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Corner charge and bulk multipole moment in periodic systems

Haruki Watanabe * and Seishiro Ono
Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan

(Received 30 July 2020; accepted 25 September 2020; published 13 October 2020)

A formula for the corner charge in terms of the bulk quadrupole moment is derived for two-dimensional
periodic systems. This is an analog of the formula for the surface charge density in terms of the bulk polarization.
In the presence of an n-fold rotation symmetry with n = 3, 4, and 6, the quadrupole moment is quantized and
is independent of the spread or shape of Wannier orbitals, depending only on the location of Wannier centers
of filled bands. In this case, our formula predicts the fractional part of the quadrupole moment purely from
the bulk property. The system can contain many-body interactions as long as the ground state is gapped and
topologically trivial in the sense it is smoothly connected to a product state limit. An extension of these results
to three-dimensional systems is also discussed. In three dimensions, in general, even the fractional part of the
corner charge is not fully predictable from the bulk perspective even in the presence of point group symmetry.
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I. INTRODUCTION

The “modern theory” of electric polarization [1–5] suc-
ceeded in characterizing the surface charge of band insulators
from the bulk polarization formulated in terms of the Berry
phase of Bloch functions. Recently, multipole insulators that
feature fractional charges localized not on the surface but
around hinges and corners of a slab attracted significant at-
tention [6–30]. There have been several attempts [31,32] in
extending the theory of polarization to the theory of the mul-
tipole moments that predicts the hinge charge density and
the corner charge in terms of the bulk multipole moments.
However, the proposals [31,32] contain several fundamen-
tal issues associated with the periodicity of the boundary
condition [33]. There are also several other recent proposals
[34,35]: Reference [34] characterized the corner charge us-
ing the third Chern-Simons form for an adiabatic pumping
process, but this framework requires a smooth interpolation
of the quadrupole insulator to a trivial insulator. Reference
[35] proposed a “bulk-and-edge to corner” correspondence,
focusing on systems without rotation symmetry. However, in
the presence of a rotation symmetry, the detailed information
on the edge does not seem necessary.

Indeed, for two-dimensional band insulators with a rota-
tion symmetry, formulas predicting corner charges in terms
of the rotation representations of Bloch functions have been
developed [36–38]. This “symmetry-indicator” [39,40] type
approach fulfills the criterion of describing the corner charge
purely based on the bulk property of band insulators. How-
ever, there remain three unsatisfactory points: (i) The relation
to multipole moments is unclear. (ii) The formulas are in-
complete in the sense that it is not always possible to predict
the corner charge based on the rotation representations alone.
Examples are given in Ref. [37]. (iii) Rotation representations
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of Bloch functions are fundamentally affected by whether
or not the spin-orbit coupling is taken into account and the
time-reversal symmetry is assumed. Thus, in this approach,
formulas must be derived separately for each setup. Both of
the previous works [36–38] assumed the time-reversal sym-
metry, and the more general case remains an open problem.

In this work, we develop a theory that improves all of
these points and establish a “bulk-corner” correspondence. We
first formulate the corner charge of two-dimensional periodic
systems in general in terms of the bulk quadrupole moment
[Eq. (22)] in a way the analogy to the modern-theory formula
of the surface charge [Eq. (19)] is evident. We then add the
n-fold rotation symmetry (n = 3, 4, and 6) to the problem
and show that the general formula [Eq. (22)] reduces to a
simpler one [Eq. (26)] formulated in terms of the U(1) charges
localized at each Wyckoff position [41]. This formula predicts
the fractional part of the quantized corner charge based on
bulk topological invariants protected by the particle number
conservation, the rotation symmetry, and the lattice translation
symmetry. The formula works when the bulk system is charge
neutral and polarization free, and applies even to interacting
systems. The assumption of the formula, in addition to the
symmetries and the lack of the charge density and the bulk
polarization, is that the ground state is topologically trivial in
the sense it is adiabatically connected to an atomic limit [42].
We also extend these results to three-dimensional systems,
deriving formulas of the hinge charge density [Eq. (109)]
and the corner charge [Eq. (111)] in terms of the quadrupole
moment and the octupole moment.

II. SETTING AND DEFINITIONS

In this section we summarize the setup of our study. We
consider U(1) invariant systems with a lattice translation sym-
metry in d spatial dimensions. In this work we are interested
in d = 2 and 3. The reciprocal lattice vectors bi’s are defined
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by ai · b j = δi j (without 2π ) for given primitive lattice vectors
ai (i, j = 1, . . . , d).

The assumed U(1) symmetry implies the conservation of
the total U(1) charge of the system Q̂ = ∫

Rd dd rρ̂(r) [43].
We can unambiguously define the total charge density of
the system ρ

(bulk)
tot (r) as the ground-state expectation value of

the charge density operator ρ̂(r). The translation invariance
implies

ρ
(bulk)
tot

(
r −

d∑
i=1

niai

)
= ρ

(bulk)
tot (r) (1)

for any ni ∈ Z.
We decompose ρ

(bulk)
tot (r) into the sum of a local charge

density ρ0(r):

ρ
(bulk)
tot (r) =

∑
ni∈Z

ρ0

(
r −

d∑
i=1

niai

)
. (2)

The local charge density ρ0(r) is composed of electronic and
ionic orbitals labeled by α and β:

ρ0(r) =
νel∑

α=1

ρ
(el)
0α (r) +

νion∑
β=1

ρ
(ion)
0β (r). (3)

Both ρ
(el)
0α (r) and ρ

(ion)
0β (r) are assumed to be exponentially

localized and are normalized to an integer multiple of the unit
charge e (>0):∫

Rd

dd rρ(el)
0α (r) = −e,

∫
Rd

dd rρ(ion)
0β (r) = mβe. (4)

The charge neutrality imposes the condition νel = ∑νion
β=1 mβ

on the number of orbitals νel, νion per unit cell, and ionic
charges mβe. For band insulators, ρ

(el)
0α (r)’s are constructed as

Wannier orbitals [5] of filled bands (see Appendix for more
details) [44,45], while ρ

(ion)
0β (r)’s are usually simply given by

atomic orbitals. Our general formulation treats electrons and
ions on equal footing.

Note that the correspondence between ρ
(bulk)
tot (r) and ρ0(r)

is one-to-many. That is, there are multiple possible choices
of ρ0(r) that give the same bulk charge density ρ

(bulk)
tot (r),

and there is no unique way of determining ρ0(r) based on
ρ

(bulk)
tot (r). Here we proceed with a given ρ0(r), paying atten-

tion to its ambiguity.
For a function F (r) of r, we denote by 〈F (r)〉0 the spatial

average of F (r) with respect to ρ0(r):

〈F (r)〉0 ≡
∫
Rd

dd rρ0(r)F (r). (5)

The charge neutrality implies

〈1〉0 = 0. (6)

Let us introduce a corner by restricting the sum in Eq. (2)
to ni � 0 for every i = 1, . . . , d:

ρtot(r) ≡
∑
ni�0

ρ0

(
r −

d∑
i=1

niai

)
. (7)

The corner is defined by surfaces normal to b1, . . . , bd . Differ-
ent choices of ρ0(r) for the same ρ

(bulk)
tot (r) result in different

FIG. 1. (a) The region R used in the definition of the corner
charge Qc in d = 2. A unit cell is shown by a gray parallelogram.
(b) The region R′. Each boundary is parallel to either a1 or a2. (c) The
difference of R and R′. (d) The contour plot of the coarse-grained
density ρ̃tot(r) in Eq. (10) for honeycomb lattice in Fig. 4(c) for
a1 = a2 = 1, λ = 5, and e = 1. Some ions are shifted so that the bulk
polarization vanishes [see Fig. 4(c) for the detail]. Both ρ

(el)
0α (r) and

ρ
(ion)
0β (r) are chosen to be delta functions in this plot. (e) An example

of finite systems with sixfold rotation symmetry.

types of terminations of the surfaces. In reality, the charge
density near the surface may be reconstructed, but for now
we neglect such an effect. We will revisit this point later.

