMM likely reflects the difference between the
Debye and the logarithmic frequencies.

A summary of the various properties derived in this analy-
sis can be found in Table II.

V. CONCLUSION

We have synthesized high-quality single crystals of
La2Ni2In, previously only available in polycrystalline form.

Resistivity measurements show good metallic behavior, in
agreement with DFT calculations. The density of states taken
from the Sommerfeld coefficient of the specific heat is only
slightly enhanced relative to the one determined from the
DFT calculations, signaling only weak electronic correlations.
Unlike the more highly studied members of the R2T2X (R =
rare earth, T = transition metal, X = main group element)
family, DFT calculations indicate that the Ni states lie well
below the Fermi energy, with a substantial degree of charge
transfer that ensures that the Ni magnetism is quenched.
Measurements of the magnetization reveal weak ferromag-
netism that is associated with ferromagnetic contamination,
most likely elemental Ni. The remainder of the magnetic
susceptibility is nearly temperature independent, as expected
for the Pauli susceptibility. Relative to the value of the Pauli
susceptibility expected for the density of states taken from
the measured Sommerfeld constant, we infer that there is a
weak enhancement that is of similar magnitude to the small
Stoner factor determined from the DFT calculations. Our
measurements and the DFT calculations together imply that
La2Ni2In is best understood as a good metal with minimal
electronic correlations. Superconductivity is observed below
0.9 K, in good agreement with the McMillan expression for
Tc, using values of the electron-phonon interaction taken from
the DFT calculations. A detailed analysis of the magnetic sus-
ceptibility and specific heat in the superconducting state find
that La2Ni2In is a type-II superconductor that is in the dirty
limit, although there are indications that it could be type I in
the absence of impurities. Our analysis using the phenomeno-
logical Dynes model highlights important roles for subgap
quasiparticle states, beyond those expected from pair breaking
alone. To the best of our knowledge, La2Ni2In is the first
superconductor reported in this family of compounds. The
weakness of the Ni magnetism, and the absence of magnetic
correlations are likely to make it a conventional superconduc-
tor. Considering the spectrum of behaviors that have already
been observed in f -electron bearing members of this fam-
ily of compounds, which range from strong local-moment
magnetism, to mixed valence, and ultimately to conven-
tional metals with differing degrees of correlations, we place
La2Ni2In in this last category. In this way, it should be consid-
ered as analogous to other conventional superconductors with
nonmagnetic or weakly magnetic Ni. Using the Sommerfeld
coefficient as a proxy for the strength of electronic correla-
tions, we find that La2Ni2In with γ = 13 mJ mol−1 K−2 and
Tc = 0.89 K is much more strongly correlated than LaNiAsO
(γ = 3 mJ mol−1 K−2 and Tc = 2.7 K) [52], but not as corre-
lated as La3Ni (γ = 21 mJ mol−1 K−2 and Tc = 2.2 K) [53],
and the most correlated La7Ni3 γ = 44 mJ mol−1 K−2 and
Tc = 2.4 K) [54].
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FIG. 9. Comparison between Rietveld refinements of the XRD
data of La2Ni2In using the tetragonal model with space group
P4/mbm (top) and the forced orthorhombic structure with space
group Pbam. The orthorhombic model does not fit the data as well
as the tetragonal model. In particular, additional peaks are present in
the orthorhombic model (circles) that are not observed in the data.

APPENDIX A: COMPARISON OF THE TETRAGONAL
AND ORTHORHOMBIC STRUCTURE VARIANTS

Pustovoychenko et al. recently reported on the synthesis
of an orthorhombic variant of La2Ni2In in Ref. [23]. Since
our DFT calculations also seemed to favor this structure, we
forced a fit with the orthorhombic Pbam structure to our
recorded XRD data. A direct comparison between the data
fitted to the tetragonal and orthorhombic structure, respec-
tively, can be seen in Fig. 9. Since the orthorhombic structure
features peaks that are not present in our data, we conclude
that we have grown the tetragonal variant.

APPENDIX B: DENSITY FUNCTIONAL CALCULATIONS
OF THE PHONONS

Motivated by the deviation of the specific heat to the
standard Debye model we calculated the zone-center phonon
spectrum. The respective energies are listed in Table III.

APPENDIX C: SAMPLE DEPENDENCE OF THE
MAGNETIC SUSCEPTIBILITY

The magnetic properties of four samples of La2Ni2In
were measured for comparison. Sample No. 1 consisted of
a coaligned stack of six single crystals, while samples No.
2–No. 4 were single crystals. All crystals were taken from the
same batch and the measuring field was always applied along
the c axis. Figure 10(a) depicts the temperature dependence
of the dc magnetic susceptibility χ = M/H for samples No.
1 and No. 2, while Fig. 10(b) shows the temperature depen-
dence of the spontaneous magnetization M0 for four samples
determined from the high-temperature fit to the magnetization
M(H ) as discussed in the main text. The temperature depen-
dencies of both χ and M0 are similar among the samples.
In the context of the ferromagnetic cluster model described
in the main text, this suggests that there is little variation in
the distribution of cluster sizes among the different crystals.
However, the magnitudes of χ (T ) vary among the crystals
by approximately a factor of 2, corresponding to a factor of
2 variation in the overall amount of ferromagnetic clusters
that is present in the different crystals. Overall this is a very
reasonable result, considering that the origin of the ferromag-
netism is most likely the inclusion of unreacted Ni from the
LaNi precursor, which is common for all crystals from a single
preparation batch.

Finally, Fig. 10(c) depicts the hysteresis present in
La2Ni2In at three indicated temperatures. The magnitude of
the hysteresis decreases with increasing temperture.

