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Chiral topologically ordered insulating phases in arrays of interacting integer quantum Hall islands
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We study networks of Coulomb-blockaded integer quantum Hall islands with even fillings ν = 2k (k being an
integer), including cases with 2k layers each of ν = 1 fillings. Allowing only spin-current interactions between
the islands (i.e., without any charge transfer), we obtain solvable models leading to a rich set of insulating
SU (2)k topologically ordered phases. The case with k = 1 is dual to the Kalmeyer-Laughlin phase, k = 2 to
Kitaev’s chiral spin liquid and the Moore-Read state, and k = 3 contains a Fibonacci anyon that may be utilized
for universal topological quantum computation. Additionally, we show how the SU (2)k topological phases may
be obtained also in an array of islands with ν = 2k integer quantum Hall states and critical spin chains in a
checkerboard pattern. The array and checkerboard constructions gap out the charge mode and additional “flavor”
modes by virtue of their geometry. Furthermore, we find that a fine tuning of the system parameter is not needed
in the checkerboard configuration and the ν = 2 case. We also discuss their bulk excitations, and show that their
thermal Hall conductance is universal, reflecting the central charge c = 3k/(k + 2) of the chiral edge modes.
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I. INTRODUCTION

Topologically ordered phases of matter [1–3] have made
a tremendous impact on condensed matter communities. One
of the intriguing properties of these phases is that they have
exotic fractionalized excitations [4,5]—anyons. Generally,
anyons fall into two categories: Abelian and non-Abelian
[6,7]. Exchanging two Abelian anyons gives a U (1) phase
factor, eiθ with θ �= 0, π . They exhibit fractional statistics
neither bosonic or fermionic. In contrast, the statistics of
non-Abelian anyons is described by a square matrix acting
on degenerate eigenstates. These matrices in general do not
commute, forming a non-Abelian group—hence the term non-
Abelian anyons. Non-Abelian anyons may find applications in
quantum computation [8,9].

As far as realizations are concerned, it is known theoret-
ically that both Abelian and non-Abelian topological phases
exist in fractional quantum Hall (FQH) fluids with various
filling fractions. One example of an Abelian topological phase
is the FQH state at filling fraction ν = 1/3 which has anyonic
quasihole excitations with fractional charge e/3 [10,11] and
fractional statistics θ = π/3. The Moore-Read state [6] at
filling fraction ν = 5/2 is a paramount example of the non-
Abelian topological phase and is known to have the so-called
Ising anyon. Experimental signatures of the Moore-Read state
have been observed recently by investigating thermal current
[12]. However, from the quantum information perspective, the
Ising anyon has been shown to be nonuniversal and hence
insufficient for the realization of universal topological quan-
tum computers [9,13]. Therefore, it is desirable to realize
non-Abelian topological phases beyond the Moore-Read state.

In this paper, we explore the emergence of rich topo-
logical phases in arrays of interacting integer quantum Hall

(IQH) islands with an even integer filling fraction ν = 2k
(k being an integer). The topologically ordered phases we
obtain are the so-called SU (2)k topological phases, where
the bulk is described by SU (2) Chern-Simons topological
gauge theory [14] with level k. Accordingly, due to the bulk-
edge correspondence, the edge theory is given by SU (2)k

Wess-Zumino-Novikov-Witten (WZNW) conformal field the-
ory (CFT) [15–18] with central charge c = 3k/(k + 2). Our
proposal is based on the network construction, originally sug-
gested by Chalker and Coddington [19] and recently updated
by Hu and Kane [20] in the context of interacting p-wave
superconductors.

The SU (2)1 topological phase is intriguing in its own right
as it is identified with the Kalmeyer-Laughlin (KL) state [21],
which is one of the spin liquid phases known to have de-
confined fractional spin excitations. Essentially, this phase is
topologically equivalent to the bosonic FQH state with filling
fraction ν = 1/2, with only one type of Abelian anyon—
namely the semion with fractional statistics θ = π/2—as an
excitation. Notice that the semion is neutral in the spin liquid
version of the KL state while in the bosonic ν = 1/2 FQH
state, it carries a fractional charge e/2. The SU (2)2 phase is
dual to the Moore-Read state and the Kitaev chiral spin liquid
phase [22] containing the Ising anyon. The importance of the
SU (2)3 topological phase is derived from the fact that it has
a special kind of non-Abelian anyon—the Fibonacci anyon
[8,23,24]. Its statistics is defined by the fusion rule τ × τ =
I + τ , where τ is the anyon and I is the trivial particle.

In view of the network construction, the basic principle to
realize our phases is to gap out the SU (2)k sector. To this
end, we will demonstrate two configurations that stabilize our
phases. The first one is composed of networks of Coulomb-
blockaded ν = 2k IQH islands where adjacent islands are
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interacted by the SU (2) current consisting of the chiral edge
modes of the ν = 2k IQH state. In the second geometry, IQH
islands and insulating islands hosting a critical spin chain
on the perimeter are placed in a checker board pattern. The
interaction between adjacent IQH-spin islands is comprised
of the SU (2) current of the IQH island and the spin current of
the critical spin chain.

We identify several ways to excite anyonic quasiparticles
in the bulk. In the case of IQH islands, an anyon arises as
a soliton in the gapped area between adjacent islands or by
introducing magnetic fluxes within the islands. Especially, the
soliton is identified as the semion for k = 1, the Ising anyon
for k = 2, and the Fibonacci anyon for k = 3. In the case
with spin chains, local spin excitations are associated with the
anyons.

The outline of this paper is as follows. In Sec. II, we in-
troduce a model consisting of an array of Coulomb-blockaded
islands at filling ν = 2k to construct the SU (2)k topological
phase and its conjugate U (1) × SU (k)2 phase (when the array
is embedded in an ν = 2k IQH state). We assume that the
islands have spin degenerate states and due to the Coulomb
blockade, charge cannot be transferred between the islands so
that the whole system is insulating. In addition, we introduce
spin current interactions between the islands. The introduction
of the spin current interactions only demands fine tuning that
may be challenging in real systems but makes the model solv-
able. The phases we obtain are gapped in the bulk and contain
chiral edge modes; we expect therefore that an introduction
of perturbations smaller than the bulk gap will not lead to a
phase transition and will not modify the universal properties
of the topologically ordered phase.

Section II A describes the KL state, which has in our
construction a neutral mode that propagates along the edge,
and accordingly, thermal Hall conductance κ = 1 (in units of

κ0 = π2k2
B

3h T , with T being the temperature, kB the Boltzmann
constant, and h Planck’s constant). In the conjugate phase,
a sole U (1) charge mode (with Hall conductance 2e2/h and
κ = 1) propagates along the edge. In Sec. II B, we briefly
discuss the SU (2)2 phase which is dual to both the Moore-
Read and the Kitaev spin liquid states and contains the Ising
anyons. The insulating phase has κ = 3/2; its conjugate phase
has a charge mode with Hall conductance equal to 4e2/h
and together with the conjugate neutral modes yields κ =
5/2. Section II C describes the SU (2)3 phase which contains
four types of excitations, with one of them being the Fibonacci
anyon. In this phase, κ = 3k/(k + 2)|k=3 = 6/5, while in the
conjugate phase the Hall conductance is 6e2/h and κ = 2k −
3k/(k + 2) = k(2k + 1)/(k + 2)|k=3 = 21/5. In Sec II D,
we will demonstrate that a combination of the SU (2)1 and
SU (2)3 phases may lead to the Fibonacci topological phase
[20,25], a topological phase having only the trivial and the
Fibonacci anyon as excitations. We show that the Fibonacci
topological phase is stabilized if, in addition to the pure spin
current interactions, anyons in the SU (2)1 × SU (2)3 phase
condense.

In Sec. III, we present an alternative construction of the
SU (2)k topological phase by introducing a checker board al-
ternating between IQH islands and SU (2)k critical spin chains
on the perimeter of a vacuum. In this construction, the pure

spin current interaction is more natural. This IQH-spin chain
model allows us to discuss the renormalization group flow
of the system to its strong coupling limit and show, without
referring to topological arguments, why it is stable for odd
values of k.

In Sec. IV, we comment on experimental consequences
and realizations of the topological phases, and finally, Sec. V
is devoted to conclusions. Technical details are relegated to
appendices.