Given ρtot(r) in Eq. (7), one can compute the total charge
QR in the region R illustrated in Fig. 1(a). The edges of R
intersect with the boundary of the system at Pi (i = 1, . . . , d)
[see Fig. 1(a)], and the vector connecting the origin O to Pi is
aiWi. To properly characterize the corner charge, the edges of
the region R must be orthogonal to the boundary of the system.
An example of invalid choice is the region R′ in Fig. 1(b). The
distinction between R and R′ remains important even when the
surface and hinge charge density vanishes (see Sec. III A for
an example). Mathematically, the region R is specified by the
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conditions

(r − Wiai ) · ai = a2
i

[
(ri − Wi ) −

∑
j �=i

ci jr j

]
< 0 (8)

for i = 1, . . . , d , where

ci j ≡ −ai · a j

a2
i

. (9)

The microscopic charge density ρ0(r) may be highly oscil-
lating at a scale equal to or even much smaller than the lattice
constant ai, and the total charge in R depends sensitively on
the location of the boundary of R. To avoid such subtlety, we
perform coarse graining of the charge density by a convolution

integral with the Gaussian function G(r) ≡ (2πλ2)−D/2e− |r|2
2λ2

(see Sec. 6.6 of Ref. [46]):

ρ̃tot(r) ≡
∫
Rd

dd r′G(r − r′)ρtot(r′), (10)

ρ̃0(r) ≡
∫
Rd

dd r′G(r − r′)ρ0(r′). (11)

Here, the parameter λ (� ai) specifies the scale after coarse
graining, and the width Wi [see Fig. 1(a)] is assumed to be
much greater than λ. In contrast to the microscopic den-
sity ρ0(r), the coarse-grained one ρ̃0(r) is a slowly varying,
smooth function of r. This gives a legitimate, stable definition
of the total charge in the region R:

QR ≡
∫

R
dd rρ̃tot(r). (12)

Finally, let us define 〈F (r)〉0̃ as the spatial average of F (r)
with respect to the coarse-grained density ρ̃0(r):

〈F (r)〉0̃ ≡
∫
Rd

dd rρ̃0(r)F (r). (13)

Using G(r) = G(−r), we see that

〈F (r)〉0̃ =
∫
Rd

dd r
∫
Rd

dd r′G(r − r′)ρ0(r′)F (r) = 〈F̃ (r)〉0,

(14)
where

F̃ (r) ≡
∫
Rd

dd r′G(r − r′)F (r′). (15)

It can be readily verified that 〈1〉0̃ = 〈1〉0 = 0 and 〈ri〉0̃ =
〈ri〉0. However, in general, 〈F (r)〉0̃ and 〈F (r)〉0 do not agree.
For example, in the case of F (r) = x3, 〈x3〉0̃ − 〈x3〉0 =
3λ2〈x〉0. Nonetheless, we will see that the part of quadrupole
moments and octupole moments relevant for hinge and corner
charges exhibits the “coarse-graining invariance”

F (r) = F̃ (r) (16)

so that 〈F (r)〉0 = 〈F (r)〉0̃.

III. TWO DIMENSIONS

In this section we present our results for two-dimensional
systems.

A. Formula for corner charge in two dimensions

Without loss of generality, the primitive lattice vectors ai

(i = 1, 2) can be set

a1 = a1(1, 0), a2 = a2(cos θ, sin θ ) (0 < θ < π ). (17)

For n-fold rotation symmetric systems (n = 3, 4, or 6), we
set a1 = a2 and θ = π − (2π/n) so that a2 is mapped to
−a1 under 2π/n rotation. Thus the square lattice (n = 4)
and the hexagonal lattice (n = 6) correspond to θ = π/2 and
θ = 2π/3, respectively.

1. Surface charge

When the bulk polarization does not vanish, QR in Eq. (12)
is dominated by the contributions from the surface:

QR = W1σ2 + W2σ1 + O(1). (18)

The surface charge density σi (σ1 is per length a2 and σ2 is per
length a1) is given by the bulk polarization [1,2,4,5]

σi = −〈Pi(r)〉0 = −〈Pi(r)〉0̃, (19)

Pi(r) ≡ bi · r = ri. (20)

For band insulators, the electronic contribution to 〈Pi(r)〉0 is
given by the sum of the Berry phase of filled bands [see
Eq. (A12) below] [1,2].

2. Corner charge

When the bulk polarization vanishes, QR measures the
charge bound to the corner

QR = Qc. (21)

The first main result of this work is the following formula for
the corner charge:

Qc = 〈Q12(r)〉0 = 〈Q12(r)〉0̃, (22)

Q12(r) ≡ (b1 · r)(b2 · r)

+ a2 · a1

2a2
2

(b1 · r)2 + a1 · a2

2a2
1

(b2 · r)2

= r1r2 + 1

2
cos θ

(a1

a2
r2

1 + a2

a1
r2

2

)

= 1

a1a2

(
x2 − y2

2
cos θ + xy sin θ

)
. (23)

The second line of Eq. (23) is for the oblique coordinate
r = r1a1 + r2a2 and the third line is for the Cartesian coor-
dinate r = (x, y). The quantity 〈Q12(r)〉0 can be interpreted as
the bulk quadrupole moment. The same result for the square
lattice and the cubic lattice has been derived before in Ref. [7],
and our formula extends it to arbitrary lattices. Note that both
Pi(r) and Q12(r) satisfy the coarse-graining invariance (16).
Furthermore, they are independent of the choice of the origin
when lower multipoles vanish. These observations support the
validity of our results. We present the derivation of Eqs. (19)
and (22) in Sec. III B. As shown there, the total charge in R′,
when 〈Pi(r)〉0 = 0, is given by

QR′ = 〈(b1 · r)(b2 · r)〉0. (24)

This is only a part of Qc in Eq. (22).

165120-3



HARUKI WATANABE AND SEISHIRO ONO PHYSICAL REVIEW B 102, 165120 (2020)

FIG. 2. Decoration of surfaces, hinges, and corners by lower di-
mensional objects for (a) two-dimensional and (b) three-dimensional
systems.

The origin of the discrepancy between QR and QR′ can be
understood by focusing on the profile of the charge density
near the surface. In general, we have [see Fig. 1(c)]

QR = QR′ + QA + QB + QC − QD − QE . (25)

Even when the bulk polarization vanishes and no net surface
charge is expected, the charge density profile ρ̃tot(r) may not
completely vanish near the surface, showing some spatial
dependence as in Fig. 1(d). In the example of the honeycomb
lattice in Fig. 1, QA and QB are negative and QD and QE are
positive. QC = 0 due to the charge neutrality in the bulk. Con-
sequently, QR′ should be larger than QR, and we indeed find
QR′ = 5e/9 and QR = e/3 in this example. The modulation
of ρ̃tot(r) does not affect QR because the net surface charge
in the light-yellow region in Fig. 1(e) vanishes owing to the
assumed orthogonality of the boundary of R to the system.
This is why QR gives the correct quantized value, consistent
with the previous study [36].

