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Coupled wire construction of a topological phase with chiral tricritical Ising edge modes
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Tricritical Ising (TCI) phase transition is known to occur in several interacting spin and Majorana fermion
models and is described in terms of a supersymmetric conformal field theory (CFT) with central charge c = 7/10.
The field content of this CFT is highly nontrivial and includes among its primary fields the Fibonacci anyon,
making it of potential interest to strategies seeking to implement fault-tolerant topological quantum computation
with non-Abelian phases of matter. In this paper we explore the possibility that a TCI CFT can occur at the
edge of a gapped two-dimensional topological state as a stable phase. We discuss a possible realization of this
2D phase based on a coupled-wire construction using the Grover-Sheng-Vishwanath chain model of Majorana
zero modes coupled to Ising spins which is known to undergo the TCI phase transition. From the combined
analysis using mean-field theory, conformal field theory, and density matrix renormalization group (DMRG) on
two- and four-leg ladders, we find that the left- and right-moving gapless TCI modes become spatially separated
and reside on two opposite edges of the system, forming a precursor of the required 2D topological phase.
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I. INTRODUCTION

Since the advent of the family of quantum Hall ef-
fects [1–3], edge physics in two dimensions (2D) has attracted
increasing interest from both the experimental and theoret-
ical condensed matter communities. Experimentally, edge
modes result in distinctive behavior in transport [1,2] and
tunneling [4] measurements, leading to extraordinarily precise
metrology of fundamental constants of physics [5]. Theoreti-
cally, this can be viewed as manifestation of the deep relation
between the edge and the bulk, known as the bulk-boundary
correspondence [6,7], which allows one to infer bulk proper-
ties from edge measurements and vice versa.

One powerful theoretical method for probing the edge
properties is the coupled wire construction [8–15], where a 2D
system is built from an array of one-dimensional (1D) chains.
Thanks to a suite of powerful tools ranging from bosonization
to conformal field theory, 1D models are better understood
and sometimes allow exact solutions unavailable in their
higher dimensional counterparts. Studying an anisotropic as-
sembly of coupled 1D chains then brings insights from the
constituent 1D models into the 2D model of interest. In partic-
ular, the chiral 1D edges of the 2D system are directly related
to the 1D building blocks.

In this work we apply these ideas to 1D systems that exhibit
the TCI phase transition point in their phase diagram. Our
goal is to understand if the chiral edge modes of the stable
2D gapped phase which we attempt to construct here are de-
scribed by, e.g., the left moving holomorphic sector of the TCI
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critical point. Because the primary fields of TCI CFT contain a
Fibonacci anyon, the bulk-boundary correspondence guaran-
tees that Fibonacci anyon will also exist as a gapped excitation
of the bulk system [16]. There are several concrete micro-
scopic models of 1D spins and interacting Majorana fermions
that exhibit the TCI point [17–20]. These include the original
spin-1 model [21–23], interacting Majorana fermion models
in 1D chain [24–27] and ladder [28], and the Grover-Sheng-
Vishwanath (GSV) model involving Majorana fermions and
spins [29]. In the following we focus on the GSV model
because the TCI point can be reached by tuning a single
model parameter and the transition occurs at an intermediate
coupling strength making DMRG simulations relatively well
behaved.

The GSV model comprises Majorana fermions α j on sites
and spin- 1

2 degrees of freedom μ j living on bonds of a 1D
chain as depicted in Fig. 1(a). The Majorana hoppings are
modulated by the spins which are in turn described by the
transverse field Ising model. The Hamiltonian HGSV = HM +
Hs + HMs of the model reads

HM = it
∑

j

α jα j+1,

Hs = J
∑

j

μz
jμ

z
j+1 − h

∑
j

μx
j, (1)

HMs = −igt
∑

j

α jα j+1μ
z
j,

where t, h, g, J > 0. The system is gapped when h → 0 be-
cause the spin chain symmetry is spontaneously broken giving
a mass to the Majorana chain. In the limit h → ∞ the average
of μz

j is zero leaving the Majorana chain gapless, which is dual

2469-9950/2020/102(16)/165123(8) 165123-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1404-1252
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.165123&domain=pdf&date_stamp=2020-10-13
https://doi.org/10.1103/PhysRevB.102.165123