APPENDIX D: ISOLATING THE NUCLEAR
SPECIFIC HEAT

Both La and In have large nuclear spins of I = 7/2 and
I = 9/2, respectively, and thus they may generate nuclear
Schottky anomalies in the low-temperature specific heat of
La2Ni2In. In fact, our measured specific heat does exhibit

FIG. 10. Magnetic properties of various single crystals of La2Ni2In from the same batch. (a) Temperature dependencies of the magnetic
susceptibility χ = M/H with measuring field as indicated and applied along the c axes. (b) Temperature dependencies of the spontaneous
magnetization M0 for four samples. (c) Full hysteresis loops at 1.8, 35, and 300 K measured on sample No. 1.
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FIG. 11. Low-temperature specific heat data as a function of
temperature T between 0.05 and 1 K, measured in several magnetic
fields. The data were fit to the model C(T ) = Cnuc + Ce + Cph

defined in the main text. The upper inset shows the extracted nuclear
energy gap as a function of applied magnetic field, together with a
linear fit to the data (solid red line), while the lower inset shows the
specific heat over temperature before and after the subtraction of the
nuclear term.

a sharp increase at low temperatures in a magnetic field
(Fig. 11), that gets more pronounced with increasing magnetic
field. It seems likely that this contribution to the specific
heat is a Schottky anomaly that is related to nuclear energy
levels in either the La or the In atoms. The two-level Schottky
expression is given by

Cnuc(T ) = R0

(
�nuc

T

)2 exp(�nuc/T )

[1 + exp(�nuc/T )]2
,

with energy gap � and R0 the universal gas constant. At high
temperatures, T � �, this reduces to

Cnuc(T ) ∼ R0

4

(�nuc

T

)2

= A

T 2
.

The respective least-squares fits are compared to the data in
Fig. 11. The upper inset shows the field dependence of the
derived energy gap �nuc, which increases linearly from �nuc

= 0.17(16) mK at H = 0, signaling that the nuclear levels
undergo a Zeeman splitting in the external magnetic field. Ex-
trapolating to H = 0, we get a value for the coefficient of A =
0.00(2) mJKmol−1. Choosing A = 1.55 μ JK/mol within the
error bar, yields the corrected data that we used in our analysis.
A comparison of the as-measured specific heat C(T ) before
and after the subtraction of Cnuc(T ) is depicted in the lower
inset to Fig. 11.

APPENDIX E: DYNES MODEL

Here we present the formulas of the Dynes model
[36,37] used in our fits of Ce(T ). The equations for �(T ) and

Tc are

ln
T

Tc0
= 2πT

∑
ω>0

[
1√

(ω + �)2 + �2
− 1

ω

]
, (E1)

ln
Tc

Tc0
+ ψ

(1

2
+ �

2πTc

)
− ψ

(1

2

)
= 0, (E2)

where ψ (z) is a digamma function, ω is the Matsubara fre-
quency, and Tc0 is a critical temperature at � = 0. Equation
(E2) has the same form as the Abrikosov-Gorkov equation
for Tc in superconductors with magnetic impurities, so Tc

decreases with � and vanishes at �c = �0/2, where �0 is the
gap at T = 0 and � = 0 [42,47]. At � � Tc, Eqs. (E1) and
(E2)) yield

Tc = Tc0 − π�

4
, (E3)

� � �0 − � − π2�T 2

6�2
0

, T � Tc. (E4)

The finite DOS at E = 0 in the Dynes model results
in a quadratic temperature dependence of �(T ) in-
stead of the BCS exponential behavior of �(T ) � �0 −√

2πT �0 exp(−�0/T ) at T � Tc.
The magnetic penetration depth in the dirty limit is [36]

1

λ2
L

= πμ0�

h̄ρn
Imψ

(
1

2
+ �

2πT
+ i�

2πT

)
, (E5)

where ρn is the normal state resistivity. At T � Tc Eq. (E5)
reduces to

1

λ2
L

= 2μ0�

h̄ρn
tan−1 �

�
. (E6)

The specific heat Ce = −T ∂2F/∂T 2 is calculated using the
free energy F in the Dynes model in which F is obtained
by substituting ω → ω + � into the BCS formula for F . The
result can be written in the form

F = Fn + 4πT N0�
2
∑
ω>0

[
1

2
√

(ω + �)2 + �2

− 1

ω + � +
√

(ω + �)2 + �2

]
, (E7)

where Fn = −π2N0T 2/3 is the free energy of the normal state
and N0 is the density of states per spin.

It is convenient to recast Eqs. (E1), (E2), and (E7) in the
dimensionless form

ln tc + ψ

(
1

2
+ g

tc

)
− ψ

(
1

2

)
= 0, (E8)

ln t =
∞∑

n=0

[
1√

(n + 1/2 + g/t )2 + s/t2
− 1

n + 1/2

]
, (E9)

where t = T/Tc0, tc = Tc/Tc0, g = �/2πTc0, and
s = (�/2πTc0)2. The normalized specific heat c =
Ce(T )/Cn(Tc0), where Cn(Tc0) = 2π2N0Tc0/3, is then

c(t ) = t − t
∂2 fs

∂t2
, (E10)
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fs = 6s
∞∑

n=0

[
1√

(n + 1/2 + g/t )2 + s/t2

− 2

n + 1/2 + g/t +
√

(n + 1/2 + g/t )2 + s/t2

]
.

(E11)

Equations (E8)–(E11) were solved numerically to fit the ex-
perimental data shown in Fig. 7. The fit was done with
g = �/2πTc0 = 0.02 and � independent of T . Here g = 0.02
corresponds to �/�0 = 2πg/1.76 = 0.07 about seven times
smaller than �c = �0/2 at which Tc → 0. At g = 0.02 weak
pair breaking results in a small increase of λL ≈ 1.06λL0 given
by Eq. (E6).
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