Note that the formulas in Eqs. (19) and (22) sensitively
depend on the detailed shape of ρ0(r). In particular, the value
of 〈Q12(r)〉0 can be smoothly changed without affecting the
bulk polarization 〈Pi(r)〉0. This observation implies that, in
general, 〈Q12(r)〉0 for band insulators is ill defined because
of the gauge ambiguity in forming the Wannier orbitals that
may affect their shape.

Furthermore, the above formula is designed for the partic-
ular termination of the system specified above. The corner
charge as well as the surface charge density can be altered
by decoration of the surface with lower dimensional ob-
jects with a nonzero charge or polarization as illustrated in
Fig. 2.

3. Rotation symmetry

The issues mentioned just now can be suppressed in the
presence of a rotation symmetry. Crucially, 〈Q12(r)〉0 depends
only on the location of the “Wannier center,” and does not
depend on the detailed shape of ρ0(r) as long as the rotation
symmetry is properly implemented. This means that 〈Q12(r)〉0

becomes well defined for band insulators under the rotation
symmetry. Moreover, 〈Q12(r)〉0 is quantized and is robust
against smooth deformation such as the surface reconstruc-
tion. The integer part of the corner charge can still be altered
by symmetrically attaching a charged object to each corner

[see Fig. 2(a)] and cannot be predicted only from the bulk
property.

The second main result of this work is the following
formula of the fractional part of 〈Q12(r)〉0 in terms of the
occupation of each Wyckoff position under n-fold rotation
symmetry:

〈Q12(r)〉0 =

⎧⎪⎨
⎪⎩

1
4 qa = 1

4 qb mod e (n = 4)
1
6 qa = 2

3 qb + 1
2 qc mod e (n = 6)

1
3 qa = 1

3 qb = 1
3 qc mod e (n = 3),

(26)

where qw is the total U(1) charge per site belonging to the
Wyckoff position w (= a, b, c). See Figs. 3(a), 4(a), and
4(b) for the illustration of the Wyckoff position. Relations
such as qa = qb mod 4e for n = 4 and qa = qb = qc mod 3e
for n = 3 follow by the requirement of the charge neutral-
ity and the vanishing polarization. These relations make our
formula (26) independent of the choice of the origin of the
unit cell. We present the derivation of Eq. (26) in Sec. III C.
The above formula for n = 4 in terms of qa was derived
before in Ref. [14] for band insulators when ionic positions
are restricted to Wyckoff position a.

To explain how to use the formula, let us consider the case
of n = 6. The Wyckoff positions w = a, b, and c, respectively,
correspond to the triangular lattice, the honeycomb lattice, and
the kagome lattice. When an electronic Wannier orbital sits at
w = b and two ions sit at w = a [see Fig. 4(c)], then one has
qb = −e and qa = 2e so that Qc = 〈Q12(r)〉0 = e/3 (mod e).
Several other examples are shown in Figs. 3 and 4.

The quantities appearing in the right-hand side of Eq. (26)
are purely bulk topological invariants in the sense that they
can be fully determined by the (many-body) ground state
|�0〉 for systems under the periodic boundary condition or
for the infinite system without boundaries and that they are
robust against smooth deformation [42]. For example, any
topologically trivial band insulator can be almost uniquely de-
composed into a stack of atomic insulators and qw represents
the coefficients of the superposition. The undetermined part
of qw arises from the “lattice homotopy” equivalence [42,47]:
Wyckoff positions with free parameters can be smoothly
reduced to some of the special positions, making qw well
defined only modulo some integers. For example, in the case
of n = 4, r(�)

d in Eq. (54) reduces to r(�)
a , r(�)

b , and r(�)
c in

Eqs. (51)–(53) by setting (r1, r2) = (0, 0), (1/2, 1/2), and
(1/2, 0), respectively. (Neglect the integer part and set k =
k′ = 0 for the purpose of the discussion on the bulk charge dis-
tribution here.) In general, if the site symmetry of the Wyckoff
position is mw-fold rotation, then qw is defined modulo mwe.
However, such an ambiguity does not affect the fractional part
of Eq. (26) in two dimensions. In contrast, we will see in
Sec. IV that the ambiguity of qw affects even the fractional
part of 〈Q123(r)〉0 in three dimensions.

Given a many-body Hamiltonian Ĥ of the system, the
easiest way of determining the U(1) charge qw of a Wyckoff
position r(�)

w would be via the computation of the total U(1)
charge of the ground state |�0〉 under an open boundary
condition designed for each Wyckoff position. When the site
symmetry of the Wyckoff position r(�)

w is mw-fold rotation
symmetry, we prepare a finite-size system with the mw-fold
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FIG. 3. (a) Wyckoff positions for C4 symmetry. (b)–(e) Examples of C4-symmetric systems without bulk polarization. Electronic (ionic)
orbitals are represented by open (solid) circles. Colors correspond to Wyckoff positions in the panel (a). The repetition unit ρ0(r) is shown at
the top left of each panel. Integers next to circles represent the number of orbitals at the location.

rotation symmetry about the rotation axis r = r(�)
w . The linear

dimension of the system must be sufficiently larger than the
correlation length. Then the physical properties of this finite
system around the rotation axis should be identical to those
for the infinite system. Because of the assumed rotation sym-
metry, the total U(1) charge Qw of the entire system under the
open boundary condition must coincide with the U(1) charge

qw bound to the rotation axis, modulo mwe:

Qw = qw mod mwe. (27)

As an example, let us consider the charge configuration il-
lustrated in Figs. 3(b)–3(e). They have the fourfold rotation
symmetry (mw=a = 4) about the rotation axis r = r(�)

w=a at the
center. By the direct calculation, we find Qw=a = 2e, 4e, −e,

FIG. 4. (a),(b) Wyckoff positions for C6 symmetry [(a)] and for C3 symmetry [(b)]. Coordinates are given in oblique systems r = r1a1 +
r2a2. (c)–(f) Examples of C6-symmetric [(c)–(e)] systems and a C3-symmetric system [(f)] without bulk polarization. Electronic (ionic) orbitals
are represented by open (solid) circles. Colors correspond to Wyckoff positions in the panel (a) or (b). The repetition unit ρ0(r) is shown at the
bottom left of each panel. Integers next to circles represent the number of orbitals at the location.
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−e and qw=a = 2e, 4e, 3e, −e, respectively, for these panels,
confirming the relation in Eq. (27).