II. MODEL

In this section, we describe a network model to construct
different states that are dual to the KL state, the Kitaev honey-
comb spin liquid (which is dual to the Moore-Read state), and
the SU (2)3 topological phase hosting the Fibonacci anyons.
Furthermore, we discuss a way to obtain the Fibonacci phase.

A. ν = 2: The Kalmeyer-Laughlin state

Let us start with the simplest phase generated by our con-
struction, that is, the KL state. This phase has a chiral edge
mode characterized by the SU (2)1 WZNW CFT with central
charge c = 1. We prepare IQH islands in a square shape at
filling fraction ν = 2, with two chiral edge modes propagating
in the counterclockwise direction and consider networks of
these IQH islands as portrayed in Fig. 1(a).

Each IQH island has two chiral edge modes which respect
U (2) symmetry. The corresponding chiral Hamiltonian can be
decomposed as U (2) = U (1) + SU (2), which is reminiscent
of the decomposition into charge and neutral modes in a
FQH system [26]. In the context of the Tomonaga-Luttinger
liquid, this decomposition can be interpreted as spin-charge
separation [27,28]. The precise form of the decomposition is
given by the conformal embedding, which reads as

U (2)1 = SU (2)1 ⊕ U (1), (1)

where the number in the subscript represents the level of the
WZNW CFT. We refer the interested reader unfamiliar to a
review article on conformal embedding [29]. The embedding
(1) is suggestive of the KL state, as on the right hand side
(r.h.s) of Eq. (1), the SU (2)1 sector appears, which is exactly
what characterizes the KL state.

To proceed further, we introduce an interaction between
adjacent IQH islands. In this section we will not say much
about microscopic realization of such interaction. Now we
concern ourselves only with the principle. One possible mi-
croscopic realization is discussed later in Sec. III. (See also
Appendix A for discussion of a bosonized description of the
interaction). The interaction acts only in areas where the is-
lands are close to each other, as inside the black frame as
shown in Figs. 1(a) and 1(b). In this area, there are two pairs of
counterpropagating modes. Denoting ψR,α (ψL,α) as the Dirac
field corresponding to edge modes of the top (bottom) IQH is-
land inside the black frame, with α = 1, 2 or interchangeably
α =↑,↓, we define the following currents

Jx
R/L = 1

2

(
ψ

†
R/L,1ψR/L,2 + ψ

†
R/L,2ψR/L,1

)
,

Jy
R/L = 1

2

(−iψ†
R/L,1ψR/L,2 + iψ†

R/L,2ψR/L,1
)
,

Jz
R/L = 1

2

(
ψ

†
R/L,1ψR/L,1 − ψ

†
R/L,2ψR/L,2

)
.
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FIG. 1. (a) Integer quantum Hall (IQH) islands with filling fraction ν = 2k which has 2k chiral edge modes moving in the counterclockwise
direction. These modes are decomposed into the U (1) ⊕ SU (k)2 sectors marked by the bold red line and the SU (2)k sector depicted by the
dashed red line. (b) Networks of the interacting IQH islands—spin current interactions are turned on (only) inside the gray areas. As a result,
the charge and flavor characterized by the U (1) ⊕ SU (k)2 sectors (bold red line) are confined to each IQH island, whereas the SU (2)k sector
(dashed red line) propagates inside the vacuum (white) area or along the entire edge of the system, yielding the SU (2)k topological phase.
(c) A configuration to realize a conjugate phase of the SU (2)k topological phase, consisting of the network of IQH islands that interfaces with
a large IQH system with filling fraction ν = 2k. The red dashed and bold lines represent the SU (2)k and U (1) ⊕ SU (k)2 sectors, respectively.
Notice that when k = 1, the flavor degree of freedom is absent, hence the bold red line represents the U (1) sector.

These currents have an SU (2) symmetry, allowing us to write
them in a more compact form as

Ja
R/L =

∑
α,β=1,2

ψ
†
R/L,α

σ a
αβ

2
ψR/L,β (a = x, y, z) (2)

with σ a
α,β being the SU (2) generators. The Hamiltonian de-

scribing the modes inside the black frame is therefore given
by

H2 =
∫

dx
∑

α

v
(
iψ†

R,α∂xψR,α − iψ†
L,α∂xψL,α

)

+
∑

a=x,y,z

λ2Ja
RJa

L , (3)

where v is the velocity of the Dirac fields, x is the one-
dimensional coordinate in the frame, and λ2 is the coupling
constant. As we discuss in Sec. IV (and Fig. 4), such an
interaction naturally emerges in networks of double layer of
ν = 1 states. We assume that our network has interaction (3)
taking part between all adjacent islands, that is in the areas
with gray shading in Fig. 1(b) (and only in these areas).

At λ2 > 0 the current-current interaction given in Eq. (3)
is marginally relevant and gaps out the SU (2)1 sector in
Eq. (1), yielding the desired KL state, i.e., the SU (2)1 topo-
logical phase. Indeed, the edge mode of the ungapped sector
on each island [the U (1) sector in Eq. (1)] passes through
the interacting area, but the SU (2)1 mode bounces off. As a
consequence, the U (1) sectors remain confined to each IQH
island [see red bold lines in Fig. 1(b)]. This feature constitutes

a great advantage of the network array construction over the
wire construction one: One does not need to introduce addi-
tional interactions to gap out the charge mode. On the other
hand, the edge modes of the gapped SU (2)1 sector are not
transmitted through the interaction areas and hence become
confined to the vacuum regions [white regions in Fig. 1(b)].
However, as is clear from Fig. 1(b), one chiral mode is free
to propagate along the entire edge of the system [red dashed
line in Fig. 1(b)], which results in the SU (2)1 topological
phase—the topological phase with a neutral chiral edge mode
described by the SU (2)1 WZNW CFT with central charge
c = 1. The suggested mechanism imposes restrictions on the
size of the islands. Namely, the size of the interacting area
must be larger than the correlation length ξ of the spin sector.
When the current-current interaction is isotropic, which is the
case for Hamiltonian (3), we have ξ ∼ lB exp(πv/λ2), (lB is
the magnetic length which plays the role of the ultraviolet
cutoff).

At k = 1 there is only one nontrivial anyonic excitation s
with conformal weight 1/4, corresponding to a primary field
of the SU (2)1 WZNW CFT, and fusion rule s × s = I . The s
anyon is nothing but the semion described above. Its fractional
statistics can be obtained from the conformal weight and the
fusion rule, giving θ = π/2.

The semion excitation can be seen in the regions in which
the spin sector is gapped by the interaction in Eq. (3) [the
areas with gray color in Fig. 1(b)]. Deferring the details to
Appendix A, it turns out that the gapped theory between
adjacent IQH islands has twofold ground state degeneracy,
which is intuitively understood as two ferromagnetic ground
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state configurations of spins where all spins point up or down.
A kink trapped at the interface between domains of such
configurations is characterized by conformal weight 1/4. This
implies that the kink bound at the interface can be regarded as
the semion.

The excitation of the semion also arises by inducing a
magnetic flux in an IQH island. In order to discuss a phys-
ically legitimate implementation to have such a flux, we let
the ν = 2 IQH island be comprised of two layers of quantum
Hall states each of which has filling ν = 1. In addition, we
assume that a gate can alter the number of electrons in one of
the layers and deplete the charge. Since the filling fraction
of the layer we are tuning is ν = 1, the ratio between the
number of magnetic flux and the electrons is unity, implying
a charge depletion is associated with introduction of a unit of
magnetic flux h/e. In what follows, we dub such a magnetic
flux as a “h/e vortex” characterized by a conformal weight of
an electron excitation 1/2. From the conformal embedding in
Eq. (1), this excitation consists of spin [SU (2)1] and charge
[U (1)] degrees of freedom, which is described by [30]

1/2 = 1/4 + 1/4. (4)

The first term corresponds to the conformal weight of the
semion in the SU (2)1 sector, and the second term comes from
the conformal weight of the charged excitation of the U (1)
sector. Since the resulting phase of our model is given by
SU (2)1 = U (2)1

U (1) , the U (1) sector is suppressed, (physically,
corresponding to the fact that we don’t admit any charge
transfer between the islands) allowing us to omit the second
term in Eq. (4). Therefore, the vortex excitation behaves as
the semion. In the analogy with the fact that a h/(2e) vortex
trapping the Ising anyon, a.k.a. the Majorana zero mode in
the bulk of a p-wave superconductor forces the edge mode to
carry the Majorana zero mode [31], we expect that in the KL
state, the edge mode has the semion in accordance with the
semion excitation in the bulk induced by a vortex.