LI, EBISU, SAHOO, OREG, AND FRANZ PHYSICAL REVIEW B 102, 165123 (2020)

FIG. 1. (a) Lattice structure of the GSV model, Eq. (1). (b) Lat-
tice structure of the ladder model, Eq. (2). (c) The phase diagram of
both models.

to a transverse field Ising critical spin chain. The two stable
phases are separated by the TCI phase transition [29] that
occurs for h = hc(g), with central charge c = 7

10 , see Fig. 1(c).
The ladder model we consider is built from GSV chains

where we allow Majorana fermion hopping between chains as
depicted in Fig. 1(b). The Hamiltonian of the two-leg ladder
Hladder = HM + Hs + HMs is given by

HM = it
∑

j

(α jα j+1 − β jβ j+1) + it1
∑

j

β jα j

+ it2
∑

j

(α jβ j+1 − β jα j+1),

Hs = J
∑

j

μz
j,aμ

z
j+1,a − h

∑
j

μx
j,a + (a → b),

HMs = −igt
∑

j

(
α jα j+1μ

z
j,a − β jβ j+1μ

z
j,b

)
. (2)

Using a combination of analytical and numerical methods,
we find that the two-leg ladder model goes through a TCI
transition when we tune h from 0 to ∞, just like the single
chain. In addition we show that the left- and right-moving TCI
modes spatially separate, such that they reside on the upper
and the lower leg of the ladder, respectively. A similar behav-
ior is seen in the four-leg ladder although here our numerics
are less reliable. Collectively these results suggest that ladders
composed of weakly coupled GSV chains can be viewed as a
precursor of a 2D topological phase with a fully gapped bulk
and chiral gapless TCI modes bound to its edges.

The paper is organized as follows. We first briefly discuss
the relevant noninteracting models, both to serve as a mean-
field treatment of the full model and to obtain intuition of
the coupled wire construction. In particular, we examine the
edge modes with analytical and numerical approach. Then we
show numerical results of the full model which lend support
to the analytical analysis. We conclude by commenting on
generalizations to multileg and 2D models.

II. NONINTERACTING MODELS

Much of our intuition of the coupled wire construction
leans on the noninteracting case. Coincidentally it turns out
that some of the interesting physics in the interacting model
can be understood based on a simple mean-field treatment.
Therefore we provide a brief discussion of the relevant mean-
field theory in this section. We start with a Majorana chain
model

Hchain,0 = i
∑

j

(t + m(−1) j )α jα j+1. (3)

This can be viewed as a mean-field version of the GSV model
as follows. We assume that in Eq. (1) the spin μz in HMs is
not dynamical but enters as a mean-field parameter m which
is determined by the Ising Hamiltonian Hs. As h → 0, the
spins are antiferromagnetically ordered, and m �= 0 leaving
the fermion system gapped. On the other hand as h → ∞ we
have m = 0 and the fermion system becomes critical. When
the dynamics of the spin degrees of freedom is restored we
expect a TCI phase transition between the two phases with
spins providing the gapless bosonic excitations required by the
supersymmetric nature of the transition. This analysis matches
well with DMRG calculations as reported in Ref. [29].

Now we couple two such chains into a ladder as shown
in Fig. 1(b), with phases consistent with the Grosfeld-Stern
rule [30,31]. The Hamiltonian reads

Hladder,0 = i
∑

j

(t + m(−1) j )(α jα j+1 − β jβ j+1)

+ it1
∑

j

β jα j + it2
∑

j

(α jβ j+1 − β jα j+1). (4)

The spectrum is gapless when t2 =
√

t2
1 /4 + m2 . If we fix

t1 = 2t2, and again assume m to be a mean field for μz, a
similar argument as for the chain model follows. In particular,
we expect a TCI phase transition at a critical point hc in the full
model Eq. (2). We will have more to say about the interacting
model in the next section.