B. Derivation of the formula for two dimensions

Here we present the derivation of our formula for σi and
Qc in Eqs. (19) and (22). As noted before, the coarse-grained
density ρ̃0(r) is a smooth, slowly varying function of r =
r1a1 + r2a2. This makes it possible to approximate the sum-
mation in the total charge density by an integral:

ρ̃tot(r) ≡
∑

n1,n2�0

ρ̃0(r − n1a1 − n2a2)

	
∫ +∞

− 1
2

dr′
1

∫ +∞

− 1
2

dr′
2 ρ̃0(r − r′

1a1 − r′
2a2)

=
∫ r1+ 1

2

−∞
dr′

1

∫ r2+ 1
2

−∞
dr′

2 ρ̃0(r′
1a1 + r′

2a2). (28)

(The 1/2’s appear here as a result of the midpoint prescrip-
tion and does not affect the final result.) The last expression
implies, among other things, that ρ̃tot(r) deep inside the bulk
(r1, r2 � λ) vanishes due to the charge neutrality,

ρ̃tot(r) 	
∫ +∞

−∞
dr′

1

∫ +∞

−∞
dr′

2 ρ̃0(r′) = 0. (29)

We derive the expression for QR via Eq. (25). We compute
QR′ first and then take into account the difference of R and R′.
We have

QR′ ≡
∫

R′
d2r′ ρ̃tot(r′) = v

∫ W1

−∞
dr′

1

∫ W2

−∞
dr′

2ρ̃tot(r′)

= v

∫ W1

−∞
dr′

1

∫ W2

−∞
dr′

2

∫ r′
1+ 1

2

−∞
dr1

∫ r′
2+ 1

2

−∞
dr2 ρ̃0(r)

= v

∫ W1+ 1
2

−∞
dr1

∫ W2+ 1
2

−∞
dr2

∫ W1

r1− 1
2

dr′
1

∫ W2

r2− 1
2

dr′
2 ρ̃0(r)

=
〈∫ W1

r1− 1
2

dr′
1

∫ W2

r2− 1
2

dr′
2 1

〉
0̃

=
〈(

W1 − r1 + 1

2

)(
W2 − r2 + 1

2

)〉
0̃

. (30)

In going to the fourth line, we approximated
∫ Wi+ 1

2
−∞ dri by∫ +∞

−∞ dri, which can be verified for a sufficiently large Wi.
Similarly, relying on the fact that ρ̃tot(r) becomes indepen-

dent of r1 when r1 > W1 � λ, we have

QA − QD = v

∫ W2

−∞
dr′

2

∫ W1+c12r′
2

W1

dr′
1ρ̃tot(r′)

= v

∫ W2

−∞
dr′

2

∫ c12r′
2

0
dr′

1

∫ W1+r′
1+ 1

2

−∞

× dr1

∫ r′
2+ 1

2

−∞
dr2 ρ̃0(r)

	 v

∫ +∞

−∞
dr1

∫ +∞

−∞
dr2

∫ W2

r2− 1
2

dr′
2

∫ c12r′
2

0
dr′

1 ρ̃0(r)

=
〈∫ W2

r2− 1
2

dr′
2

∫ c12r′
2

0
dr′

1 1

〉
0̃

= 1

2
c12

〈
(W2)2 −

(
r2 − 1

2

)2〉
0̃

. (31)

Interchanging the superscripts 1 ↔ 2, we obtain

QB − QE = 1
2 c21

〈
(W1)2 − (

r1 − 1
2

)2〉
0̃. (32)

Finally, the charge neutrality in the bulk implies

QC = 0. (33)

Plugging these expressions into Eq. (25), we find

QR = −W1〈r2〉0 − W2〈r1〉0 + 〈(
r1 − 1

2

)(
r2 − 1

2

)〉
0̃

− 1
2 c21

〈(
r1 − 1

2

)2〉0̃ − 1
2 c12

〈(
r2 − 1

2

)2〉
0̃. (34)

When 〈r1〉0 �= 0 or 〈r2〉0 �= 0, this reproduces Eq. (19). When
〈r1〉0 = 〈r2〉0 = 0, we find

QR = 〈Q12(r)〉0̃ = 〈Q12(r)〉0, (35)

verifying Eq. (22).

C. Derivation of the formula under rotation symmetry

Now we move on to the derivation of Eq. (26). Our task
is to properly impose the rotation symmetry on ρ0(r). Note
that the local charge density ρ0(r) itself is not necessarily Cn-
symmetric, while the total charge density ρ

(bulk)
tot (r) in Eq. (2)

must be Cn symmetric:

ρ
(bulk)
tot

(
R−1

n r
) = ρ

(bulk)
tot (r). (36)

Here and hereafter, we write the orthogonal matrix represent-
ing the m-fold rotation as

Rm =
(cos φm − sin φm

sin φm cos φm

)
, φm ≡ 2π

m
(37)

for m ∈ N.
To systematically study ρ0(r) that properly encodes the

symmetry requirement, suppose that there is an orbital cen-
tered at a position r = r(1)

w with unit charge e. When the
site symmetry of the position r(1)

w is mw-fold rotation around
r = r(1)

w (mw must be a divisor of n), the orbital must also be
symmetric under mw-fold rotation. Its contribution to ρ0(r)
can be written as

epw

(
r − r(1)

w

)
, (38)

where pw(r) is a Cmw
-symmetric unit density satisfying

pmw

(
R−1

mw
r
) = pw(r),

∫
R2

d2r pmw
(r) = 1. (39)

The rotation invariance of ρ
(bulk)
tot (r) in Eq. (36) requires that a

(Cn)�−1-rotation copy of the orbital at r = r(1)
w must be placed

at r = r(�)
w for � = 2, . . . , νw (νw ≡ n/mw), where

r(�)
w − Rnr(�−1)

w = k(�)
1 a1 + k(�)

2 a2 (40)
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FIG. 5. The fourfold rotation symmetry between the surface
along a1 (blue) and the surface along a2 (red). The symmetry is
respected in panel (a) and (c), and is violated in (b) and (d). The
repetition unit ρ0(r) is shown at the bottom-left of each panel.

for some integers k(�)
1 and k(�)

2 . These orbitals altogether give
contribution

ρ0w(r) ≡ e
νw∑
�=1

pw

(
R1−�

n

(
r − r(�)

w

))
(41)

to ρ0(r). Their contribution to Qc can be written as

〈Q12(r)〉0w ≡
∫
R2

d2rρ0w(r)Q12(r)

= e
∫
R2

d2r pw(r)
νw∑
�=1

Q12
(
R�−1

n r + r(�)
w

)
. (42)

The condition (40) was imposed for the rotation invariance
of the bulk charge density. We additionally require that the
two surfaces normal to b1 and b2 must be related to each other
by the n-fold rotation symmetry. For example, in Fig. 5, both
panels (a) and (b) have the same bulk charge distribution, but
the C4 symmetry between the two surfaces is violated in (b).

The symmetry of the surfaces can be implemented in the
following way. On one hand, the charge density at the surface
along a1 for r1 � λ is given by

ρ
(1)
tot (r) =

∑
n1∈Z

∑
n2�0

ρ0(r − n1a1 − n2a2). (43)

On the other hand, the charge density at the surface along a2

for r2 � λ is

ρ
(2)
tot (r) =

∑
n1�0

∑
n2∈Z

ρ0(r − n1a1 − n2a2). (44)

If rotated by an angle φn = 2π/n and shifted along a1, ρ
(2)
tot (r)

should coincide with ρ
(1)
tot (r):

ρ
(2)
tot

(
R−1

n (r − ma1)
) = ρ

(1)
tot (r). (45)

Using Rna1 = a2 + 2 cos φna1 and Rna2 = −a1 (recall our
choice of θ = π − φn), this condition can be rewritten as∑

n1∈Z

∑
n2�0

ρ0
(
R−1

n (r − n1a1 − n2a2)
)

=
∑
n1∈Z

∑
n2�0

ρ0(r − n1a1 − n2a2), (46)

which means that the rotated pattern ρ0(R−1
n r) and the orig-

inal pattern ρ0(r) give the same charge distribution when
translated along a1. This requirement imposes additional con-
straints on k(�)

i in Eq. (40):

k(�)
2 = 0 (� = 2, . . . , νw ) (47)

and

r(1)
w − Rnr(νw )

w = k(1)
1 a1 (48)

for an integer k(1)
1 .