In the same spirit of the work by Hu and Kane [20], we
can construct a “conjugate phase” of the KL state—in our
case, the U (1) topological phase. The U (1) topological phase
and the KL state are conjugate to each other in the sense of
the conformal embedding. To generate the conjugate phase,
we surround our network of IQH islands by a large ν = 2
IQH system which has two chiral edge modes propagating in
the clockwise direction, see Fig. 1(c). We further introduce
interactions between the large IQH system and the networks
of the IQH islands in the same form as the second line of
Eq. (3). From the arguments similar to the ones given above,
we obtain a topological phase which has a U (1) chiral edge
mode with central charge c = 1 propagating in the clockwise
direction along the interface between the large IQH system
and the networks of IQH islands [32]. Notice that the bulk
excitation in the conjugate phase is described by the same
neutral semion as the KL state, as configurations of the bulk
are the same for both phases—the networks of ν = 2 IQH
islands shown in Fig. 1(b). Hence, a neutral excitation in the
bulk of the conjugate phase shows a discrepancy with the
edge excitation which carries a charge. Such a discrepancy
is resolved by noting that the multiplication of a semion in
the bulk and a h/e vortex in the large IQH that surrounds

the networks corresponds to the edge excitation described by
the second term of the r.h.s of Eq. (4) which represents a
charged excitation in the U (1) sector with conformal weight
1/4 carrying a charge e. We interpret this multiplication of the
excitations from the bulk and outside the bulk as the excitation
of the conjugate phase.

The physical difference between these two phases can be
seen by measuring charge conductance. For the KL state, the
edge mode is neutral and thus, the charge conductance is zero.
On the other hand, for the conjugate phase of the KL state,
charge conductance is two (in units of e2/h). The neutral mode
of the KL state can be probed by measurement of thermal
conductance.

B. ν = 4: SU (2)2 topological phase

Let us now move on to the construction of the SU (2)2

topological phase. In doing this we will closely follow the
method of the previous subsection. We consider an IQH island
with filling fraction ν = 4 in a square shape. We introduce
a geometry of networks of the IQH island as depicted in
Fig. 1(a). Similar to the previous subsection, introducing the
Dirac fields by ψR/L,α,i (α = 1, 2, i = 1, 2), we write the
Hamiltonian between adjacent islands as

H4 =
∫

dx
∑
α,i

v
(
iψ†

R,α,i∂xψR,α,i − iψ†
L,α,i∂xψL,α,i

)

+
∑

a=x,y,z

λ4Ja
RJa

L (5)

with SU (2) current

Ja
R/L =

∑
α,β=1,2

i=1,2

ψ
†
R/L,α,i

σ a
αβ

2
ψR/L,β,i (a = x, y, z). (6)

Notice that each IQH island has four chiral edge modes;
accordingly, compared with the previous case, we have a new
index i = 1, 2 in addition to α = 1, 2 to denote the Dirac field.

As opposed to the previous case, we will exploit a more
complicated conformal embedding with regard to the four
edge modes of the IQH island:

U (4)1 = SU (2)2 ⊕ U (1) ⊕ SU (2)2. (7)

The first, second, and third sectors correspond to the spin,
charge, and flavor degrees of freedom, respectively. Notice
that the spin and flavor sectors are characterized by the same
symmetry, namely SU (2)2, which is special for the case k = 2.
Interaction in Eq. (5) is not the most general current-current
interaction but is tailored to exploit this embedding, which
constitutes a potential problem for practical realizations. A
way to resolve this difficulty is discussed in the next section.
Since the spin SU (2)2 currents commute with the part of the
Hamiltonian describing the other sectors, the charge and flavor
sectors corresponding to the second and third terms in Eq. (7)
remain unaffected. The current-current interaction in Eq. (5)
gaps out only the spin SU (2)2 sector, forcing the edge modes
of the U (1) × SU (2)2 sector to be confined within each IQH
island; the SU (2)2 edge modes propagate inside the vacuum
areas or along the entire edge of the sample. This results in
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the SU (2)2 topological phase with central charge c = 3/2,
corresponding to three chiral Majorana fermions.

In this phase, there are three types of excitations, I , ψ , σ

with fusion rules ψ × ψ = I , ψ × σ = σ , σ × σ = I + ψ .
This phase behaves as the anti-Pfaffian state [33,34], one of
a candidate state of a FQH state at ν = 5/2. Even though the
fusion rules of the anyonic excitations and the central charge
are identical in these two phases, there are several differences;
the filling fraction of the anti-Pfaffian is ν = 5/2, on the other
hand, the SU (2)2 topological phase is constructed by ν = 4
IQH islands. Also, in the anti-Pfaffian state, there are charge
modes which propagate along the edge whereas in the SU (2)2

phase, there are only neutral modes.
We can also construct a conjugate phase similarly to the

previous case. In view of Eq. (7), the conjugate phase is a non-
Abelian topological phase characterized by U (1) × SU (2)2

WZNW CFT. To see this, consider a geometry of interacting
ν = 4 IQH islands interacted with a large ν = 4 IQH system
that surrounds the network [see Fig. 1(c)]. The interaction has
the same form as the terms in the second line in the r.h.s of
Eq. (5). The interaction yields a conjugate phase which has a
chiral edge mode described by U (1) × SU (2)2 WZNW CFT
which carries central charge c = 5/2.

Similarly to the previous subsection, the interaction area
corresponding to the rectangle marked by gray color in
Fig. 1(b) may bind the Ising anyon. Defining a bosonic and
Majorana field by � and χ , the Lagrangian density corre-
sponding to Hamiltonian in Eq. (5) is written as [35]

L = 1
2 (∂μ�)2 + Z2[χ, χ̄] − λ

(
eiβ�χχ̄ + H.c.

)
(8)

with λ ∼ 4λ4 and β2 = (1 + 2λ4/4π )−1. The first term is a
kinetic term of a bosonic field �. The second term describes
the critical Majorana theory and the third term represents
a mass term. Equation (8) is a field theory description of
a generalization of the Majorana chain as the Majorana
mass term is dynamical. Spacial modulation of the mass
traps a Majorana zero mode, which is identified as the Ising
anyon.

We can also discuss how vortices in a ν = 4 IQH island
give rise to the anyon in the SU (2)2 topological phase. In
the similar manner as the discussion around Eq. (4), one can
envisage that the ν = 4 IQH island is consisting of four layers
of ν = 1 IQH and show that a h/e vortex may bind the Ising
anyon by tuning a gate of one of the layers.

C. ν = 6: SU (2)3 topological phase

In analogy to the previous Secs. II A and II B, the con-
struction of the SU (2)3 topological phase is straightforward.
Preparing networks of ν = 6 IQH islands, and using following
conformal embedding

U (6)1 = SU (2)3 ⊕ U (1) ⊕ SU (3)2, (9)

one obtains the SU (2)3 topological phase by introducing the
SU (2) current-current interaction between adjacent islands

TABLE I. Labels and conformal weights of four anyons in the
SU (2)3 topological phase.

SU (2)3 Conformal weight

I 0
X 3

20

Y 2
5

Z 3
4

with Hamiltonian

H6 =
∫

dx
∑
α,i

v
(
iψ†

R,α,i∂xψR,α,i − iψ†
L,α,i∂xψL,α,i

)

+
∑

a=x,y,z

λ6Ja
RJa

L (10)

where the subscript i takes three values, i.e., i = 1, 2, 3.
There are four types of anyons in this phase, denoted

by I, X,Y, Z corresponding to the primary fields φi (i =
0, 1/2, 1, 3/2) with conformal weight hφi = i(i + 1)/5. See
also Table I. Recalling the fusion rules of the SU (2)3 CFT,
which is provided in the Appendix B, the Y anyon is the
Fibonacci anyon with fusion rule Y × Y = I + Y .

