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Effects of dynamical noises on Majorana bound states
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The nonlocal nature of unpaired Majorana bound states (MBSs) in topological superconductors can be
exploited to create topologically protected qubits and perform gate operations fault-tolerantly via braidings.
However, the time-dependent noises induced by coupling to an environment which is inevitable in any realistic
system could spoil the topological protection. In this work, we study the effects of various dynamical noises
such as Lorentzian, thermal, and quantum point contact on the MBSs in the recently proposed one-dimensional
topological superconductors. We begin by investigating the Kitaev p-wave superconductors and examine the
effects of long-range hopping and pairing on the transition rate of MBSs. We found that, especially, the
long-range pairings significantly reduce the transition rate of bound states. Then, we consider the recently
discovered topological superconducting nanowires and magnetic chains. Our findings are consequential for the
recent attempts to manipulate MBSs. In particular, for the latter two experimentally realized systems we argue
how low magnetic/Zeeman fields and strong spin-orbit coupling make the MBSs more robust to noises.
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I. INTRODUCTION

Majorana bound states (MBSs) appear at the end of one-
dimensional topological superconductors or in the vortex
cores of two-dimensional chiral superconductors. Opera-
tionally a MBS is a fermionic quasiparticle that is its own
antiparticle, i.e., γ † = γ . Therefore, the emergence of MBSs
in a solid-state system relies on equal superposition of elec-
tron and hole states, forming chargeless quasiparticles, and
fermions with only one spin projection, e.g., the spinless
fermions, are involved in the formation of Majorana states [1].
The one-dimensional spinless Kitaev superconductor with p-
wave pairing potential is topologically nontrivial, supporting
MBSs at the ends of open chain in the weak coupling regime
[2]. However, any material design of a one-dimensional su-
perconductor requires lifting the spin degeneracy.

Semiconductor heterostructures consisting of conventional
materials such as nanowires with strong Rashba spin-orbit
coupling in proximity to s-wave superconductors were pro-
posed to exhibit nontrivial band topology, promising a hybrid
structure supporting MBSs [3–5]. The semiconductor het-
erostructure is shown schematically in the left panel of Fig. 1,
where a nanowire of InSb (InAs) is grown on the surface
of s-wave superconductor NbTiN (Al). Physically the strong
Rashba coupling removes the spin degeneracy of electron
states near the Fermi level, and a sizable Zeeman field can
remove one of the energy bands. Hence, the single-particle
states become effectively spinless giving rise to odd parity for
pairing potential induced by the underneath superconductor.
An observation of zero-bias conductance in hybrid structure
signified the existence of MBSs at the ends of the nanowire
[6]. Another hybrid structure consists of a ferromagnetic chain
of iron atoms deposited on the surface of a superconductor
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[7–11] as shown in the right panel of Fig. 1. The intrinsically
ordered magnetic moments break the time-reversal symmetry,
eliminating the need for an external magnetic field. Moreover,
the angle between adjacent moments induces inter-spin com-
ponent of hopping terms that mimics the effects of spin-orbit
coupling. An observation of zero-bias tunneling conductance
has been associated to MBSs [7], though there are other ex-
planations as well.

Besides the fundamental importance of MBSs in our un-
derstanding of exotic quantum states, the surge of recent
interests on MBSs originates in possible use of them to
build topologically protected qubits and perform fault-tolerant
quantum computation [12,13]. The degenerate subspace of
multiple MBSs provides a topological memory to store
quantum information and a proper set of braidings of non-
Abelian quasiparticles serves as gate operations on quantum
states [14], all immune to local errors.