Using the rotation symmetry of pw(r) in Eq. (39) and con-
ditions on k(�)

i in Eqs. (47) and (48), we find that 〈Q12(r)〉0w

in Eq. (42) becomes

〈Q12(r)〉0w = e
νw∑
�=1

Q12
(
r(�)
w

)
. (49)

That is, the contribution to 〈Q12(r)〉0 from a unit charge e
placed at r(�)

w does not depend on the detailed shape of the
orbital pw(r).

The classification of distinct r(�)
w ’s, satisfying Eqs. (40),

(47), and (48), is related to the notion of Wyckoff positions
[41]. In the following, we summarize the possible choices of
r(1)
w for n = 4, 6, and 3 one by one.

So far we separately studied the contribution from orbitals
generated from r(1)

w . These building blocks must be carefully
superposed in order to form ρ0(r) that satisfied the charge
neutrality and has vanishing bulk polarization. Examples of
valid superpositions can be found in Figs. 3 and 4.

1. C4

For C4 symmetry, we set a1 = a2 = a and θ = π/2. In this
case Q12(r) in Eq. (22) reduces to

Q12(r) = r1r2 = xy

a2
. (50)

As the choice of r(�)
w ’, we have

r(1)
a = k(a1 + a2), (51)

r(1)
b = (

1
2 + k

)
(a1 + a2), (52)

r(1)
c = (

1
2 + k

)
a1 + k′a2,

r(2)
c = k′a1 + (

1
2 + k

)
a2, (53)
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TABLE I. The contribution to the bulk polarization 〈Pi(r)〉0 and
the quadrupole 〈Q12(r)〉0 from a unit charge e placed at the position
r(�)
w (� = 1, . . . , νw) for C4-invariant systems. See Eqs. (51)–(54) for

the definition of r(�)
w .

w mw νw 〈Pi(r)〉0w/e 〈Q12(r)〉0w/e (mod 1)

a 4 1 k 0

b 4 1 1
2 + k 1

4

c 2 2 1
2 + k + k′ 0

d 1 4 k + k′ 0

r(1)
d = r1a1 + r2a2,

r(2)
d = (k − r2)a1 + r1a2

r(3)
d = (k′ − r1)a1 + (k − r2)a2,

r(4)
d = r2a1 + (k′ − r1)a2. (54)

In these expressions, integers k, k′ (related to k(�)
1 ) can be set

freely. The standard convention of the Wyckoff position in
Ref. [41] is recovered by setting k = k′ = 0. We tabulate the
value of 〈P1(r)〉0 = 〈P2(r)〉0 and 〈Q12(r)〉0 originating from
a unit charge placed at these positions in Table I. From this
table, we see that 〈Q12(r)〉0 = qb/4.

To generate a charge-neutral and polarization-free insula-
tor, the U(1) charge per site qw at each Wyckoff position must
satisfy ∑

w

νwqw = qa + qb + 2qc + 4qd = 0, (55)

qc = qb mod 2e, (56)

which imply

qa = −3qb = qb mod 4e. (57)

Thus we obtain Eq. (26) for n = 4.

2. C6

For n = 6, we set a1 = a2 = a and θ = 2π/3. In this case,
Eq. (22) reads

Q12(r) ≡ r1r2 − 1

4

(
r2

1 + r2
2

) = y2 + 2
√

3xy − x2

4a2
. (58)

We have

ra = k(a1 + a2), (59)

r(1)
b = (

2
3 + k

)
a1 + (

1
3 + k′)a2,

r(2)
b = (

1
3 + k′)a1 + (

2
3 + k

)
a2, (60)

r(1)
c = (

1
2 + k

)
a1 + k′a2,

r(2)
c = (

1
2 + k − k′ + k′′)a1 + ( 1

2 + k)a2,

r(3)
c = k′a1 + (

1
2 + k − k′ + k′′)a2, (61)

and

r(1)
d = r1a1 + r2a2,

r(2)
d = (r1 − r2 + k)a1 + r1a2,

TABLE II. The contribution to the bulk polarization 〈Pi(r)〉0 and
the quadrupole 〈Q12(r)〉0 from a unit charge e placed at the position
r(�)
w (� = 1, . . . , νw) for C6-invariant systems. See Eqs. (59)–(62) for

the definition of r(�)
w .

w mw νw 〈Pi(r)〉0w/e 〈Q12(r)〉0w/e (mod 1)

a 6 1 k 1
2 k

b 3 2 1 + k + k′ 1
6 + 1

2 k + 1
2 k′

c 2 3 1 + 2k + k′′ 1
2 k′′

d 1 6 k + 2k′ + 2k′′ + k′′′ 1
2 k + 1

2 k′′′

r(3)
d = −(r2 − k − k′)a1 + (r1 − r2 + k)a2,

r(4)
d = −(r1 − k′ − k′′)a1 − (r2 − k − k′)a2,

r(5)
d = (r2 − r1 − k + k′′ + k′′′)a1 − (r1 − k′ − k′′)a2,

r(6)
d = r2a1 + (r2 − r1 − k + k′′ + k′′′)a2 (62)

for integers k, k′, k′′, k′′′. We tabulate the value of 〈P1(r)〉0 =
〈P2(r)〉0 and 〈Q12(r)〉0 originating from a unit charge placed
at these positions in Table II.

To prove Eq. (26), let us define vectors 
w ≡
(νw, 〈Pi(r)〉0w/e, 〈Q12(r)〉0w/e) mod (0,0,1) for each w:


a(k) = (
1, k, 1

2 k
)
, (63)


b(k, k′) = (
2, 1 + k + k′, 1

6 + 1
2 k + 1

2 k′), (64)


c(k, k′, k′′) = (
3, 1 + 2k + k′′, 1

2 k′′), (65)


d (k, k′, k′′, k′′′) = (
6, k + 2k′ + 2k′′ + k′′′, 1

2 k + 1
2 k′′′). (66)

Subtracting 
a(k) to annihilate the first and second entry, we
find


b′ ≡ 
b(k, k′) − 
a(k) − 
a(k′ + 1) = (
0, 0, 2

3

)
, (67)


c′ ≡ 
c(k, k′, k′′) − 2
a(k) − 
a(k′′ + 1) = (
0, 0, 1

2

)
, (68)


d ′ ≡ 
d (k, k′, k′′, k′′′) − 
a(k) − 2
a(k′) − 2
a(k′′) − 
a(k′′′)

= (0, 0, 0). (69)

Any charge-neutral and polarization-free insulator can be de-
composed into a superposition of 
b′, 
c′, and 
d ′, and their
occupation coincides with qb, qc, and qd :

qb
b′ + qc
c′ + qd 
d ′ = (
0, 0, 2

3 qb + 1
2 qc

)
. (70)

Hence, we find 〈Q12(r)〉0 = (2/3)qb + (1/2)qc modulo e.
Finally, the charge neutrality implies that∑

w

νwqw = qa + 2qb + 3qc + 6qd = 0. (71)

Thus,

qa = −2qb − 3qc = 4qb + 3qc mod 6e. (72)

These relations prove Eq. (26) for n = 6.
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TABLE III. The contribution to the bulk polarization 〈Pi(r)〉0 and
the quadrupole 〈Q12(r)〉0 from a unit charge e placed at the position
r(�)
w (� = 1, . . . , νw) for C3-invariant systems. See Eqs. (74)–(77) for

the definition of r(�)
w .