Another useful perspective comes from the continuum
limit where we focus on the long-wavelength low-energy
behavior. The corresponding Hamiltonian is derived by ex-
panding the Majorana fields near the nodal point in the
momentum and retaining only terms to linear order in the
momentum. This amounts to setting

α2 j → αe, α2 j+1 → αo, β2 j → βe, β2 j+1 → βo, (5)

and defining the “chiral” basis

αR/L = 1√
2

(αo ± αe), βR/L = 1√
2

(βo ∓ βe). (6)

For simplicity we focus on the case t1 = 2t2, and the Hamilto-
nian becomes

H = i
∫

dx(t − m)(αR∂αR + βR∂βR − αL∂αL

− βL∂βL ) + 2t2(αR∂βL − αL∂βR)

+ 2m(αRαL + βRβL ) − 2t2αLβR. (7)

As the name suggests, α (β) with subscript R/L represent the
right-/left-mover on the top (bottom) leg. When m = 0, only
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FIG. 2. (a)–(c) The behavior of the thermal currents as a function
of m in the noninteracting model for (a) two-leg, (b) four-leg, and
(c) 20-leg systems. In all the figures we set t = t1 = 2t2 = 1 and
color the top (bottom) leg as blue (orange). (d) The energy gap of the
noninteracting model as a function of m. The plateau at zero energy
suggests the existence of gapless edge modes.

the fields αL and βR are coupled (by the t2 term) and thus get
gapped out, and we are left with one pair of chiral gapless
modes, namely αR on the top leg and βL on the bottom leg.
For m �= 0, all the modes are gapped out and there is no edge
mode.

To be able to characterize the spatial structure of the chiral
modes using numerical methods we consider the expectation
of the thermal current operators in the ground state. The chiral
modes do not carry well defined charge but since the energy
is conserved they do carry heat current. The latter can be
evaluated in both noninteracting and fully interacting models
using DMRG. This approach will allow us to understand the
interacting model where the microscopic derivation of the
low energy Hamiltonian as in Eq. (7) is not readily available.
We obtain the thermal current operators on each leg by par-
titioning the system into two parts (L/R) and going to the
decoupled and massless limit t1,2 = 0, m = 0 [32]

IQ,α = −i〈[Hα,L, H]〉 = 2it2〈α−2α0〉,
IQ,β = −i〈[Hβ,L, H]〉 = 2it2〈β−2β0〉. (8)

The relation between the currents and m is shown in Fig. 2(a),
where we take t = t1 = 2t2 = 1. We see that the thermal
currents evaluated in the ground state clearly capture the sep-
aration of the left- and right-movers. In the noninteracting
limit thermal current can be evaluated at finite temperature
to show an additional universal contribution to the ground
state current, 〈IQ(T )〉 = IQ(T = 0) + cπ

12 kBT 2, where c = 1/2
is the central charge for chiral Ising mode [33].

The above construction is naturally generalized to multileg
ladders. The Hamiltonian for a ladder with N legs can be

written as

H = i
∑

j,l

(−1)l+1(t + m(−1) j )α j,lα j+1,l

+ it1
∑

j,l

(−1)lα j,lα j,l+1

+ it2
∑

j,l

(α j,lα j+1,l+1 − α j,l+1α j+1,l ), (9)

where l extends from 1 to N . To keep the notation compact we
use α j,l to denote the Majorana operator on the site j of the lth
chain. For periodic boundary conditions in both directions the
model defined in Eq. (9) can be readily solved by transforming
to the momentum space representation, see Appendix. The
resulting Bloch Hamiltonian is a 2 × 2 Hermitian matrix and
has a low-energy spectrum of the form

εq = ±4
√

t2q2
x + t2

1 q2
y + (m − 2t2 cos ky)2. (10)

Here q is the crystal momentum relative to the nodal points
k = (0, 0), (0, π ). The spectrum is fully gapped except when
2|t2| = |m|. Two gapped phases occurring for 2|t2| > |m| are
topological and have a single gapless chiral Majorana mode
at the boundary with the chirality determined by sgn(t2). The
other two gapped phases for 2|t2| < |m| are topologically
trivial.

The N-leg ladder defined by Hamiltonian Eq. (9) provides
an excellent primer for the coupled wire construction. As we
already mentioned the single chain and two-leg ladder exhibit
an isolated critical point at which a pair of gapless Majorana
modes exist. Already for N = 2 these become spatially sep-
arated on two legs. For N > 2 this critical point begins to
expand into a critical phase. This is illustrated in Fig. 2(d)
which shows the excitation energy for an N-leg ladder with
open boundary conditions along the direction perpendicular
to the legs (i.e., the periodic strip geometry) as a function of
m. We observe that the gapless region broadens with the in-
creasing N and for N = 20 it spans almost the entire width of
the topological phase defined by |m| < 2t2. In the topological
phase gapless modes occur at the edge, whereas in the trivial
phase there are no gapless edge modes and the spectrum is
gapped.