From Eq. (9), the conjugate phase is the U (1) × SU (3)2

topological phase. Up to the trivial U (1) sector, this conjugate
phase has six anyonic excitations labeled by b0, b3, b3̄, b6, b6̄,
b8. Conformal weights and fusion rules of these excitations
are provided in Appendix B. Based on the data there, b6, b6̄
are Z3 parafermions and the b8 anyon is the Fibonacci anyon.

We can create fractionalized excitations in the interaction
area between adjacent islands depicted with gray color on
Fig. 1(c) in full analogy to the way it was done in wire con-
struction [36]). To see this, we can resort to the semiclassical
analysis of our model (10) based on the conformal embedding

SU (2)3 = U (1) ⊕ Z3. (11)

According to Ref. [35], the Lagrangian density of this model
can be recast as

L = 1
2 (1 + λ6/2π )(∂μ�)2 + Z3[�,�]

− λ(eiβ��� + H.c.), (12)

where λ ∼ 6λ6 and β2 = 8π/3. The first term is the bosonic
kinetic term with � being a bosonic field, the second describes
the critical Z3 parafermion theory, where the Z3 parafermion
is given by �, and the third term originates from the inter-
action of the x, y currents. This term dynamically generates
a mass for the parafermions. Moreover, since exp(iβ�) field
changes sign on the solitons of � field, the parafermions
have zero energy modes bound to the solitons. The solitons
with the zero modes attached to them become non-Abelian
quasiparticles. This distinguishes them from Laughlin quasi-
particles constructed in a somewhat similar way in the wire
construction in Ref. [36]. In Ref. [35], one of the authors has
demonstrated that the zero modes located on the solitons are
one-dimensional analogues of the Fibonacci anyons. It has
also been shown that at finite density of solitons the anyons
interact so that model (12) describes a generalization of the
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“golden chain” [24]. Models (10) and (12) are closely related
to the physics of nucleation of topological liquid [37,38]. The
finite density of solitons can be produced if one introduces
a Zeeman field gLH . Such a field couples to the gradient of
the bosonic field as gLH∂x� which leaves the model inte-
grable. By setting gLH close to the soliton threshold such
that the density of solitons far exceeds the density of an-
tisolitons, but still remains small exp[−(M − gLH )/T ] � 1
(T is temperature and M is the soliton mass), one obtains a
rarefied gas of Fibonacci anyons [35]. At greater gLH , when
the interaction between the anyons becomes important, the
system undergoes a crossover to a collective state character-
ized by the parafermionic Z3 CFT with central charge 4/5.
[Together with U (1) bosonic theory, the total central charge
is described by the one of the SU (2)3 WZNW CFT]. The
forming of the gapless collective mode closely parallels the
nucleation of a topological liquid, where a nontrivial collec-
tive gapless mode is realized as the Hilbert space of adjacent
non-Abelian anyons is projected to one of the sectors of the
fusion channels. This allows us to interpret Eqs. (10) and (12)
with inclusion of the Zeeman field as concrete models of the
nucleation.

Since model (10) and (12) is translationally invariant the
solitons move. However, they can be trapped by space modu-
lations of their mass coming from modulations of the coupling
λ and become localized.

Composite h/e vortices in an IQH island can also give rise
to anyons. As mentioned in the previous subsections, such an
excitation may occur when we assume the IQH island consists
of multilayers of quantum Hall states each of which is ν = 1
IQH state. In the present case, suppose the ν = 6 IQH island is
described by six layers of ν = 1 IQH states, rh/e (1 � r � 6)
vortex excitation may arise by tuning gates to control the
fillings of r layers. To clarify the relation between the vor-
tices and anyons in the SU (2)3 topological phase, we need to
find how the conformal weight of the vortices is decomposed
into the ones in the different commuting sectors, similarly
to Eq. (4). The detailed discussion on this decomposition is
provided in Appendix C. It turns out that two or four h/e
vortices may bind the Fibonacci anyon, i.e., the Y anyon in
the SU (2)3 topological phase.

D. Fibonacci phase

By combining the phases we have constructed in the
preceding subsections, we demonstrate a way to obtain the
Fibonacci phase, a topological phase which only has trivial
and the Fibonacci anyon as excitations. Let us first briefly re-
call the Fibonacci phase. The Fibonacci phase is characterized
by (G2)1 WZNW CFT. The central charge is c = 14/5 and
the primaries are identity I and τ with conformal weight 2/5
subject to fusion rule τ × τ = I + τ .

Consider a geometry obtained by putting the networks of
the ν = 6 IQH islands on the top of the ν = 2 IQH net-
works which yields the SU (2)1 × SU (2)3 topological phase
with edge mode described by SU (2)1 × SU (2)3 WZNW CFT.
Such a configuration may occur in networks of multilayer
IQH islands since the central charge of the SU (2)1 × SU (2)3

WZNW CFT is given by c = 1 + 9/5 = 14/5, which is iden-
tical to the one of the (G2)1 WZNW CFT. This may hint to us

that the SU (2)1 × SU (2)3 topological phase is related to the
Fibonacci phase.

A key formalism to obtain the Fibonacci phase is anyon
condensation [37–41] which is a generalization of the vortex
proliferation to anyonic system. In the process of the anyon
condensation, we proliferate anyons that have the bosonic
property in the sense of having integer conformal weight,
allowing us to identify the vacuum with the anyons that are
condensed. The reader may also benefit from a relatively
nontechnical review [42]. While the “bosonic” anyons are
bosonic in the sense that they braid trivially with each other,
they are still anyonic since they braid nontrivially with others.
In the present context, it can be achieved using the mechanism
described in Ref. [35] [see also the discussion around Eq. (12)
in the previous section]. By this scenario the anyon gas will
exist on borders between the islands.

Otherwise not much is known about Hamiltonian formal-
ism to describe the condensation with only few exceptions.
For instance, Hamiltonian of the condensation of an anyon in
a nonchiral topological phase is given in Ref. [43]. The con-
densation by bosonic anyons put several restrictions on other
anyons. First, anyons which are related to each other by fus-
ing with the condensed anyons are identified. Second, a new
phase after the condensation admits only the anyons that braid
trivially with the anyons that are condensed as excitations,
otherwise they carry a visible nonlocal Dirac string which
would cost energy increasing with distance of the separation.
More succinctly, in the condensed phase, anyons which braid
trivially (nontrivially) with condensing anyons are deconfined
(confined).

Now we apply this scheme to our case. We carry out
condensation of composite anyons in the SU (2)1 × SU (2)3

topological phase. In this phase, there are 2 × 4 = 8 types
of anyons labeled by {I, s} × {I, X,Y, Z}. In addition to the
vacuum, I × I , the s × Z anyon has integer conformal weight
1, which can be condensed. Such condensation would be
possible by proliferating composite of h/e vortex and 3h/e
vortices in a ν = 2 and ν = 6 IQH island. After condensing
this anyon, a new vacuum is I × I � s × Z , and some anyons
are identified by fusing with the s × Z anyon. For instance,
the s × X and I × Y anyons are identified as they are related
by fusion with the s × Z anyon. Similarly, I × Z and s × I
are identified as well as I × X and s × Y . We also need to
analyze which anyon remains a deconfined excitation after the
condensation. It turns out that the only deconfined excitation
is the s × X anyon. To see this, we have to check that the
s × X anyon has trivial braiding with the s × Z anyon. We
evaluate the monodromy, a phase factor obtained by braiding
of s × X and s × Z anyons. The monodromy is read from
the conformal weights of the anyons, which has the form
e2π i(hc−ha−hb), where ha, hb, and hc denotes the conformal
weight of s × X , s × Z , and I × Y = (s × X ) · (s × Z ), re-
spectively. From Table I and the fact that the conformal weight
of the semion s is 1/4 it follows that the monodromy is
trivial (= 1) implying the s × X anyon is deconfined. The
analogous thought shows that the I × Z and I × X anyons are
confined. See Table II. To summarize, the resulting phase has
vacuum and one nontrivial anyon as excitation. By noting that
the conformal weight of the s × X anyon is 2/5 with fusion
rule (s × X ) · (s × X ) = I × I + I × Y = I × I + s × X , the
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TABLE II. List of anyons after condensing the s × Z anyon.
The arrow represents identification. Originally the SU (2)1 × SU (2)3

topological phase has eight anyons which are reduced to two, vacuum
and the Fibonacci anyon which is equivalent to the s × X anyon.

