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We use the exact analytical technique introduced by us [Phys. Rev. B 101, 115405 (2020)] to recover the
surface Green’s functions and the corresponding Fermi-arc surface states for various lattice models of Weyl
semimetals. For these models we use the T -matrix formalism to calculate the quasiparticle interference patterns
generated in the presence of impurity scattering. In particular, we consider the models introduced by Kourtis et al.
[Phys. Rev. B 93, 041109(R) (2016)] (model A) and Lau et al. [Phys. Rev. Lett. 119, 076801 (2017)] (model B),
and we find that, as opposed to observations previously obtained via joint density of states and spin-dependent
scattering probability, the interarc scattering in the quasiparticle interference features is fully suppressed in model
A, and is very small in model B. Our findings indicate that these models may not correctly describe materials
such as MoTe2, since for such materials interarc scattering is clearly visible experimentally, e.g., by Deng et al.
[Nat. Phys. 12, 1105 (2016)]. We also focus on the minimal models proposed by McCormick et al. [Phys. Rev.
B 95, 075133 (2017)], which indeed recover significant interarc scattering features.
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I. INTRODUCTION

Recently, Weyl semimetals [1] have come into focus partly
due to their exotic properties of exhibiting Weyl nodes,
i.e., points at which the energy dispersion goes to zero and
quasiparticles have a linear dispersion, as well as peculiar
topological surface states, deemed Fermi-arc states. Typically
these states appear at values of in-plane momentum lying on
a line connecting the Weyl nodes, but for some of them the
picture is modified by the appearance of surface electron/hole
pockets; for these type of systems other nontopological sur-
face states also arise. Such states, denoted track states, appear
in momentum space as closed contours (as opposed to the
Fermi-arc states).

A large amount of work, both theoretical [2–10] and exper-
imental [11–23], has been devoted to the impurity scattering
and the corresponding quasiparticle interference (QPI) fea-
tures, and the possibility to extract information about the Weyl
nodes, and hence Fermi arcs, from such features. However, the
analysis of the QPI features is very complex, especially in the
presence of both topological and trivial states simultaneously.
The traditional methods to obtain the QPI features stem in
general from first-principles calculations yielding information
about the position, shape, and extension of Fermi arcs and
track states in momentum space. Often a simple intuitive
picture is constructed which assumes that the QPI features
stem directly from a joint density of states (JDOS) of the un-
derlying Fermi-arc states: In this picture each surface state is
assumed to scatter by all the other existing surface states, and
the resulting scattering momenta are counted to yield the QPI
feature. The first correction to this picture takes into account
the spin of each state and introduces a weight to the scattering
processes based on the spins of each scattering pair of states.

*vardan.kaladzhyan@phystech.edu

However, these techniques are very crude and often fail to
capture correctly the scattering processes and to predict the
QPI features accurately. Their advantage, nevertheless, is that
only basic information about the Fermi-arc states is required.

In order to calculate accurately the QPI features a
more complex technique—the T -matrix formalism [24–27]—
should be employed. The latter allows us to calculate exactly
the Green’s function (GF) of the system in the presence of a
single impurity, and thus enables us to obtain the local density
of states, as well as its Fourier transform, in the presence of
impurity scattering. However, in order to apply the T -matrix
formalism, information about the underlying surface Green’s
function of the system is required. The surface Green’s func-
tions of a given system cannot be computed very easily—in
general, it requires iterative numerical techniques, hard to
implement in a non-numerical community.

In a recent work [28] we proposed a simple and exact an-
alytical technique that allows us to obtain the surface Green’s
functions of a three-dimensional system, with the only nec-
essary ingredient being the bulk tight-binding Hamiltonian of
the system. To summarize, the idea is to start with an infinite
homogeneous three-dimensional system and then introduce
the boundary as a two-dimensional planar scalar impurity with
an impurity potential much larger than all the other energy
scales of the problem [29]. This impurity effectively cuts the
system in half and generates two two-dimensional infinite
surfaces on the planes just below and above the impurity
plane. The surface Green’s functions for these surfaces are
obtained using the T -matrix formalism, which for such a
configuration provides an exact analytical solution for the full
Green’s functions of the infinite perturbed system, and thus
also for the Green’s function evaluated at positions adjacent
to the impurity plane.