Thermal currents on each leg for the N = 20 case

IQ,l = 2it2〈α−2,lα0,l〉 (11)

are shown in Fig. 2(c). They indicate a clear spatial separation
of the chiral modes to the edges of the system with vanishingly
small currents in the gapped bulk.

III. THE INTERACTING MODEL

With the intuition gained from the noninteracting model,
we now focus on the full interacting model, Eq. (2). As the
mean-field theory suggests, we expect a TCI phase transition
to occur in the ladder just as it does in the chain model.
Moreover, as the mean-field model has edge modes spatially
separated on the two edges, we expect this to also hold in the
full model. We will show numerical evidence for this mode
separation below. This result allows an interesting new way
of viewing the interacting model: Instead of a detour into the
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FIG. 3. The central charge for the interacting two-leg ladder with
(a) t1 = 2t2 = 0.6 (blue), 1 (orange), 2 (green) and (b) t1 = t2 = 0.
We fix g = 1 and J = 0.3.

noninteracting models, we start from two copies of the GSV
chain model tuned to the TCI point and seek to gap out the
bulk modes by interchain coupling. On each isolated chain,
there will be a pair of left- and right-moving gapless modes
characterized by the TCI CFT with central charge c = 7/10.
As the two chains get coupled, one pair of oppositely-moving
modes are gapped out, leaving us with another pair residing
on the two edges.

TCI phase transition is numerically confirmed by calcu-
lating the central charge c using DMRG as a function of
parameter h which is known to drive the transition in the chain
model. We apply the standard method for computing c by
fitting the formula [34]

SA = c

3
ln

(
L

πa
sin

π lA
L

)
+ S0, (12)

where a is the lattice constant, lA and L are the subsystem and
total length, and S0 is a nonuniversal constant. SA denotes the
entanglement entropy of subsystem A, defined by

SA = Tr(ρA ln ρA), (13)

where the reduced density matrix ρA is given by ρA = TrBρ.
The results are shown in Fig. 3. We show the results for
t1 = 2t2 = 0.6, 1, 2 in Fig. 3(a) and for the decoupled case
t1 = t2 = 0 in Fig. 3(b). In the latter case, the central charges
from the two chains add up and give twice the value as in
Ref. [29], as expected for two decoupled chains undergoing
the TCI transition. When the chains are coupled, however, the
central charge behavior remains qualitatively the same as in
the single chain model, indicating only one pair of the left- and
right-moving chiral modes with c = 7/10. It is worth noting
that the critical field hc decreases as t1,2 increase. To iden-
tify the chirality and the spatial structure of the edge modes
we calculate the chain-resolved thermal currents defined in
Eq. (8) using DMRG. The results are shown in Fig. 4 and
support the conjecture that c = 7/10 modes are spatially sepa-
rated on the ladder and can plausibly be viewed as a precursor
of the chiral edge modes in a 2D system.

The interacting Hamiltonian can be generalized to N legs.
In analogy with the noninteracting N-leg model discussed in
Sec. II we expect the TCI gapless edge modes to be stabilized
over a range of parameter h that widens with increasing N , c.f.
Fig. 2(d). Similarly we expect the thermal currents associated
with the c = 7/10 gapless modes to be segregated to the edges
and the corresponding 2D topological phase will be stable
with increasing N just like in the flux ladders [35].
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FIG. 4. The thermal currents in the fully interacting two-leg lad-
der (computed using DMRG) for (a) t1 = 2t2 = 1 and (b) t1 = t2 = 0.

In practice a DMRG simulation for the four-leg fully in-
teracting case is already computationally very heavy, and we
therefore restrict our numerical calculations to this size. The
results for central charge c and thermal currents are displayed
in Figs. 5(a) and 5(b). They show the same qualitative features
as the two-leg ladder: A peak in the central charge close to
hc = 0.36 suggests a phase transition and the distribution of
thermal currents confirms that gapless modes are localized at
the outer two legs of the four-leg ladder which can be viewed
as forming the edge of the system. Quantitatively, however,
the peak value of the central charge is closer to 0.8 than
7/10 expected for the TCI transition. Also, for h > hc, the
central charge does not convincingly saturate at 1/2 as one
might expect in this regime. We therefore suspect that, de-
spite our significant computational effort, the DMRG results
for the four-leg case have not fully converged to provide a
quantitatively reliable result for the central charge. Based on
the numerical and analytical results we have, we propose a
tentative phase diagram as one goes to 2D in Fig. 5(c).