Although, the topological qubits have some degree of
robustness, especially against static disorder [15], they gener-
ically suffer from the time-dependent fluctuations of intrinsic
properties of system as well as coupling to the environment.
The latter coupling breaks the fermion parity– an important
ingredient of existence of MBSs—through injection or re-
moval of quasiparticles, giving rise to dynamic fluctuations
that completely destroy coherence of Majorana qubits [16].
Even the coupling to a parity-preserving reservoir such as
finite-temperature bosonic bath can also destabilize MBSs,
giving rise to an exponentially decay in correlation between
MBSs [17] and exposing braiding processes to errors [18].
However, one can find a regime of parameters where there
exists a long-lived quantum correlation between Majorana
fermions in the presence of colored Markovian noise [17].
For coupling to an Ohmic-like fermionic or bosonic bath with
spectral density ρ(ω) ∝ ωQ, while the MBSs are robust in
super-Ohmic regime Q > 1, the coherence of zero modes is
strongly suppressed in the Ohmic and sub-Ohmic regimes
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FIG. 1. A schematic representation of experimental heterostruc-
tures of a semiconductor nanowire (left) and a magnetic chain (right)
in proximity to an s-wave superconductor underneath. The Majorana
zero modes γ1 and γ2 appear at the ends of the nanowire or magnetic
chain when the induced superconductivity is in the topological phase.

with Q � 1 [19]. The nonequilibrium noise effects coming
from trijunction setups, despite conserving parity, decrease the
coherence time of Majorana qubits [18,20].

Since the noises are ubiquitous and indispensable in any
physical system which could host MBSs, and hence, any
successful protocol of quantum computation including ini-
tialization of qubits, implementation of gates, and readout is
potentially subject to noises from various sources. Our paper
is intended to investigate the effects of several noises on the
robustness of MBSs and find the regime of parameters where
the suffering effects of time-dependent noises are minimal.
To this end, we focus on a class of noise sources relevant
to the experimental setups inducing time-dependent fluctua-
tions in chemical potential such as Lorentzian, thermal, and
point contact noises. We identify the transition probability
from zero-energy level to excited states as a measure for the
fragility of MBSs against noises [21] in three one-dimensional
models: the p-wave Kitaev chain, Rashba nanowire, and mag-
netic chains, all in topological superconducting phases with
MBSs at the ends of the chains. As discussed above, the
last two models shown in Fig. 1 are relevant to the current
experimentally designed heterostructures, calling for determi-
nation of regimes of parameters where the effects of noises
are minimal. For the Kitaev chain it is shown that the repul-
sive electron-electron interactions between nearest-neighbor
sites decrease the decoherence rate [22], while the long-range
many-body interactions between fermions reduce the lifetime
of MBSs [23,24]. We instead consider the effects of long-
range tunnelings and superconducting pairings on transition
probability. For the nanowire proximitized to the surface of
an s-wave superconductor, the effects of strong Rashba cou-
pling and Zeeman field on the robustness of bound states are
studied. In particular, we show that the stronger the former is,
the more resilience against noises is achieved, a finding which
could be important in looking for proper heterostructures with
enhanced robust MBSs.

The paper is organized as follows. In Sec. II, we introduce
the noise models and the transition rate. We begin with a
generalized version of the Kitaev chain with long-range hop-
pings and pairings in Sec. III and numerically calculate the
transition rate for MBSs. In Sec. IV, the effects of noises on
MBSs in semiconductor nanowires in the presence of strong
spin orbit coupling and magnetic field are presented, and in
Sec. V the results for a magnetic atomic chain on the surface
of superconductor are presented. We conclude in Sec. VI.

II. NOISE MODELS

Before delving into the details of MBSs in one-
dimensional systems and their resilience, in this section we

introduce several noise models related to the hybrid structures
and present a mathematical framework to calculate the tran-
sition probability of the MBSs to excited states. One of the
sources of noise which is intrinsic to the electronic materials
is the charge noise resulting from the quantum fluctuations
of occupation numbers. This noise manifests itself as time-
dependent fluctuations in chemical potential. The fluctuations
in the electron spin states caused by the nuclear spin fluctua-
tions is also another source of noise.

Recent experiment shows that these two noise sources
reveal a frequency spectrum [25] that is described by a
Lorentzian distribution function as

SLorentz(ω) = S0[1 + (ω − ω0)2/(δω)2]−1, (1)

where ω0 is the central frequency, δω is the bandwidth, and
S0 is the amplitude of the spectrum. In Sec. IV A we give
estimates for S0 for all noises studied in this work. The limit of
δω → 0 recovers quasi-monochromatic frequency spectrum
and the limit of δω → ∞ corresponds to the quasi–white
noise which contains equal contributions from all frequencies.
We assume δω = �/h̄ with � being superconducting gap.
This kind of noise spectrum has been used to describe the
effects of an externally random fluctuating noise on physical
systems [26].