In this paper we use the technique from Ref. [28] to cal-
culate the surface Green’s functions for a number of models
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proposed to describe Weyl semimetals: (1) the Kourtis [6]
and Lau [8] models, minimal models that describe mostly
type I Weyl semimetals with four Weyl points and two Fermi
arcs, and (2) the McCormick model [7] based on a minimal
helium model to describe both type I and type II four-Weyl-
point systems with both Fermi arcs and topologically trivial
track states. We subsequently use the resulting surface Green’s
functions and the T -matrix formalism to calculate the QPI
features for these systems in the presence of a localized im-
purity at the surface. We find that in the Kourtis and Lau
models the interarc scattering is almost entirely absent as a
result of the spin structure of the Fermi-arc states. This is
different from the results based on spin-dependent scattering
probability (SSP) calculations in which the spin structure of
the Fermi arcs reduces, but does not completely remove, the
interarc features. As for the McCormick model, we identify
features resulting from intra- and inter-Fermi-arc scattering,
intra- and inter-track-state scattering, as well as scattering
between the Fermi arc states and the track states.

The paper is organized as follows: In Sec. II we present
the Kourtis and Lau models, their surface GFs, and the
corresponding QPI patterns. In Sec. III we perform similar
calculations for a model McCormick model, and we conclude
in Sec. IV.

II. SURFACE GREEN’S FUNCTIONS AND QPI PATTERNS
IN THE KOURTIS AND LAU MINIMAL MODELS

FOR MoTe2

We first consider the minimal models introduced in
Refs. [6,8] to describe systems in the family of MoTe2, i.e.,
Weyl semimetals with four Weyl points and two Fermi arcs
per surface. The surface Green’s functions and Fermi arcs,
as well as their spin polarization have been obtained by the
analytical technique presented in Ref. [28], thus below we
summarize these findings, and proceed directly to computing
the corresponding QPI features.

The tight-binding models described in Refs. [6,8], which
we denote by H1 and H2, respectively, are described by the
Bloch Hamiltonians given by

H1,2 =
∑

k

ψ†(k)H1,2(k)ψ (k), (1)

where ψ (k) = (ckA↑, ckA↓, ckB↑, ckB↓) is a spinor with the in-
dex A/B denoting a generic unspecified orbital component,
and ↑ / ↓ the physical spin.

For the model in Ref. [6] written in the aforementioned
basis we have

H1(k) = g1(k)τ1σ3 + g2(k)τ2σ0 + g3(k)τ3σ0

+ g0(k)τ0σ0 + βτ2σ2 + α sin kyτ1σ2, (2)

where

g0(k) = 2d (2 − cos kx − cos ky),

g1(k) = a sin kx, g2(k) = a sin ky,

g3(k) = m + t cos kz + 2b(2 − cos kx − cos ky), (3)

and α, β are real parameters. The 2 × 2 identity matrices
σ0/τ0 and the Pauli matrices σi/τi, i = 1, 2, 3, act in the spin

FIG. 1. The surface spectral function at E = 0 for the H1 model
with parameters a = b = 1, t = −1.5, d = m = 0, β = 0.9. We
clearly see the formation of two Fermi arcs.

and the orbital spaces, respectively, and side-by-side appear-
ances of σ and τ matrices indicate tensor products.

We choose the following values of the parameters a =
b = 1, t = −1.5, d = m = 0, β = 0.9, and α = 0.3, cor-
responding to four Weyl points, and two Fermi arcs.
The spectral function for the surface states A(E , kx, kz ) =
− 1

π
Im{tr[Gs(E , kx, kz )]}, as obtained in Ref. [28], is shown

in Fig. 1. We should note that Fermi arcs appearing at the
same surface have opposite spins, as derived in Ref. [28].

In what follows we start with the surface Green’s functions
for this model and we compute the surface QPI patterns in
the presence of a surface impurity. We use the full T -matrix
formalism yielding an exact solution to the problem provided
the impurity is localized [i.e., delta function potential V δ(r),
where r is in real space]. In this simple case the T -matrix is
given by [24–27,30,31]

T (E ) =
[
I − V

∫
dk

(2π )2
Gs(E , k)

]−1

V, (4)

where I denotes the 4 × 4 identity matrix. Hereinafter we
will set V = I, which represents a scalar impurity covering
a single site. Furthermore, we studied the effects of impu-
rity strength variation by setting V = UI, with U �= 1. We
have also studied the effects of magnetic impurities, and
double-impurity scattering on the QPI patterns. However, we
observed that these effects do not alter the main conclusion of
our paper, and thus we leave these findings to Appendix B.