IV. POSSIBLE REALIZATION IN ARRAYS OF MAJORANA
COOPER PAIR BOXES

We propose a geometry to realize the 2D TCI phase in
networks of Majorana Cooper pair boxes (MCBs) [36–39],
superconducting islands harboring Majorana fermions. Such
boxes are realized by introducing a superconducting island
hosting a semiconducting nanowire. By tuning a magnetic
field and chemical potential, there are Majorana fermions
localized on both edges of the nanowire.

To generate the desired TCI phase, we consider a geometry
where two types of 1D alignment of MCBs are placed in an
alternating pattern as shown in Fig. 6. The adjacent two 1D
alignments are coupled via tunneling of Majorana fermions.
For a moment, we turn off this tunneling and focus on the
decoupled two types of the 1D alignment.

The first one is a large superconducting island with
nanowires which gives rise to arrays of Majorana fermions
(red dots in Fig. 6). By tuning couplings between these Ma-
jorana fermions, we render the Hamiltonian of the two-leg
ladder, HM described in Eq. (2). The second alignment is a
network of MCBs each of which has two nanowires, yielding
four Majorana fermions. In the same spirit of Ref. [40], where
a spin chain is realized in arrays of Cooper pair boxes, we can
construct the transverse field Ising model [Hs in Eq. (1)] in this
geometry. Labeling the four Majorana fermions by γ k

i, j (k =
t, x, y, z) (the subscript index denotes the 2D coordinates), the
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FIG. 5. (a) The central charge and (b) the thermal currents in the interacting four-leg ladder for t1 = 2t2 = 1. (c) The tentative phase
diagram in the N-g space based on the numerical and analytical analyses.

Hamiltonian of the MCB network reads

H =
∑
i, j

−ihγ t
i, jγ

x
i, j + itγ x

i, jγ
t
i+1, j + itγ y

i, jγ
z
i+1, j

− Uγ t
i, jγ

x
i, jγ

y
i, jγ

z
i, j . (14)

The first three terms describe hopping between Majorana
fermions and the last term comes from a charging energy on
each island. When the charging energy is larger than other
hopping terms, i.e., U 	 t , we obtain the following constraint

FIG. 6. A geometry that realizes the 2D TCI topological phase,
consisting of 1D arrays of two types of Majorana Cooper pair
boxes (MCBs) in alternating pattern. The first type is a large super-
conductor which harbors Majorana fermions (red dots) by placing
nanowires on the top (for the sake of simplicity we omit drawing the
nanowires). By tuning couplings between the Majorana fermions, the
island renders the two-leg Majorana ladder system discussed above.
The second type is the alignment of MCBs each of which has four
Majorana fermions (green dots) by putting two nanowires (white
lines) on the top. It reproduces the transverse field Ising model by
tuning a strong charging energy and tunneling between the Majorana
fermions. The indices, t, x, y, z correspond to the superscript of the
Majorana fermion operators defined above Eq. (14). The dotted lines
depict the coupling between the Majorana fermions.

on fermion parity:

γ t
i, jγ

x
i, jγ

y
i, jγ

z
i, j = 1, (15)

which is reminiscent of a gauge fixing condition discussed
in Ref. [41]. This constraint allows us to define a spin-1/2
operator by

μk
i, j = iγ t

i, jγ
k
i, j (k = x, y, z). (16)

Since U 	 t , we regard the second and third terms in Eq. (14)
representing hopping between Majorana fermions of adjacent
islands as perturbation. The second order perturbation anal-
ysis shows that such hopping between the adjacent islands
has the form J (γ x

i, jγ
t
i+1, j )(γ

y
i, jγ

z
i+1, j ) which is equivalent to

Jμz
i, jμ

z
i+1, j by use of Eqs. (15) and (16), where J is pro-

portional to t2/U . Noting that the first term in Eq. (14) is
transformed to −hμx

i, j , it follows that Hamiltonian (14) re-
produces the transverse field Ising model.