w mw νw 〈Pi(r)〉0w/e 〈Q12(r)〉0w/e (mod 1)

a 3 1 k 1
2 k

b 3 1 1
3 + k 1

6 + 1
2 k

c 3 1 2
3 + k 2

3 + 1
2 k

d 1 3 k 1
2 k

3. C3

For n = 3, we set a1 = a2 = a and θ = π/3. In this case,
Eq. (22) becomes

Q12(r) ≡ r1r2 + 1

4

(
r2

1 + r2
2

) = x2 + 2
√

3xy − y2

4a2
. (73)

We have

ra = k(a1 + a2), (74)

rb = (
1
3 + k

)
(a1 + a2), (75)

rc = (
2
3 + k

)
(a1 + a2), (76)

and

r(1)
c = r1a1 + r2a2,

r(2)
c = −(r1 + r2 − k)a1 + r1a2,

r(3)
c = r2a1 − (r1 + r2 − k)a2 (77)

for an integer k. We tabulate the value of 〈P1(r)〉0 = 〈P2(r)〉0

and 〈Q12(r)〉0 originating from a unit charge placed at these
positions in Table III.

To generate a charge-neutral and polarization-free insu-
lator, the U(1) charge qw at the Wyckoff position r(�)

w must
satisfy ∑

w

νwqw = qa + qb + qc + 3qd = 0, (78)

qc = qb mod 3e, (79)

which implies

qa = −2qb = qb mod 3e. (80)

We define vectors 
w ≡ (νw, 〈Pi(r)〉0w/e, 〈Q12(r)〉0w/e)
mod (0,0,1) for each w as before:


a(k) = (
1, k, 1

2 k
)
, (81)


b(k) = (
1, 1

3 + k, 1
6 + 1

2 k
)
, (82)


c(k) = (
1, 2

3 + k, 2
3 + 1

2 k
)
, (83)


d (k) = (
3, k, 1

2 k
)
. (84)

Subtracting 
a(k) to partially annihilate the first and second
entry, we find


a′ ≡ 
a(k) − 
a(k − 1) = (
0, 1, 1

2

)
, (85)


b′ ≡ 
b(k) − 
a(k + 1) = (
0,− 2

3 , 2
3

)
, (86)


c′ ≡ 
c(k) − 
a(k) = (
0, 2

3 , 2
3

)
, (87)


d ′ ≡ 
d (k) − 
a(k) − 2
a(0) = (0, 0, 0). (88)

Taking superposition of these vectors with coefficients q′
a, qb,

qc, and qd , we get

q′
a
a′ + qb
b′ + qc
c′ + qd 
d ′

= (
0, q′

a − 2
3 (qb − qc), 1

2 q′
a + 2

3 (qb + qc)
)

= (
0, 0, 1

3 qb
)

mod (0, 0, e). (89)

In the last step we set q′
a/e = (2/3e)(qb − qc) ∈ Z. Thus

Eq. (26) for n = 3 is verified.

IV. THREE DIMENSIONS

Let us generalize discussions above to three-dimensional
systems. We will see that basically the same calculation ap-
plies. Our results are Eqs. (109) and (111) that give the charge
density localized to the hinge and the corner in terms of
the bulk quadrupole moment and the bulk octupole moment,
respectively.

Extending Eq. (28) to d = 3, the coarse-grained total
charge density at position r = r1a1 + r2a2 + r3a3 can be ex-
pressed as

ρ̃tot(r) =
∫ r1+ 1

2

−∞
dr′

1

∫ r2+ 1
2

−∞
dr′

2

∫ r3+ 1
2

−∞
dr′

3ρ̃0(r′). (90)

The total charge in the region R, defined by Eq. (8), is thus given by

QR ≡
∫

R
d3rρ̃tot(r) = v

∫ W1+c12r2+c13r3

−∞
dr1

∫ W2+c21r1+c23r3

−∞
dr2

∫ W3+c31r1+c32r2

−∞
dr3ρ̃tot(r). (91)

Here ci j is defined in Eq. (9). We decompose this integral into eight distinct pieces.

v

(∫ W1

−∞
dr1 +

∫ W1+c12r2+c13r3

W1

dr1

)(∫ W2

−∞
dr2 +

∫ W2+c21r1+c23r3

W2

dr2

)(∫ W3

−∞
dr3 +

∫ W3+c31r1+c32r2

W3

dr3

)
ρ̃0(r)

= QR′ + QR1 + QR2 + QR3 + QR23 + QR31 + QR12 + QR123 , (92)
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where

QR′ ≡ v

∫ W1

−∞
dr1

∫ W2

−∞
dr2

∫ W3

−∞
dr3ρ̃tot(r), (93)

QR3 ≡ v

∫ W1

−∞
dr1

∫ W2

−∞
dr2

∫ W3+c31r1+c32r2

W3

dr3ρ̃tot(r), (94)

QR12 ≡ v

∫ W1+c12r2+c13r3

W1

dr1

∫ W2+c21r1+c22r2

W2

dr2

∫ W3

−∞
dr3ρ̃tot(r), (95)

and

QR123 ≡ v

∫ W1+c12r2+c13r3

W1

dr1

∫ W2+c21r1+c23r3

W2

dr2

∫ W3+c31r1+c32r2

W3

dr3ρ̃tot(r). (96)

Other components of QRi and QRi j are defined similarly. Their concrete expressions can be generated by interchanging the
superscript 1 → 2 → 3 → 1. The decomposition in Eq. (92) is the analog of Eq. (25) for two-dimensional systems.

In the same way as in Sec. III B, we find

QR′ =
〈∫ W1

r1− 1
2

dr′
1

∫ W2

r2− 1
2

dr′
2

∫ W3

r3− 1
2

dr′
3 1

〉
0̃

=
〈(

W1 −
(

r1 − 1

2

))(
W2 −

(
r2 − 1

2

))(
W3 −

(
r3 − 1

2

))〉
0̃

, (97)

QR3 =
〈∫ W1

r1− 1
2

dr′
1

∫ W2

r2− 1
2

dr′
2

∫ c31r′
1+c32r′

2

0
dr′

3 1

〉
0̃

= 1

2
c31

〈(
W 2

1 −
(

r1 − 1

2

)2)(
W2 −

(
r2 − 1

2

))〉
0̃

+ 1

2
c32

〈(
W 2

2 −
(

r2 − 1

2

)2)(
W1 −

(
r1 − 1

2

))〉
0̃

. (98)

We also have

QR123 = 0 (99)

because of the charge neutrality in the bulk.
It remains to evaluate QR12 . This term can be expressed as

QR12 =
〈∫ W3

r3− 1
2

dr′
3A(r′

3)

〉
0̃

, (100)

where

A(r′
3) ≡

∫ c12(r′
2+W2 )+c13r′

3

0
dr′

1

∫ c21(r′
1+W1 )+c23r′

3

0
dr′

2 1 (101)

is the area surrounded by four lines r′
1 = r′

2 = 0, r′
1 = c12(r′

2 + W2) + c13r′
3, and r′

2 = c21(r′
1 + W1) + c23r′

3. Using the property

c12c21 = (a1·a2 )2

a2
1a2

2
< 1, we find

A(r′
3) = c12c21

(
c21W 2

1 + 2W1W2 + c12W 2
2

)
2(1 − c12c21)