Generally, in most experiments QPI patterns corre-
sponding to the Fourier transform of the local density of
states at a given energy are measured, namely, δρ(k, E ) =∫

d2r δρ(r, E )e−ikr. In the T -matrix formalism this is
given by

δρ(k, E ) = i

2π

∫
dq

(2π )2
tr[g(E , q, k)], (5)
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FIG. 2. QPI patterns (in arbitrary units) for the H1 model with
parameters a = b = 1, t = −1.5, d = m = 0, β = 0.9. We take E =
0, and U = 1.

where dq ≡ dqxdqz and

g(E , q, k) = Gs(E , q)T (E )Gs(E , q − k)

− G∗
s (E , q − k)T ∗(E )G∗

s (E , q). (6)

We leave the derivation of Eqs. (5) and (6) to Appendix A.
In Fig. 2 we plot the resulting δρ(k, E ) as a function of

momenta k = (kx, kz ) at E = 0. First, note the central feature
corresponding to intra-arc scattering processes, and second,
the complete absence of any noncentral feature that could
potentially arise from the interarc scattering processes. Given
the spin structure of the two oppositely polarized Fermi arcs,
such interarc scattering processes should indeed be forbidden,
since that would require spin flips which cannot occur in
the presence of a scalar scattering potential. For instance,
in superconductors, scattering between states with opposite
spins does not yield any QPI features [32]. It is surprising that
SSP calculations in Ref. [6] indicate, however, a diminished
but nonzero intensity in the interarc scattering features: As we
show here, the full T -matrix approach seems to indicate that
the interarc scattering is, in fact, zero. This difference prob-
ably stems from SSP yielding inaccurate results versus the
T -matrix formalism [33], since the latter takes into account
all-order scattering processes, unlike the former. The only
nonzero observable intensity would appear in our approach in
the presence of a magnetic impurity in the spin-polarized local
density of states (LDOS), the same as in Ref. [32]. However,
the present experiments do not measure the spin-polarized
LDOS, and they observe nevertheless interarc scattering fea-
tures. This makes us believe that the Hamiltonian for MoTe2

presented in Ref. [6] does not model well the underlying
spin structure. Furthermore, the elliptical shape of the central
feature in Fig. 2 is very different from the eight-shaped one
derived using SSP and JDOS.

FIG. 3. The surface spectral function at E = 0 for the H2 model
with parameters a = b = 1, t = −1.5, λ = 0.5, d = 0.1, α = 0.3,
and β = 0.7. We note the emergence of the two Fermi arcs.

We perform a similar analysis on a different Weyl
semimetal model, introduced in Ref. [8]:

H2(k) = g1(k)τ1σ3 + g2(k)τ2σ0 + g3(k)τ3σ0 + dτ2σ3

+βτ2σ2 + α sin kyτ1σ2 + λ sin kzτ0σ1. (7)

We consider the values of the parameters similar to those in
Ref. [8], thus we take a = b = 1, t = −1.5, λ = 0.5, d = 0.1,
α = 0.3, and β = 0.7. This configuration is also characterized
by four Weyl points, and two Fermi arcs per surface. The
resulting surface spectral function is depicted in Fig. 3.

For this model we also calculate the QPI patterns, shown
in Fig. 4. Unlike in the Kourtis model [6], here the Fermi arcs
have nearly opposite spins (the two opposing Fermi arcs may
exhibit small regions with the same spin, as can be seen, for
example, in Fig. 5 of Ref. [28]), and therefore, weak interarc
scattering processes marked by a dotted rectangle are visible
in Fig. 4. We note, however, that the intra-arc scattering still
dominates in the QPI pattern.

III. SURFACE GREEN’S FUNCTIONS AND QPI PATTERNS
IN THE MODEL OF MCCORMICK et al.

In what follows we consider the minimal helium model
proposed in Ref. [7] to describe systems with four Weyl nodes,
corresponding Fermi-arc surface states, impurity scattering,
and the resulting QPI patterns. The Hamiltonian for such a
model is given by

H3(k) = γ [cos(2kx ) − cos(k0)][cos(kz ) − cos(k0)]σ0

−m{[1 − cos2(kz ) − cos(ky)]

+ 2tx[cos(kx ) − cos(k0)]}σ1

− 2t sin(ky)σ2 − 2t cos(kz )σ3. (8)

165117-3



PINON, KALADZHYAN, AND BENA PHYSICAL REVIEW B 102, 165117 (2020)

FIG. 4. QPI patterns in arbitrary units for the model H2 with a =
b = 1, t = −1.5, λ = 0.5, d = 0.1, α = 0.3, and β = 0.7. We take
E = 0, and U = 1.