Anyon Confined or deconfined

s × X ↔ I × Y deconfined
I × Z ↔ s × I confined
I × X ↔ s × Y confined

resulting phase is the Fibonacci phase [44]. Notice that the
Fibonacci phase can be obtained by nucleating the SU (2)4

topological liquid [25] or by coupling nucleating anyonic
chains [45].

In addition to the SU (2)1 × SU (2)3 topological phase, the
SU (2)28 topological phase is also associated with the Fi-
bonacci phase as the SU (2)28 topological phase carries central
charge c = 14/5, which coincides with the one of the Fi-
bonacci phase [(G2)1 WZNW CFT]. Following the similar
argument explained above, one can show that the anyonic
condensation leads the SU (2)28 phase to the Fibonacci phase
[40].

E. General case

The generalization of our constructions to other cases of k
is straightforward. One can start with networks of IQH islands
with filling fraction ν = 2k and introduce the SU (2)k current-
current interaction. Instead of Eq. (7), utilizing the following
conformal embedding

U (2k)1 = SU (2)k ⊕ U (1) ⊕ SU (k)2, (13)

the SU (2)k topological phase is obtained. Likewise, the con-
jugate phase becomes the U (1) × SU (k)2 topological phase.

III. ALTERNATIVE CONSTRUCTION: NETWORKS
OF IQH ISLANDS AND SPIN CHAIN ISLANDS

In this section, we present an alternative construction of the
SU (2)k topological phase. Now the network consists of IQH
and insulating islands arranged in a checkerboard pattern. An
insulating island contains a critical spin S = k/2 chain on the
boundary.

We prepare an IQH island at filling fraction ν = 2k (more
precisely, a spinful IQH island with ν = 2k which is realized
by a material with a weak Landé g factor) and the island, that
we call spin island, with an inert bulk hosting an integrable
spin-k/2 chain on the boundary [see Fig. 2(a)].

Defining the k/2-spin operator at site j as S j , one
can write down the most general form of the Hamilto-
nian of spin S = k/2 antiferromagnet with nearest neighbor
interactions:

H = J
∑

n

Pk (SnSn+1), (14)

FIG. 2. (a) A spin island, an insulating island which hosts a crit-
ical chain on its boundary. The criticality is governed by the SU (2)k

WZNW CFT. Counterpropagating gapless modes regarding this CFT
is depicted by dashed red lines. (b) An alternative construction of
the SU (2)k topological phase. IQH islands (blue color) and islands
each of which has a critical spin chain (green color) are placed in a
checkerboard pattern. The red bold line represents the edge mode of
the U (1) × SU (k)2 sector whereas the red dashed line is the edge
mode of the SU (2)k sector. Areas marked by gray color between
adjacent islands denote interactions described by Eq. (18).

where Pk (x) is a polynomial of kth degree. The chain becomes
integrable for polynomials of special form, namely [46]

Pk (x) = −
k∑

j=1

( j∑
n=1

1

n

) k∏
l=0,l �= j

x − l (l + 1) + k(k + 2)/4

j( j + 1) − l (l + 1)
,

(15)

for instance, up to a prefactor we have

P1(x) = x, P2(x) = x − x2, P3(x) = −x − 8

27
x2 + 16

27
x3.

(16)

The integrable spin chains are always critical; their long wave
length behavior is governed by the SU (2)k WZNW CFT [47]
with the Hamiltonian

HWZNW = 2πvs

k + 2

∫
dx

∑
a=1,2,3

(: ja
R ja

R : + : ja
L ja

L :), (17)

where ja
R,L are chiral su(2)k Kac-Moody currents and vs is the

spinon velocity. This is different from the generic situation
where only chains with half-integer spins are critical in the
SU (2)1 universality class.

With these two types of islands, we consider the configu-
ration shown in Fig. 2(b), where the IQH islands and the spin
islands are placed in a checkerboard pattern. The continuum
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limit of the antiferromagnetic exchange interaction between
adjacent IQH and spin islands is

H =
∫

dx
∑
α,i

ivψ
†
R,α,i∂xψR,α,i

+ 2πvS

k + 2

∑
a=1,2,3

(: ja
R ja

R : + : ja
L ja

L :)

+
∑

a=1,2,3

λ2kJa
R ja

L, (18)

where Ja
R is the SU (2) current in the IQH island and ja

L is
the spin current of the spin chain in the spin island. (Note
the difference between the upper and lower case latter of the
SU (2) current distinguishing the one of the IQH and the spin
island). Here we dropped the interaction of the currents with
the same chirality as it is exactly marginal. The advantage of
this construction is that when we assume that there are only
local interactions, the form of interaction [the third term in
the r.h.s of Eq. (18)] arises naturally and does not require
any fine tuning. Indeed, since the fermions are chiral there is
no backscattering between the IQH edge and the spin chain
and the only possible interactions are between the smooth
parts of the magnetization described by the spin currents.
We have chosen the SU(2)-symmetric form of the interaction,
but, in fact, the anisotropy is irrelevant. The interaction gaps
out the SU (2)k sector on every island (both the spin and the
IQH ones) and also confines the chiral gapless modes to their
particular islands. The mechanism is the same as the one in the
previous section; the only difference lies in the microscopics.

In addition to kinks in the gapped area between adjacent
islands and h/e vortices in an IQH island, an anyon can bind
to a spin excitation in a spin island. In the continuum limit we
have

Sa
n = ja

R + ja
L + iconst(−1)ntr(σ aφ1/2) + · · · , (19)

where φ1/2 is the spin-1/2 primary field (2 × 2-dimensional
matrix field) of the SU (2)k WZNW model. For k = 1 we also
have

(SnSn+1) = TR + TL + const(−1)ntrφ1/2 + · · · , (20)

where TR/L are holomorphic/antiholomorphic components of
the stress-energy tensor and the dots stand for less relevant
operators. This means that the spin excitation in the spin island
hosts an anyon corresponding to the primary field φ1/2 in the
SU (2)k WZNW CFT. For k = 1 this can be introduced by,
for instance, a local variation of the exchange integral giving
rise to dimerization resulting in a semion in the KL state.
Excitations related to other primary fields in the WZNW CFT,
such as the Y or Z anyons in the SU (2)3 topological phase,
are created by other operators. For instance, deviations from
the critical point are related to trφ1—the trace of the operator
in the adjoint representation:

δH = δ
∑

n

(SnSn+1) ∼ δ

∫
dxtrφ1 + · · · . (21)

As we have mentioned above, the criticality of the spin
chain is destroyed by relevant perturbations. However, we
argue that for odd k the topological phase we just described

is stable. In what follows, we focus on the SU (2)k sectors in
an IQH and spin islands, omitting the chiral edge modes of
the U (1) × SU (k)2 sectors in an IQH island as they are not
affected by interactions that we consider. This means that the
relevant part of our system (before turning on interactions) is
described by the product theory:

[SU (2)k]R × [SU (2)k]L × [SU (2)k]R, (22)

where the first term corresponds to the SU (2)k sector in the
IQH island and the second and third to the gapless mode of
the spin chain.