+ c21(c13 + c12c23)W1 + c12(c23 + c21c13)W2

1 − c12c21
r′

3

+ c12(c23)2 + 2c13c23 + c21(c13)2

2(1 − c12c21)
(r′

3)2. (102)

Therefore,

QR12 = c12c21
(
c21W 2

1 + 2W1W2 + c12W 2
2

)
2(1 − c12c21)

〈
W3 −

(
r3−1

2

)〉
0̃

+ c21(c13 + c12c23)W1 + c12(c23 + c21c13)W2

2(1 − c12c21)

〈
W 2

3 −
(

r3 − 1

2

)2〉
0̃

+ c12(c23)2 + 2c13c23 + c21(c13)2

6(1 − c12c21)

〈
W 3

3 −
(

r3 − 1

2

)3〉
0̃

. (103)

Plugging all of these expressions into Eq. (92), we find

QR =
3∑

i=1

Siσi +
3∑

i=1

Wiλi + Qc, (104)
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FIG. 6. Three-dimensional version of Fig. 1. The illustration of
(a) the region R, (b) the surface charge density σi, (c) the hinge charge
density λi, and (d) the corner charge Qc.

where

S3 ≡W1W2 + 1

2

(
c21W

2
1 + c12W

2
2

)
+ c12c21

(
c21W 2

1 + 2W1W2 + c12W 2
2

)
2(1 − c12c21)

(105)

is the area of the surface normal to b3 [the part marked σ3 in
Fig. 6(b)] divided by |a1 × a2|. S1 and S2 are defined in the
same manner.

The surface charge density σ3 per unit area |a1 × a2|
[Fig. 6(b)] is given by the bulk polarization

σ3 = −〈P3(r)〉0 = −〈P3(r)〉0̃, (106)

Pi(r) ≡ bi · r = ri. (107)

Again, the electric contribution to the bulk polarization can be
expressed as the Berry phase of filled bands [see Eq. (A12)
below].

When the surface charge density σ1 and σ2 vanish (σ3 can
be nonzero), the hinge charge density λ3 [Fig. 6(c)] becomes
well defined. It is given by a bulk quadrupole moment:

λ3 = 〈Q12(r)〉0 = 〈Q12(r)〉0̃ (108)

Q12(r) ≡ (b1 · r)(b2 · r) + a1 · b1 × a3

2a2 · b1 × a3
(b1 · r)2

+ a2 · b2 × a3

2a1 · b2 × a3
(b2 · r)2

= r1r2 − 1

2

(
c21 + c23

c31 + c32c21

1 − c23c32

)
(r1)2

− 1

2

(
c12 + c13

c32 + c31c12

1 − c31c13

)
(r2)2. (109)

The expression for λ1 = 〈O23(r)〉0 and λ2 = 〈O31(r)〉0 can be
found by interchanging the superscript 1 → 2 → 3 → 1.

Finally, when the surface charge density σi and the hinge
charge density λi all vanish, the corner charge Qc [Fig. 6(d)]
becomes well defined. It is given by the bulk octupole

moment:

Qc = −〈O123(r)〉0 = −〈O123(r)〉0̃, (110)

O123(r) = r1r2r3 − 1

2
[c23(r3)2 + c32(r2)2]r1

− 1

2
[c31(r1)2 + c13(r3)2]r2

− 1

2
[c12(r2)2 + c21(r1)2]r3

+ c23(c31)2 + 2c21c31 + c32(c21)2

6(1 − c23c32)
(r1)3

+ c31(c12)2 + 2c32c12 + c13(c32)2

6(1 − c31c13)
(r2)3

+ c12(c23)2 + 2c13c23 + c21(c13)2

6(1 − c12c21)
(r3)3. (111)

We find that all of Pi(r), Qi j (r), and O123(r) possess
the property of the coarse-graining invariance in Eq. (16).

One should be able to discuss the quantization of 〈Qi j (r)〉0

and 〈O123(r)〉0 in the presence of point-group symmetry and
derive their formulas in terms of Wyckoff positions. We
will leave the comprehensive analysis of these important
problems as future work. Here we instead discuss a single
example of the cubic system with the space group symmetry
P432 (No. 207).

For this space group, there are 11 Wyckoff positions r(�)
w

(w = a, b, . . . , k) in total (see Ref. [41] for details). Four of
them are with a maximal site symmetry:

r(1)
a = (0, 0, 0), (112)

r(1)
b = (

1
2 , 1

2 , 1
2

)
, (113)

r(1)
c = (

0, 1
2 , 1

2

)
, r(2)

c = (
1
2 , 0, 1

2

)
,

r(3)
c = (

1
2 , 1

2 , 0
)
. (114)

r(1)
d = (

1
2 , 0, 0

)
, r(2)

d = (
0, 1

2 , 0
)
,

r(3)
d = (

0, 0, 1
2

)
. (115)

Other seven Wyckoff positions have some free parameters.
For example,

r(1)
f = (

ξ, 1
2 , 1

2

)
, r(2)

f = ( − ξ, 1
2 , 1

2

)
,

r(3)
f = (

1
2 , ξ , 1

2

)
, r(4)

f = (
1
2 ,−ξ, 1

2

)
,

r(5)
f = (

1
2 , 1

2 , ξ
)
, r(6)

f = (
1
2 , 1

2 ,−ξ
)
. (116)

Note that r(�)
f ’s reduce to six copies of r(1)

b by setting ξ → 1/2
and to two sets of r(�)

c ’s by setting ξ → 0. This implies that qb

is defined only modulo 6e.
In fact, by the same analysis as in Sec. III C, we find

〈O123(r)〉0̃ = 1
8 qa = 1

8 qb mod 1
4 e. (117)
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The e/4 ambiguity follows immediately from the 6e am-
biguity of qb. The same conclusion can also be reached
from the perspective of surface decoration. If the system
is symmetrically decorated, as illustrated in Fig. 2(b), with
two-dimensional C4-symmetric quadrupole insulators with a
quantized corner charge ne/4, then the corner charge of the
three-dimensional system Qc is changed by 3ne/4. This im-
plies that Qc is well defined only modulo e/4. We learn an
important lesson from this example: The corner charge is
affected by surface decoration more severely in three dimen-
sions and even the fractional part can be altered. A recent
study [48] revealed that sodium chloride, one of the most
popular crystals around us, is actually an example of octupole
insulators with fractional corner charge ±e/8.

V. DISCUSSIONS

In this work, we developed a framework of describing the
hinge charge density and the corner charge in terms of the
bulk quadrupole moment and octupole moment. We derived
expressions in Eqs. (22), (109), and (111) for the particular
type of corners and hinges formed by planes normal to bi (i =
1, . . . , d). We also discussed the rotation symmetric cases for
two-dimensional systems and proved that the fractional part of
the corner charge can be predicted solely from the bulk point
of view using the formula in Eq. (26). In three dimensions, we
focused on a cubic system with P432 symmetry and revealed
that the corner charge Qc has e/4 ambiguity.

In our formalism electrons and ions are treated on the same
footing. One immediate implication is that when the sign of e
is flipped, so is the sign of Qc. Recently, Ref. [30] discussed a
C6-symmetric insulator in which an ion sits at the honeycomb
site (the Wyckoff position w = b) and two electrons are at
the triangular lattice site (the Wyckoff position w = a). For
this example, qb = +e and qa = −2e and we immediately
get Qc = 2qb/3 = 2e/3 mod e from Eq. (26). This is well
anticipated in our formalism because the insulator in which
electrons and ions are interchanged [see Fig. 4(c)] is known to
have Qc = e/3 = −2e/3 mod e [36].