As opposed to the previous section, this model is defined in
a single-orbital basis, ψ (k) = (ck↑, ck↓). At γ = 0 it yields a
Weyl semimetal with four nodes located at (±k0, 0,±π/2).
A nonzero γ produces a tilting of the Weyl cones; when γ is
sufficiently large (here, γc = 2), the modification of the Weyl
cones is strong enough to generate four electron and four hole
pockets that exist at E = 0 and meet at the Weyl nodes. There
is also a trivial hole pocket centered at k = (0, 0, 0) and a
trivial electron pocket centered at k = (π, 0, 0). In this type of
systems some of the resulting surface states are topological,
i.e., Fermi arcs, while the others, denoted “track states,” are
trivial. The latter form closed loops in momentum space. We
consider two sets of parameters, the first, (a) t = 1, k0 = π/2,
tx = 1/2, m = 2, γ = 1.4, exhibiting solely Fermi arcs, and
the second, (b) t = 1, k0 = π/2, tx = 1/2, m = 2, γ = 2.4,
with both Fermi arcs and track states. For each set we apply
the technique introduced in Ref. [28] to recover the surface
states (i.e., Fermi arcs and track states), and subsequently
we use the surface GF obtained by this technique to study
the QPI patterns. In Fig. 5 we plot the spectral function for
the surface states A(E , kx, kz ) = − 1

π
Im{tr[Gs(E , kx, kz )]} for

these two sets of parameters.
Focusing on one boundary (corresponding to that denoted

in blue in Ref. [28]), we note in Fig. 5(a) the formation
of two Fermi arcs roughly parallel to kx, and in Fig. 5(b)
that of two Fermi arcs in the ky direction as well as of
two sets of track states. Our results are fully consistent with
those of Ref. [28], showing once more the versatility and
simplicity of our method. Note again that our technique
is fully analytical, the only “numerical” calculation to be
performed is an integral of the Green’s function over the
Brillouin zone.

Once we have recovered the surface Green’s functions, we
proceed to the calculation of the QPI features in the presence
of a single localized impurity. Exactly as in the previous

FIG. 5. The surface spectral function at E = 0.25 for the H3

model with parameters (a) t = 1, k0 = π/2, tx = 1/2, m = 2, γ =
1.4, and (b) t = 1, k0 = π/2, tx = 1/2, m = 2, γ = 2.4.

section we use the T -matrix approximation to obtain the
Fourier transform of the LDOS, i.e., a quantity that can be
compared to what is currently measured experimentally. In
Fig. 6 we plot the resulting δρ(k, E ) as a function of k for
E = 0.25 and the set of parameters of Fig. 5(a). We note the
presence of a central feature which corresponds to the intra-
Fermi-arc scattering, as well as a winglike feature centered
around values of kz slightly larger in absolute value than π/2,
corresponding to interarc scattering. Note that, as opposed
to the previous section, the interarc and intra-arc scattering
features are of the same order of intensity.

In Fig. 7(a) we plot the QPI features observed for the other
set of parameters, i.e., t = 1, k0 = π/2, tx = 1/2, m = 2,
γ = 2.4, corresponding to the formation of both topological
Fermi arcs and trivial track states. We note that the resulting
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FIG. 6. QPI patterns in arbitrary units for the model H3 with
t = 1, k0 = π/2, tx = 1/2, m = 2, γ = 1.4. We take E = 0.25,
and U = 1.