Now we turn on the tunneling between adjacent 1D MCBs
in the perpendicular direction. Such a tunneling is described
by (see also the purple dashed lines in Fig. 6)

H⊥ =
∑
i, j

it⊥β2i+1, j−1γ
t
i, j + it⊥α2i+1, j+1γ

z
i, j .

Assuming U 	 t⊥, we can again resort to the second order
perturbation analysis, leading to the term

λμz
i, jβi, j−1αi, j+1, (17)

where λ ∼ t2
⊥/U and we have used Eq. (16). When t1 = 2t2

in each two-leg Majorana ladder, the preceding discussion
around Eqs.(4)–(7) shows that there are a pair of right/left
moving gapless modes in each ladder, furthermore, these
modes are spatially decoupled; the wave function of the
right/left moving mode is localized along the top/bottom of
the ladder. Hence, similarly to Eqs. (5) and (6), the local Ma-
jorana fermion βi, j−1 and αi, j+1 in Eq. (17) transmutes to left
and right moving gapless Majorana fields defined by βL, j−1

and αR, j+1 in the continuum limit. We use a well-known fact
that a continuum field theory description of the transverse
field Ising model is given by a standard ϕ4 theory [42]. In-
deed, if a mass term rϕ2 is added to this theory, the theory
flows to gapped phase (spontaneously broken phase) when
r > 0 (r < 0), which corresponds to disorder (order) phase
of the transverse field Ising model. Based on this fact, the
potential of the effective field theory of the networks of the
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transverse field Ising model together with the tunneling term
in Eq. (17) between adjacent two-leg Majorana ladder systems
has the form

∑
j

iβL, j−1αR, j+1ϕ j + ϕ4
j + rϕ2

j . (18)

Therefore, when t1 = 2t2, effective field theory of each MCBs
of the transverse field Ising model with bottom/top chain of
the two-leg ladder above/below the MCB manifests the one
of the 1D GSV model (1). By tuning the coupling h in Hamil-
tonian (14), which is physically implemented via adjusting a
chemical potential of a nanowire, correspondingly, tuning the
mass term r in Eq. (18), we obtain decoupled arrays of the
1 + 1-dimensional TCI CFTs.

If we relax the condition of t1 = 2t2, the coupling be-
tween the gapless Majorana field is induced, i.e., the term
iu⊥βL, j−1αR, j+1 is generated, where u⊥ is proportional to
t1 − 2t2. By virtue of the coupled wire construction, this
situation closely parallels the N-leg ladder system that we
believe constructs the desired 2D TCI topological phase as
the adjacent TCI CFTs are coupled via Majorana couplings.

V. CONCLUSIONS

The coupled wire construction provides an intuitive ap-
proach to assembling strongly interacting phases in two
dimensions from well understood 1D components. In this
work we made an attempt to construct in this way a stable
2D topological phase whose bulk is fully gapped and supports
chiral gapless edge modes described by tricritical Ising con-
formal field theory with central charge c = 7/10. This critical
system is interesting because it exhibits supersymmetry and
its primary fields include Fibonacci anyon which is known to
permit universal topological quantum computation.

Starting from the Grover-Sheng-Vishwanath chain model,
which is known to support the TCI CFT at its critical point, we
formed N-leg ladders and analyzed them using DMRG. The
results for N = 2, 4 indicate robust separation of the gapless
modes to the opposite edges of the ladder as measured by
thermal current expectation values. Analysis of the central
charge behavior based on the entanglement entropy formula
shows convincing evidence for the TCI CFT in the two-leg
ladder. In the four-leg ladder the behavior is qualitatively sim-
ilar but quantitatively less convincing, presumably because
the large bond dimension prevents us from obtaining the fully
converged DMRG results near the critical point.