In the presence of both spin-orbit coupling and the time-
reversal symmetry, all electronic orbitals must form Kramers’
pairs. If the same is true for all ions in the system, the charge
unit is effectively doubled and one can replace e with e′ = 2e
in all formulas derived in this work. As an example, let us
discuss the C4-symmetric insulator discussed in Ref. [37], for
which the rotation representations are silent for the corner
charge. In this example, four electrons occupy the Wyckoff
position w = b (qb = −2e′ = −4e) and the same number of
ions sit at the Wyckoff position w = a (qa = +2e′ = +4e)
so that Eq. (26) predicts Qc = qa/4 = e′/2 = e mod e′ = 2e.
Thus, our formula goes beyond the formalism based on the ro-
tation representations of the Bloch functions. More generally,
a symmetry-indicator type approach utilizes only restricted
information (i.e., representations of the little group) of the
Bloch functions and does not have the full resolution on the
topological nature of the band insulator.

Note that the Kramers’ doubling does not necessarily apply
to all ions in the problem. That is, in principle, it is allowed to
consider a time-reversal invariant cation with a charge +e and
an integer spin. The simplest example would be the deuterium

ion (deuteron) D+ = 2He+ whose total angular momentum
is 1. If this type of ions is taken into account, the charge unit
remains e and the odd-integer corner charge can be annihilated
by adding such a cation.

In retrospect, Eq. (26) has a simple interpretation associ-
ated to the filling anomaly [36]. If the bulk of a Cn-symmetric
insulating phase is charge neutral and polarization free,
Eq. (26) suggests that the corner charge Qc is given by the
U(1) charge q bound to the n-fold rotation axis:

Qc = 1

n
q mod e. (118)

On the other hand, the corner charge Qc is also given by the
total U(1) charge Q in the entire system under a Cn-symmetric
open boundary condition [28,36]:

Qc = 1

n
Q mod e. (119)

These two expressions are consistent since the local charge q
and the total charge Q can differ only by an integer multiple
of ne as indicated by Eq. (27), although they are conceptually
quite distinct because q in Eq. (118) is a bulk quantity of
the system while Q in Eq. (119) is a global quantity. These
formulas can also be used to describe the corner charge of Cn-
symmetric insulating phases without translation symmetry for
arbitrary n ∈ N. Examples include quasicrystals, disordered
systems, and lattices with disclinations [20,28,36].

Note added. Recently, we had email exchanges with the
author of Ref. [35]. According to the author, Eq. (32) of his
work, if 
n′

α’s and 
e′
α’s in it are properly chosen, corresponds to

Eq. (23) of ours.
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APPENDIX: BAND INSULATORS

Here we derive the expression of ρ0(r) for band insulators.
Let us consider a tight-binding model

Ĥ =
∑

RR′σσ ′
ĉ†

Rσ (hR′−R)σσ ′ ĉR′σ ′ . (A1)

Here, R = ∑d
i=1 niai specifies a unit cell and ĉ†

Rσ is the cre-
ation operator of an electron with the orbital label σ at the
position r = R + xσ . In this section, we assume the periodic

165120-12



CORNER CHARGE AND BULK MULTIPOLE MOMENT IN … PHYSICAL REVIEW B 102, 165120 (2020)

boundary condition and denote by N the total number of unit
cells in the system. After the Fourier transformation

ĉ†
Rσ = 1√

N

∑
k

ĉ†
kσ

e−ik·(R+xσ ), (A2)

(hR′−R)σσ ′ = 1

N

∑
k

(hk)σσ ′e−ik·(R′+xσ ′−R−xσ ), (A3)

the Hamiltonian becomes

Ĥ =
∑
kσσ ′

ĉ†
kσ

(hk)σσ ′ ĉkσ =
∑

nk

γ̂
†
nkεnkγ̂nk, (A4)

where

γ̂
†
nk ≡

∑
σ

ĉ†
kσ

unkσ (A5)

is the creation operator of a Bloch electron in the nth
band and unkσ is an eigenvector of (hk)σσ ′ normalized as∑

σ u∗
nkσ un′kσ = δnn′ . The insulating ground state can be ex-

pressed as

|�〉 ≡
∏

n∈occ

∏
k

γ̂
†
nk|0〉. (A6)

The electronic contribution of the total charge density is given
by

ρ
(el)
tot (r) = −e

∑
Rσ

〈�|ĉ†
Rσ ĉRσ |�〉δd (r − R − xσ )

= − e

N

∑
Rσ

∑
n∈occ

∑
k

|unkσ |2δd (r − R − xσ ). (A7)

This quantity is gauge invariant, i.e., is independent of the
choice of the phase of unk.

Let us switch to the Wannier basis by a unitary transforma-
tion

ŵ
†
nR0

≡ 1√
N

∑
k

γ̂
†
nke−ik·R0

= 1√
N

∑
Rσ

ĉ†
Rσwnσ (R − R0), (A8)

where

wnσ (R) ≡ 1√
N

∑
k

unkσ eik·(R+xσ ) (A9)

is the Wannier orbital belonging to the unit cell R0 = 0. In
this basis, the ground state |�0〉 and the total charge density
ρ

(el)
tot (r) can be written as |�0〉 = ∏

n∈occ

∏
R0

ŵ
†
nR0

|0〉 and

ρ
(el)
tot (r)

= − e

N

∑
Rσ

∑
R0

∑
n∈occ

|wnσ (R − R0)|2δd (r − R − xσ )

= − e

N

∑
R0

∑
Rσ

∑
n∈occ

|wnσ (R)|2δd (r − R0 − R − xσ ).

(A10)

Therefore, we identify

ρ
(el)
0 (r) ≡ − e

N

∑
Rσ

∑
n∈occ

|wnσ (R)|2δd (r − R − xσ )

= − e

N2

∑
Rσ

∑
n∈occ

∑
kk′

u∗
nkσ unk′σ ei(k′−k)·rδd (r − R − xσ ).

(A11)

This quantity depends on the choice of the phase of the Bloch
function unkσ [44,45]. The electric polarization is given by

〈Pi(r)〉(el)
0 ≡

∫
dd rρ(el)

0 (r)ri

= − e

N

∑
Rσ

∑
n∈occ

|wnσ (R)|2bi · (R + xσ )

= − ie

N

∑
kσ

∑
n∈occ

u∗
nkσ (bi · ∇k)unkσ . (A12)

The gauge transformation unkσ → e2π iθnk unkσ changes
〈Pi(r)〉(el)

0 /e by an integer amount θnk+2πbi − θnk.
By analogy, it is tempting to express 〈Qi j (r)〉(el)

0 using the
proper combination of∫

dd rρ(el)
0 (r)rir j

= − e

N

∑
Rσ

∑
n∈occ

|wnσ (R)|2bi · (R + xσ )b j · (R + xσ )

= e

N

∑
kσ

∑
n∈occ

u∗
nkσ (bi · ∇k)(b j · ∇k)unkσ . (A13)

However, computing 〈Qi j (r)〉(el)
0 from this type of expression

is dangerous, because it is difficult to properly implement
the assumed rotation symmetry in the corresponding ρ

(el)
0 (r)

in Eq. (A11). In practice, it is much easier and safer to use
Eq. (26) instead.
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