QPI features are indeed very complex, since they correspond
to both intra- and inter-Fermi-arc scattering, as well scattering
inside and between different closed contours representing the
track states, and also to the scattering between Fermi arc states
and track states. To disentangle these features in Figs. 7(b)
and 7(c) we plot “partial scattering integrals,” i.e., performing
the integral in Eq. (5) only over some parts of the Brillouin
zone. Thus, in Fig. 7(b) we integrate over q only over the
region −π/2 < qx < −π/4, −π/2 < qz < π/2, such that we
only take into account the scattering of the states belonging
to one Fermi arc with the rest of the Brillouin zone (BZ).
We therefore eliminate the contributions to the total weight
coming from scattering between the track states, and we are
left with intra-Fermi-arc scattering, inter-Fermi-arc scattering,
as well as scattering between Fermi-arc states and track states;
these, however, can be easily identified based on their wave
vectors. We mark each of these processes by black arrows in
the figure. Similarly, in Fig. 7(c) we integrate over q only over
the region −π < qx < −π/2, −π/2 < qz < π/2, such that
we only take into account the scattering of the states over one
track state with the rest of the BZ. Each type of scattering
process is identified in the figure with the resulting features.

Note that the intra-arc scattering is greatly suppressed for
this regime compared to the interarc scattering.

IV. CONCLUSION

We have used an analytical technique introduced in
Ref. [28] and the T -matrix formalism to calculate the surface
Green’s functions as well as the QPI patterns for several
different models describing Weyl semimetals. For the Kourtis
and Lau models [6,8] we found that no interarc interference
patterns and correspondingly very weak interference patterns
arise, in contrast to original predictions based on JDOS and
SSP calculations. For the minimal McCormick model [7] both
interarc and intra-arc scattering features are visible for type

FIG. 7. QPI patterns in arbitrary units for the model H3 with
t = 1, k0 = π/2, tx = 1/2, m = 2, γ = 2.4. We take E = 0.25,
and U = 1. (a) Full QPI pattern, i.e. scattering integrated over
the full BZ, (b) q integrated only over the region −π/2 < qx <

−π/4, −π/2 < qz < π/2, (c) q integrated only over the region
−π < qx < −π/2, −π/2 < qz < π/2.

I models, as well as scattering between the track states and
the Fermi-arc states and intratrack scattering for the type II
models.

We stress once more that the technique proposed in
Ref. [28] is very well suited to describe analytically the sur-
face Green’s functions for complex tight-binding bulk models,
and it requires no iterative numerical calculations. As demon-
strated here, the resulting Green’s functions can very easily
and straightforwardly be used to calculate the surface QPI
features.
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APPENDIX A: QPI PATTERN DERIVATION

In this Appendix, we first derive Eqs. (5) and (6), and
second, we show how to extend this formalism to the case
of double-impurity scattering.
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FIG. 8. QPI patterns in arbitrary units for the Kourtis model calculated for scalar impurities with varying strength U . From left to right, we
set U = 0.5, U = 1, U = 3, and U = 10.

1. Single-impurity scattering

To compute quasiparticle interference patterns in a system
of dimension d we take an unperturbed system described
by a retarded Green’s function G0(E , r) and we introduce
a localized impurity potential, V δ(r), r ∈ Rd . The perturbed
Green’s function in the presence of such an impurity can be
expressed via the T matrix,

G(E , r, r′) = G0(E , r − r′) + G0(E , r)T (E )(E ,−r′),

(A1)

where the T matrix

T (E ) = [I − V G0(E , r = 0)]−1V

≡
[
I − V

∫
dk

(2π )d
G0(E , k)

]−1

V (A2)

takes into account the cumulative effect of all-order impurity
scattering processes. The correction to the local density of

states in the presence of impurity can be written in terms of
the perturbed Green’s function as follows,

δρ(E , r) ≡ − 1

π
Imtr[G(E , r, r) − G0(E , 0)]

= − 1

π
Imtr[G0(E , r)T (E )G0(E ,−r)]. (A3)

Finally, to obtain QPI patterns in the momentum space we
need to Fourier transform the equation above, i.e., to calculate
δρ(E , k) = ∫

dr δρ(E , r)e−ik·r. We rewrite the imaginary part
using the identity Imz = 1

2i (z − z∗) and we get

δρ(E , k) = − 1

2π i
tr

∫
dr[G0(E , r)T (E )G0(E ,−r)

− G∗
0(E , r)T ∗(E )G∗

0(E ,−r)]e−ik·r = �.