In approaching the 2D limit it would be desirable to numer-
ically study ladders with N > 4. Unfortunately, with available
computational resources we were not able to perform DMRG
for such systems. Our results for N = 2, 4 are strongly sug-
gestive if not entirely conclusive that the model for large
N describes a gapped 2D topological phase with protected
gapless TCI boundary modes. Another possible direction is to
calculate the finite temperature thermal currents, which, un-
like the ground state ones, are expected to be directly related
to the central charge, and thus give yet another probe into the
nature of the phases. We hope that our work here will motivate
future studies of this intriguing problem.
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APPENDIX: DETAILS ON THE
NONINTERACTING MODEL

In this Appendix we discuss in more detail the noninter-
acting model defined in Eq. (9). While at first sight the phase
factors stipulate a 2 × 2 unit cell and thus require solving a
4 × 4 matrix in the momentum basis, we can exploit the gauge
degree of freedom, where the Majorana operators are defined
up to a sign, and set α j,l → −α j,l for the following sites:

j = 2m, l = 4n + 1;

j = 2m, l = 4n + 2;

j = 2m + 1, l = 4n;

j = 2m + 1, l = 4n + 1; (A1)

see Fig. 7. The Hamiltonian will then be

H = i
∑

j,l

(t + m(−1) j )α j,lα j+1,l + t1(−1) j+1α j,lα j,l+1

+ it2
∑

j,l

(−1) j+1(α j,lα j+1,l+1 + α j,l+1α j+1,l )

= i
∑

j,l

((t + m)α j,lβ j,l + (t − m)β j,lα j+1,l )

4n + 4 4n + 4

4n + 3 4n + 3

4n + 2 4n + 2

4n + 1 4n + 1

4n 4n

2m 2m2m + 1 2m + 12m + 2 2m + 2

FIG. 7. The gauge transformation in Eq. (A1). We introduce a
minus sign for the red sites so that the unit cell comprises only two
sites.
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+ it1
∑

j,l

(−α j,lα j,l+1 + β j,lβ j,l+1)

+ it2
∑

j,l

(−α j,lβ j,l+1 + β j,lα j+1,l+1

− α j,l+1β j,l + β j,l+1α j+1,l ), (A2)

where we defined

α j,l = α2 j,l , β j,l = α2 j+1,l . (A3)

We introduce momentum-space Majorana operators

α j,l =
√

2

N

∑
j,l

eir j,l ·kαk,

(A4)

β j,l =
√

2

N

∑
j,l

eir j,l ·kβk,

where r j,l labels of the (2 × 1) unit cell and the prefactors
guarantee that αk, βk satisfies the usual anticommutation re-
lation. The Hermiticity of the original Majorana operators
translates to

α−k = α
†
k, β−k = β

†
k, (A5)

and we only need to focus on half of the Brillouin zone (hBZ)
due to particle-hole redundancy [44,45]. The momentum-
space Hamiltonian reads

H =
∑

k∈hBZ

�
†
kHk�k + E0, (A6)

with

�k = (αk, βk )T , (A7)

Hk = 2

(
D1 D2

D∗
2 −D1

)
, (A8)

and

D1 = 2t1 sin ky,

D2 = i(t + m) − i(t − m)e−2ikx

− it2(eiky + e−i(2kx+ky ) + e−iky + ei(−2kx+ky ) ), (A9)

where E0 is a constant which does not concern us here. We
also set the original lattice constant to 1. As a Majorana model
the Hamiltonian is particle-hole symmetric by construction,
and the time-reversal symmetry is broken by the t2 terms [46].
The Hamiltonian thus falls into class D in the tenfold classifi-
cation [47]. The energy spectrum is given by

Ek,± = ± 2
(
D2

1 + |D2|2
)1/2 = ±4

(
t2
1 sin2 ky + t2 sin2 kx

+ (m − 2t2 cos ky)2 cos2 kx
)1/2

. (A10)

We are interested in the physics around the Dirac point, where
Ek,± = 0. Solving for k gives the condition

kx = 0; ky = 0, m = 2t2 or ky = π, m = −2t2. (A11)

Near the Dirac points k0 ∈ {(0, 0), (0, π )}, we expand the
momentum as k = k0 + q, and the low-energy Hamiltonian
is

H(0,0) = 4t1qyσz + 4(2t2 − m)σy − 4(2t2 + t − m)qxσx,

H(0,π ) = −4t1qyσz − 4(2t2 + m)σy + 4(2t2 − t + m)qxσx.

(A12)

For |m| �= 2t2, rewriting H(qx,qy ) = dxqxσx + dyqyσy + Mσz at
the Dirac points using an appropriate unitary transformation,
we can calculate the Chern number from the following equa-
tion for this special case

C = 1

2

∑
k0

sgn(dxdyM ). (A13)

It follows that the Chern number is −1 for |m| < 2t2 and 0 for
|m| > 2t2 [48], consistent with Fig. 2(d).
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