We know that generically a spin chain with half integer
spins is critical in the SU (2)1 universality class. Hence a rele-
vant perturbation of the spin chain such as the one in Eq. (21)
drives the chain from the SU (2)k to the SU (2)1 critical point
[48]. Then in the infrared the spin currents jL in Eq. (18)
are transmuted into SU (2)1 currents. Therefore, the current-
current interaction between adjacent IQH and spin islands
becomes the one involving the right SU (2)k and left SU (2)1

chiral vector current in the [SU (2)k]R ⊗ [SU (2)1]L WZNW
model. According to Ref. [49], the perturbation by such a
current-current interaction yields a massless flow towards a
nontrivial fixed point preserving chiral central charge which
is defined as difference of central charges of the right and left
moving sectors, cR − cL. The criticality at this fixed point is
shown to be

[SU (2)k−1]R ⊗
[

SU (2)1 × SU (2)k−1

SU (2)k

]
L

, (23)

leaving the right moving SU (2)1 sector in the spin island
untouched. See also Fig. 3(a). The total central charge, which
is defined by summation of central charges of the right and
left moving sectors of the fixed point of Eq. (23) is given by

ca =
[

3(k − 1)

k + 1
+

(
1 − 6

(k + 1)(k + 2)

)]
+ 1. (24)

We compare ca with cb which is the total central charge ob-
tained by perturbation of the noninteracting theory [Eq. (22)]
by the SU (2)k current-current interaction [given in Eq. (18)]

cb = 3k

(k + 2)
, (25)

corresponding to the fact that the only surviving mode is the
right moving SU (2)k sector in the spin island [Fig. 3(b)].
One finds that cb < ca holds when k > 1. We know that the
system flows to the fixed point b with central charge cb when
other relevant interactions are tuned to zero. Thus, very small
deviations from this flow would take the system first to a
neighbourhood of the fixed point b, and then to the fixed point
a with central charge ca, assuming that instabilities cause
the system to flow to the fixed point a. But since cb < ca,
such flows cannot exist for sufficiently small neighbourhoods
around the fixed point b (i.e., for sufficiently small initial
values of instabilities) by Zamolodchikov’s c theorem [50,51].
Hence, there is a window of stability around the fiducial flow,
and only large enough perturbations can possibly take the sys-
tem to the fixed point a, verifying that the topological phase
is stable against the perturbations driving the spin chains from
the SU (2)k critical point.
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FIG. 3. A schematic picture of edge modes in the vicinity of
borders between adjacent IQH and spin islands. Without interaction,
the IQH island has edge modes of the SU (2)k sector (red dashed
line) and the U (1) × SU (k)2 sectors (red bold line), whereas the spin
island has counterpropagating edge modes of the SU (2)k sector, as
depicted in the leftmost figure. When the spin chain in the spin island
is perturbed from the SU (2)k critical point, it flows to the SU (2)1

fixed point (purple dashed lines). As a consequence, the current-
current interaction becomes the one involving the right SU (2)k and
left SU (2)1 chiral vector current in [SU (2)k]R ⊗ [SU (2)1]L WZNW
model. This interaction flows to the nontrivial fixed point described
by Eq. (23) as shown in (a). On the other hand, when we introduce
the current-current interaction given in Eq. (18), a pair of the edge
modes of the SU (2)k sector are gapped out, which is illustrated in
(b). The fixed point of (b) has a lower central charge and hence by
the c theorem it cannot flow to the fixed point of (a) with introduction
of small perturbations.

Moreover, the theory (b) is chiral and has the minimal
central charge among all theories with the same value of the
chiral central charge cR − cL—a quantity that describes the
gravitational anomaly and hence must be preserved along RG
flows. Hence the preceding argument also shows that our fixed
point is absolutely stable.

For even values of k, the spin island hosts an integer spin
chain, and although interactions may still be tuned to achieve
SU (2)k criticality, the spin chain is generically gapped [48].
In this case, we require that such a gap be smaller than a
gap produced by the current-current interaction in Eq. (18),
in order for the SU (2)k topological phase to be stable.

IV. EXPERIMENTAL CONSEQUENCES

In this section we comment on the relevance of our pro-
posal for experimental realizations. We first discuss the IQH
network.

In the case of k = 1, the current-current interaction in
Eq. (3) can be understood using the bosonization language
as a combination of backward scattering and density-density
interaction (Appendix A). One possible way to generate such
interaction would be by adjusting a gate voltage, controlling
the density of electrons between the islands.

FIG. 4. A pair of ν = 2 islands consisting of double layer of
ν = 1 state. The two edge modes (black lines) in each double layer
can be treated as pseudospin degrees of freedom (yellow arrows).
A tunneling of an electron from one layer between two islands
accompanying with backward tunneling of another electron from the
second layer (red arrows), which can be regarded as spin backward
interaction, is allowed as it preserves momentum and charge in each
island.

Furthermore, if we introduce networks of double-layer
IQH islands, each island contains two ν = 1 states, which can
be treated as pseudospin degrees of freedom. Then effective
backward pseudospin scattering between adjacent islands may
occur without breaking momentum conservation and chang-
ing the charge in each island. In this process, tunneling of an
electron from one layer between two islands is compensated
by backward tunneling of another electron from the second
layer. See also Fig. 4.

The central charge c of the chiral edge modes we discuss
here is a topological characteristic of the states. The thermal
conductance reflects this topological number. It is therefore
important to measure it [12,52–54]. The thermal conductance
κ at temperature T of the edge mode of the topological phase

is given by κ = c in units of κ0 = π2k2
B

3h T . For the SU (2)k case
we find that the chiral central charge is c = 3k/(k + 2) and
for the conjugate phase it is c = 2k − 3k/(k + 2) = k(2k +
1)/(k + 2).

To confirm the existence of topological phases further, it
would be highly desirable to probe the anyon statistics. To this
date, however, even detection of Abelian statistics remains a
challenging task. Progress has been made by a recent work
demonstrating that Aharonov-Bohm oscillations are observed
in the ν = 1/3 and the ν = 2/3 FQH states by experiments of
the Fabry-Perot interferometer [55,56], which might provide
a good platform for observation of the fractional statistics. In
the simplest case of our model, the KL state, one can envisage
an interferometer experiment where a h/e vortex is induced
in the bulk which gives the semion. Since the edge mode is
neutral, thermal conductance or AC conductance would be a
useful observable to confirm the statistics.

For the case where IQH islands are combined with spin
islands the exchange interaction is the only possible one, but
the obvious problem is how to achieve a tight contact between
the Hall islands and the spin chains. We envisage that this
can be achieved with the modern methods of molecular beam
epitaxy. One may also be inspired by the experiments where
topologically protected edge states are brought into contact
with microscopic iron clusters [57]. We can avoid freezing
of the spin degrees of freedom in high magnetic fields by
lowering the value of the Landé g factors, both on the Hall
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islands and on the spin chains. Nearly isotropic spin S = 1/2
chains with strongly anisotropic Landé g factors are known
[58].

V. CONCLUSIONS

In this paper, we have constructed the SU (2)k topological
phase and its conjugate phase using networks of interacting
IQH islands and spin chains. Previous attempts to construct
such exotic phases utilized wire construction [25,36,59–64]
or wire construction emergent from critical anyonic chains
[38,45,65].

The main advantages of our construction is that it gaps
out certain degrees of freedom by virtue of the geometry
and imposes fewer constraints on the choice of interactions.
In other words, to obtain a topological state with a gapped
bulk, it is sufficient to generate a gap just in a subsector of
the system. Then, despite the fact that the interaction does
not affect the chiral modes belonging to the other sectors,
these modes remain confined in their islands by virtue of the
geometry of the network.

In our analysis, we have concentrated on the cases of k =
1, 2, 3, which are of fundamental importance. The SU (2)1

topological phase is dual to the KL state, one of the spin liquid
phases, which has semionic excitations. Previous suggestions
for realizations of spin liquid phases include interaction of
three nearest-neighbor spins that breaks time reversal sym-
metry in the form of a mixed product of three spins (see
subsequent works, Refs. [66–68] and recent works [69–72]).

Instead of having such interactions, our model contains
more attainable current-current interactions and breaks time
reversal symmetry by the use of IQH islands. We find that
the case with k = 2 is dual to Kitaev’s spin liquid phase
and the Moore-Read phase both of which have the Ising
anyons and half-integer central charge; in our SU (2)2 case
c = 3/2.

The SU (2)3 topological phase that we propose is important
as it contains Fibonacci anyons that may be useful for univer-
sal topological quantum processing [23]. We have proposed
a geometry consisting of the SU (2)1 and SU (2)3 topological
phases that stabilizes the Fibonacci phase (consisting of the
vacuum and Fibonacci anyons only) by employing the scheme
of anyon condensation.