Next, we express the unperturbed Green’s functions in the
integrand via the Fourier transform,

� = − 1

2π i
tr

∫
q

(2π )d

∫
q̃

(2π )d
[G0(E , q)T (E )G0(E , q̃) − G∗

0(E , q̃)T ∗(E )G∗
0(E , q)]

∫
r eiq·re−iq̃·re−ik·r

= − 1

2π i
tr

∫
q

(2π )d

∫
q̃

(2π )d
[G0(E , q)T (E )G0(E , q̃) − G∗

0(E , q̃)T ∗(E )G∗
0(E , q)] × (2π )dδ(q − q̃ − k)

= − 1

2π i
tr

∫
q

(2π )d
[G0(E , q)T (E )G0(E , q − k) − G∗

0(E , q − k)T ∗(E )G∗
0(E , q)] = i

2π

∫
dq

(2π )d
g(E , q, k),

where we defined

g(E , q, k) ≡ tr[G0(E , q)T (E )G0(E , q − k)

− G∗
0(E , q − k)T ∗(E )G∗

0(E , q)], (A4)

which corresponds to Eq. (6). Since in the main text we are
dealing with QPI patterns on a surface, we set d = 2 and we
get Eq. (5):

δρ(E , k) = i

2π

∫
dq

(2π )2
g(E , q, k). (A5)

The unperturbed retarded Green’s function G0(E , q) is given
by the analytical continuation of the Matsubara Green’s

function G(iωn, q) = [iωn − H(q)]−1, with iωn → E + iδ. In
all of our simulations we have considered δ = 0.05.

2. Double-impurity scattering

Below we examine the case of a double impurity. The
T -matrix formalism can be modified to include scattering
from both impurities [33,34]. Assuming that the impurities are
localized at r0 and r1, we write the correction to the perturbed
Green’s function as follows,

δG(E , ri, r j ) =
∑

α,β=0,1

G0(E , ri, rα )Tαβ (E )G0(E , rβ, r j ),

(A6)
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FIG. 9. QPI patterns in arbitrary units for the Kourtis model calculated for magnetic impurities with varying strength U . From left to right,
we set U = 0.5, U = 1, U = 3, and U = 10.

where α and β run over the two impurities, and Tαβ (E ) is the
real-space T -matrix,

Tαβ (E , rα, rβ ) = [I − V G0(E , rα − rβ )]−1V

=
[
I − V

∫
dk

(2π )2
G0(E , k)eik·(rα−rβ )

]−1

V.

(A7)

By rewriting Eq. (A6) in momentum space, one can obtain a
T -matrix formula representing scattering by both impurities,

T (E , k, k′) =
∑

α,β=0,1

ei(k′ ·rβ−k·rα )Tαβ (E , rα, rβ ), (A8)

and the formula for g in Eq. (5) is modified to

g(E , q, k) = G0(E , q)T (E , q, q − k)G0(E , q − k)

− G∗
0(E , q− k)T ∗(E , q− k, q)G∗

0(E , q). (A9)

FIG. 10. QPI patterns in arbitrary units for the Kourtis model calculated for two impurities with different strength U . In the left column we
set U = 1, while in the central and right columns we chose U = 3 and U = 10, respectively. For the first row we set r0 = (x = 0, z = 0) and
r1 = (x = 0, z = 1), and for the second one, r1 = (x = 1, z = 0).
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APPENDIX B: STUDY OF DIFFERENT SCATTERING
IMPURITIES FOR THE KOURTIS MODEL

In this Appendix we show the effects of various scattering
impurities on the QPI pattern for the Kourtis model in Eq. (2).

1. Single scalar or magnetic impurity

We first study the QPI patterns for a single scalar impurity
V = UI with different values for the impurity strength U . The
results are shown in Fig. 8. We find that changing U modifies
the shape of the intra-arc scattering features. However, no
interarc scattering appears.

We now consider a magnetic impurity, V =
U diag{1,−1, 1,−1}, where “diag” stands for a diagonal

matrix. The choice of basis corresponds to the one in Eq. (1),
i.e., (ckA↑, ckA↓, ckB↑, ckB↓). The QPIs obtained are shown
in Fig. 9. For a strong enough impurity, i.e., U = 10, the
intra-arc pattern resembles the one obtained with a scalar
impurity. For lower values of U , the pattern’s shape is quite
different, but we still do not find any interarc scattering.

2. Double impurity

QPI patterns for a double impurity localized at r0 = (x =
0, z = 0), and r1 = (x = 0, z = 1) or r1 = (x = 1, z = 0) are
demonstrated in Fig. 10. We find slightly different shapes for
the intra-arc scattering features, nevertheless we observe no
interarc scattering.
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