Besides the intrinsic noise sources described above, the
thermal fluctuations are another source of noise. At nonzero
temperature, the thermal fluctuations give rise to fluctuations
in the occupation number of energy states and consequently in
the chemical potential. In thermal equilibrium, the frequency
spectrum of thermal noise is given by [21,27]

SThermal(ω) = S0exp(−h̄ω/kBT ), (2)

where kB is the Boltzmann constant, T is the temperature, and
h̄ is the reduced Planck constant.

The quantum transport across a quantum point contact
(QPC) between a superconductor and a semiconductor or
magnetic atomic chain in hybrid structures suffers from a
nonequilibrium electrical current noise known as shot noises.
The latter is a consequence of random transfer of quantized
charged carriers through mesoscopic conductors. If the energy
of an electron impinging on the surface of superconductor
is smaller than the superconducting gap (E < �), it can be
Andreev reflected, through which a hole is reflected back
to the semiconductor and a Cooper pair with charge 2e is
injected to superconductor. The reverse process is also pos-
sible where a Cooper pair recombines with a hole in the
semiconductor and produces an electron. In equilibrium, both
processes occur with equal probability, leading to no net cur-
rent flow. Hence, a bias voltage (V ) across the junction of
semiconductor-superconductor is required to achieve a finite
current flow. Using the scattering theory, the frequency spectra
of the shot noises for both cases have been computed in Ref.
[28]. At zero temperature, they are as follows:

Seq(ω) = 2e2ω

π

∑
n

Dn, (3)

S(ω) = 2e2ω

π

∑
n

D2
n + 4e3V

π h̄

∑
n

Dn(1 − Dn), (4)
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where Seq is the shot noise in equilibrium (V = 0), and S is
the shot noise at finite voltage (h̄ω < eV ). Here Dn = T 2

n (2 −
Tn)−2, where Tn is the nth transmission eigenvalue between
the interface and semiconductor. The difference S(ω) − Seq is
used to characterize the QPC noise (also called excess noise)
as [28]

SQPC(ω) = S0

(
1 − h̄ω

eV

)
, (5)

where S0 = (2e3V/π h̄)
∑

n Dn(1 − Dn).
Having introduced several dynamical noise spectra in

Eqs. (1), (2), and (5), we now discuss how the effects of
latter noises on the MBSs are taken into account, which is
the main subject of this work. We also ignore other sources
which could lead to fluctuations in spin-orbit interactions [25]
and superconducting pairings [29–31]. Following Ref. [21],
we assume that the dynamical noises perturb the chemical
potential as μ(t ) = μ + ζ f (t ), where μ is the unperturbed
chemical potential, ζ is the coupling constant, and f (t ) is
the interacting potential amplitude encoding the information
about the type of noise under consideration. The latter term
perturbs the Hamiltonian as H = H0 + ζ f (t )M, where the
unperturbed Hamiltonian is given by H0, and M is a density
operator associated with the change in the chemical potential
which will be specified for our models in next sections. Let us
denote the zero-energy state by |0〉 and the excited states by
|q〉. The transition probability out of |0〉 is given by

P(t ) ≡
∑

q

|〈q|U (t )|0〉|2, (6)

where U (t ) is the time-evolution operator which will be spec-
ified shortly. Assuming the coupling ζ is small, we may apply
the first-order time-dependent perturbation theory to obtain
the following expression for the time-evolution operator:

U (t ) ≈ U0(t ) + ζ

ih̄

∫ t

0
U †

0 (τ ) f (τ )MU0(τ )dτ, (7)

where U0(t ) = e−itH0/h̄. Since we are interested in averaged
time evolution of the system, we obtain the average probabil-
ity P̄