The phases we obtain are gapped in the bulk and contain
chiral edge modes; we expect therefore that an introduction of
perturbations smaller than the bulk gap will not lead to a phase
transition and will not modify the universal properties of the
topologically ordered phase. However, in order to obtain these
phases we have assumed a specific form of the interaction
[spin SU (2)k current-current interaction]. It is known that a
generic form of interaction flows (for k > 1) either to weak
coupling or to strong coupling with the maximal possible
symmetry [73,74], in the given case SU (2k), which would
lead to the SU (2k)1 topological phase with central charge
c = 2k − 1 and Abelian anyons in the bulk. We therefore
consider an alternative network consisting of IQH islands and
spin islands placed in a checkerboard pattern. In this alterna-
tive construction, the SU (2)k current-current interaction arises
naturally in view of symmetry and chirality.
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APPENDIX A: BOSONIZED FORM OF THE ACTION
FOR k = 1

As mentioned in the main text, in the case of k = 1, the
decomposition U (2) = U (1) + SU (2) can be understood as
the spin-charge separation in the physics of the Tomonaga-
Luttinger liquid. The interpretation of this decomposition
allows us to rewrite the Hamiltonian in Eq. (3) in the
bosonized form. We will see how gapping out the SU (2)1

sector, which is crucial for a realization of the KL state, is
described in the language of bosonization (As a primer for this
subject, readers should consult with a standard review such as
Ref. [75]). It turns out that by tuning backward scattering and
density-density interaction, one can generate a spin gap pre-
serving the symmetry of the SU (2)1. Using the bosonization
formalism, we will also discuss how the semion arises as a
kink in a gapped area between adjacent islands.

To begin with, we introduce four chiral bosonic fields,
φα (z), φ̄α (z̄), where the subscript of the bosonic fields α takes
the value 1 or 2 which are interchangeably ↑ or ↓, and φα (φ̄α )
is a holomorphic (antiholomorphic) field which is interpreted
as right (left) moving field with ∂z̄φα = ∂zφ̄α = 0. Here, we
have changed the (1 + 1 dimensional) coordinates from (t, x)
to the complex (z, z̄) via z = −i(x + vt ), z̄ = i(x − vt ) with
v being velocity of the field. Using these bosonic fields, the
Dirac fields of the edge modes of a ν = 2 IQH island are
bosonized by

�Rα = 1√
2π

ηαe−i
√

4πφα

�Lα = 1√
2π

η̄αei
√

4πφ̄α , (A1)

where ηα and η̄α are Klein factors to ensure the anticommu-
tation relation between the edge mode with different values
of the subscript: {ηα, ηβ} = {η̄α, η̄β} = 2δα,β , {ηα, η̄β} = 0.
Nonchiral bosonic fields are defined as

ϕα = φα + φ̄α

θα = φα − φ̄α (A2)

with commutation relation

[ϕα (x), θβ (x′)] = − i

2
sgn(x − x′)δα,β . (A3)
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These two fields are related via ∂xθα = − 1
v
∂tϕα . We also

introduce “charge” and “spin” bosonic fields by

ϕc/s = 1√
2

(ϕ↑ ± ϕ↓)

θc/s = 1√
2

(θ↑ ± θ↓) (A4)

and similarly for φc/s, φ̄c/s. Commutation relation of these
charge and spin bosonic fields has the same form as Eq. (A3),
i.e.,

[ϕA(x), θB(x′)] = − i

2
sgn(x − x′)δA,B (A, B = c, s). (A5)

Now we are at the stage of applying the bosonization for-
malism to the 1 + 1-dimensional theory which involves four
chiral edge modes between adjacent IQH islands. Using the
bosonic fields, the kinetic term in Hamiltonian given in Eq. (3)
in the main text is rewritten as

v

2

∑
A=c,s

∫
dxdt[(∂xθA)2 + (∂xϕA)2]. (A6)

Using Eq. (2), we introduce following current-current interac-
tion

λ||(JxJ̄x + JyJ̄y) + λ⊥JzJ̄z. (A7)

The first two terms in Eq. (A7) are further transformed to

JxJ̄x + JyJ̄y = − 1
2

[(
ψ

†
↑ψ̄↑

)(
ψ̄

†
↓ψ↓

) + (
ψ

†
↓ψ̄↓

)(
ψ̄

†
↑ψ↑

)]
.

(A8)

The r.h.s of Eq. (A8) is proportional to the back scattering
Hamiltonian which is bosonized to

η↑η̄↑η̄↓η↓

( −1

4π2

)
cos

√
8πϕs.

As demonstrated in Ref. [75], the Hilbert space on which the
Klein factors act is characterized by eigenstates of a matrix
with eigenvalues ±1, and one may safely pick up one eigen-
state, omitting the rest of the Hilbert space. In the following,
we choose the eigenvalue +1 and write the back scattering
term as ( −1

4π2

)
cos

√
8πϕs. (A9)

The third term in Eq. (A7) becomes

JzJ̄z = 1

2π
(∂zϕs)(∂z̄ϕs) = − 1

8π
[(∂xθs)2 − (∂xϕs)2], (A10)

where we have used Eq. (2) and the fact that density operator
is bosonized as

ψ†
αψα = i√

2π
∂zϕα, ψ̄†

αψ̄α = −i√
2π

∂z̄ϕα. (A11)

Referring to Eqs. (A6) and (A8)–(A10), it follows that Hamil-
tonian density regarding Eq. (3) reads

H2 = v

2
[(∂xθs)2 + (∂xϕs)2]

− λ⊥
8π

[(∂xθs)2 − (∂xϕs)2] − λ||
4π2

cos
√

8πϕs. (A12)

We have omitted the terms involving ϕc as they are decoupled
from the ones of ϕs and intact by the interaction in Eq. (A7),
which is consistent with the fact that we do not admit charge
transfer between adjacent IQH islands. By introducing cou-
pling constants as

g1 = −λ||/(4v), g2 = λ⊥/(8v), (A13)

and with a little more algebra, one finds that Eq. (A12) is iden-
tical to the well-known form of the sine-Gordon Hamiltonian

vs

2

[(
1

vs
∂tϕ

′
s

)2

+ (∂xϕ
′
s)2

]
+ vg1

2π2
cos

√
8πKsϕ

′
s, (A14)

where

vs = v
√

1 − (g2/π )2, Ks =
√

π − g2

π + g2
, ϕ′

s = 1√
Ks

ϕs.

(A15)

The renormalization group equation of Eq. (A14) is known
to be [76]

dKs

dl
= − 1

2π2
K2

s g1,
dg1

dl
= −2g1(Ks − 1) (A16)

with l being the logarithm scaling factor. From Eq. (A16),
one can find that when |g1| > 2π (Ks − 1), g1 flows to the
strong coupling (g1 is marginally relevant). Such a condi-
tion can be met when |g1| is infinitesimal and Ks < 1, that
is, g2 > 0. When λ|| = λ⊥ ≡ λ2, the spin current-current in-
teraction, Eq. (A7), coincides with the one in Eq. (3), and
from Eqs. (A13)–(A15), the condition of the current-current
interaction being relevant is λ2 > 0.

To see that the semion is regarded as a kink in the gapped
theory between adjacent IQH islands, we start with Hamilto-
nian in Eq. (A14) and assume Ks � 1 and g1 > 0:

v

2

[
(∂xθs)2 + (∂xϕs)2

] + vg1

2π2
cos

√
8πϕs. (A17)

In this theory, a compactification radius of the bosonic field,
which will play an important role later, is given by R =
1/

√
2π .

Assuming g1 is large so that ϕs is pinned to the minima of
the well of cosine potential in Eq. (A17), it follows that

√
8πϕs = 2πN + π (N ∈ Z)

ϕs =
√

π

2

(
N + 1

2

)
. (A18)

Since ϕs and ϕs + 2πR are identified as identical states,
one finds that there are two distinct minima, that is, N =
0, 1 (mod 2), implying that the ground state is twofold de-
generate. This can be intuitively understood as two ground
state configurations of spins where all of the spins are up or
down. With this intuitive interpretation in mind, one naively
expects that a spin flip occurring at the interface of domains
of the two different spin configurations in the ground state is
associated with a kink of the cosine potential in Eq. (A17).
This anticipation turns out to be correct. To see why, we
introduce the following spin flip operator which is bosonized
to [77]

ψR↑ψ
†
L↓ = 1

2π
e−i

√
2πθs e−i

√
2πϕc , (A19)
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TABLE III. Fusion rules of the primary fields in the SU (2)3

WZNW CFT. Fusion rules of a primary field with I are not shown
since they are trivial. The missing half of the table may be filled in
by commutativity.

X Y Z

X I + Y
Y X + Z I + Y
Z Y X I

where ϕc is the charge bosonic field defined in Eq. (A4). The
vertex operator involving ϕc is omitted in the present context
as we focus on the spin sector. The operator in Eq. (A19)
behaves as a kink in the spin sector, sending one minima to
another of the cosine potential. Indeed, from Eq. (A5), we
obtain

ei
√

2πθsϕse
−i

√
2πθs = ϕs +

√
π

2
. (A20)

Furthermore, the operator in Eq. (A19) has conformal weight
(1/4, 1/4) in the spin sector, which comes from the fact that a
vertex operator eilθs in theory Eq. (A17) has conformal weight
( l2

8π
, l2

8π
). This concludes that the kink which is bound at

the interface of the magnetic domains is identified with the
semion.

APPENDIX B: DATA OF WZNW CFT

Here we list the necessary data for the SU (2)k and SU (3)2

WZNW CFTs to discuss the anyons in the main text. There
are k + 1 primaries of the SU (2)k WZNW CFT labeled by
φi (i = 0, 1/2, · · · , k/2) whose conformal weights are given
by i(i + 1)/(k + 2). A relatively elementary introduction to
SUk (2) WZNW models is given in Refs. [29,78]. The fusion
rules of the primary operators resemble the ones for spins;
they are given by [79]

φi · φ j =
min(i+ j,k−(i+ j))∑

l = |i − j|
l − |i − j| ∈ Z

φl . (B1)

In the simplest case, k = 1 we have only two primary fields,
denoted by φ0 and φ1/2 with conformal weight 0 and 1/4, re-
spectively. The nontrivial fusion rule reads as φ1/2 · φ1/2 = φ0.
The s anyon, which is nothing but the semion, corresponds to
the primary field φ1/2.

When k = 2, there are three primaries, I , ψ , and σ with
conformal weight 0, 1/2, and 3/16. Fusion rules are identical
to the ones in the Ising topological phase: ψ × ψ = I , ψ ×
σ = σ , σ × σ = I + ψ .

In the case of k = 3, there are four primaries, φ0, φ1/2,
φ1, and φ3/2 corresponding to the I, X,Y , and Z anyons in
Sec. II C. The fusion rules are read from Eq. (B1), giving
Table III.

With regards to the SU (3)2 WZNW CFT, there are six
primaries labeled by b0, b3, b3̄, b6, b6̄, b8 with conformal
weight 0, 4/15, 4/15, 2/3, 2/3, 3/5, respectively. Their fusion

TABLE IV. Fusion rules of the primary fields in the SU (3)2

WZNW CFT.

b3 b3̄ b6 b6̄ b8

b3 b3̄ + b6

b3̄ b0 + b8 b3 + b6̄

b6 b3̄ b3 b6̄

b6̄ b8 b8 b0 b6

b8 b3 + b6̄ b3̄ + b6 b3̄ b3 b0 + b8

rules are provided in Table IV. Particularly, the b8 anyon is of
our interest, as it is the Fibonacci anyon.

APPENDIX C: EXCITATIONS OF THE SU (2)3

TOPOLOGICAL PHASE AND ITS CONJUGATE PHASE

In order to elucidate the relation between vortices in a
ν = 6 IQH island and anyons in the SU (2)3 topological phase,
here we give a detailed discussion on how an excitation given
by r h/e vortices (1 � r � 6) in a ν = 6 IQH island is de-
composed into the ones in the SU (2)3 and the U (1) × SU (3)2

topological phases. To this end, it is useful to introduce the
Young diagram representation of a primary field of the SU (2)3

and SU (3)2 WZNW CFT, which is summarized in Table V.
As a primer to the Young diagram, see, for instance, Ref.
[79]. A key observation is that r h/e vortices (1 � r � 6) in
the IQH island have conformal weight r/2 which is further
decomposed into [30]

r

2
= hSU (2)3 (�) +

{
r2

2 · 6
+ hSU (3)2 (�T )

}
. (C1)

Here, hSU (2)3 (�) is a conformal weight of a primary in the
SU (2)3 WZNW CFT with a Young tableau � with r boxes,
whereas hSU (3)2 (�T ) labels a conformal weight of a primary
in the SU (3)2 CFT represented by a Young tableau �T which
is obtained by transposing the Young tableau �. The second
term in the r.h.s of Eq. (C1) corresponds to a vertex operator
of the U (1) sector with charge re. Equation (C1) can be
interpreted in the following way: the first term in the r.h.s of
Eq. (C1) corresponds to the anyon in the SU (2)3 topological
phase, whereas the second and third terms in the r.h.s of
Eq. (C1) correspond to the anyon in the conjugate phase,
namely, the U (1) × SU (3)2 phase.

TABLE V. Young diagrams of four anyons in the SU (2)3 topo-
logical phase (left) and those of six anyons in the conjugate phase
(right). A number in a parenthesis next to each label indicates con-
formal weight.
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TABLE VI. Decomposition of r vortices characterized by conformal weight r/2 into the SU (2)3 and the U (1) × SU (3)2 sectors. The
Young tableau with solid dots is excluded due to the fact that two (three) columns of boxes are omitted in the Young diagram representation of
a primary in the SU (2)3 [SU (3)2] WZNW CFT.

The decomposition is not unique in some cases of r, which
is due to the property of the Young diagram representation of a
primary field in the SU (2)3 or SU (3)2 WZNW CFT [79]; two

vertical boxes, is omitted in a Young diagram representation
of a primary field in the SU (2)3 WZNW CFT, as three vertical

boxes is in the SU (3)2 WZNW CFT. More succinctly, the
fact that “� and �T are related with each other by transpo-

sition” holds up to or . Furthermore, there is a constraint
on the number of columns in Young diagrams corresponding
to WZNW primaries. In a Young diagram representation of a
primary field in the SU (2)3 [SU (3)2] CFT, a column of more
than three (two) boxes are not allowed.

To see how the property and the constraint mentioned
above works in the decomposition of the vortices, consider,
as an example, the case of r = 3. There are two possibilities

for �, that is, � = and � = . For the first case, we

have �T = , accordingly, the decomposition in Eq. (C1) is
described by

(C2)

The Young diagram of the third term on the r.h.s is omit-
ted, thus �T is an empty diagram, yielding hSU (3)2 (�T ) = 0.

Remembering hSU (2)3 ( ) = 3/4 (see Table V), the r.h.s of
Eq. (C2) reads as 3/4 + 3/4 + 0 = 3/2 which verifies the
validness of Eq. (C2).

In the second case, i.e., � = �T = , the decomposition
is given by

(C3)

Equation (C3) can be rewritten as

(C4)

where the two vertical boxes in the diagram in the first term
of the r.h.s of Eq. (C3) is omitted. Referring to Table V, the
decomposition demonstrated in Eqs. (C2) and (C4) implies
that three h/e vortices may have the Z anyon or X anyon
in the SU (2)3 topological phase. This is because the second
and third terms in the r.h.s of Eqs. (C2) and (C4) belong
to the U (1) × SU (3)2 sectors, which are suppressed in the
SU (2)3 topological phase, allowing us to associate the term
on the left hand side to the first term on the r.h.s in Eqs. (C2)
and (C4).

We can similarly discuss the decomposition for other cases
of r, which is summarized in Table VI. From this table, one
finds that the primary field in the SU (2)3 WZNW CFT with
the Young diagram representation of appears in the case
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of r = 2, 4, implying two or four h/e vortices may bind the Y
anyon, that is, the Fibonacci anyon in the SU (2)3 topological
phase.

We can also argue how an edge excitation of the conjugate
phase [i.e., the U (1) × SU (3)2 topological phase] is under-
stood by multiplication of an anyon in the bulk of the SU (2)3

topological phase and vortices in the large IQH surrounding
the networks. For instance, from the case of r = 1 in Table VI,
combination of the X anyon in the bulk and a h/e vortex
outside the networks corresponds to b3 anyon accompanying

charged excitation with conformal weight 1/12 carrying
charge e. This argument can be generalized to other cases of r.
The multiplication of an anyon in the bulk of the SU (2)3 topo-
logical phase represented by r boxes of the Young diagram
� and rh/e vortices in the large IQH outside the networks
corresponds to the edge excitation which has the form frb�T

in the U (1) × SU (3)2 sector. Here, fr is charged excitation
characterized by conformal weight r2/12 carrying re charge
and b�T is anyonic excitation in the SU (3)2 sector represented
by the Young diagram �T .
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