P̄(t ) = ζ 2

h̄2

∑
q

∫ t

0

∫ t

0
dτdτ ′〈 f (τ ) f (τ ′)〉〈q|U †

0 (τ )MU0(τ )|0〉

× 〈0|U0(τ ′)M†U †
0 (τ ′)|q〉, (8)

where the noise correlation function 〈 f (τ ) f (τ ′)〉 is related to
the frequency spectrum of noise S(ω) in Eqs. (1), (2), and (5),
as [32]

〈 f (τ ) f (τ ′)〉 =
∫

dω

2π
eiω(τ ′−τ )S(ω). (9)

Finally, the probability rate is given by the time-derivative
of P̄. It reads as


 ≡ dP̄

dt
= ζ 2

h̄2

∑
q

|〈q|M|0〉|2
∫

dωS(ω)δ(ω − εq/h̄), (10)

where εq is the eigenenergy of qth-excited state. For sim-
plicity, we take ζ 2S0/h̄2 = 1 and define ωD = �/h̄ (=δω)
as a frequency associated to superconducting gap. We note

that this equation is similar to the Fermi’s golden rule for
transition rates [32]. In the following sections we use Eq. (10)
to evaluate the effect of various noise sources on the MBSs.

III. KITAEV P-WAVE CHAIN WITH LONG-RANGE
HOPPINGS AND PAIRINGS

The simple theoretical model satisfying both conditions
of equal superposition of electron and hole states and having
only one spin species is the Kitaev chain introduced in
Ref. [2]. The model is composed of spinless fermions with
nearest-neighbor tunnelings and superconducting pairings. In
the weak coupling regime the bulk states are topological and
MBSs appear at the ends of an open chain. While the original
model has short-range hopping and pairing amplitudes, the
recent theoretical and experimental works have generalized
the Kitaev chain to include long-range interactions [33–36].
Our main objection in this section is to study the influence
of long-range interactions in Kitaev chain on the sensitivity
of MBSs when subjected to noise sources introduced in
preceding section.

The generalized Kitaev chain is obtained by letting hop-
ping and pairing amplitudes to extend to rth and sth neighbors,
respectively. The Hamiltonian reads as

H0 = −
N∑

j=1

μ

(
a†

j a j − 1

2

)
−

r∑
l=1

N−l∑
j=1

(Jla
†
j a j+l + H.c.)

+
s∑

l=1

N−l∑
j=1

(�l a ja j+l + H.c.), (11)

where μ is chemical potential, N denotes total number of sites,
and a j (a

†
j ) is a fermionic annihilation (creation) operator.

Moreover, the strength of long-range hoppings and pairings
decreases with the distance between sites as power law func-
tions Jl = J0l−νr and �l = �0l−νs , respectively, where J0 and
�0 are the corresponding nearest-neighbor values and the
exponents of νs and νr control the strength of amplitudes so
that νs, νr < 1(νs, νr > 1) correspond to long (short)-range
interactions. Taking the limit νr, νs → ∞, the original Kitaev
model is recovered.

The model Eq. (11) can be simulated in cold atomic gases
interacting through tunable Feshbach resonance [37–39] or
in a setup of planar Josephson junctions in proximity to a
2D electron gas where long-range pairings and hoppings are
controlled experimentally [40]. The phase diagram of the
Hamiltonian Eq. (11) contains topological superconducting
phases with MBSs [36].

The model is much easier to analyze in Majorana represen-
tation of fermion operators. The transformation reads as

a j = 1
2 (c2 j−1 + ic2 j ) a†

j = 1
2 (c2 j−1 − ic2 j ), (12)

where the Majorana operators satisfy the Clifford alge-
bra {ci, c j} = 2δi, j for i, j = 1, . . . , N . The Hamiltonian

165111-3



ROYA RADGOHAR AND MEHDI KARGARIAN PHYSICAL REVIEW B 102, 165111 (2020)

0 2 4 6

0
/

D

0

0.2

0.4

0.6

0.8

1

r
=0.05

r
=0.2

r
=0.4

r
=0.6

r
=1.2

r
=1.4

r

0 0.1 0.2 0.3
T

0

0.2

0.4

0.6

0.8

1

0 0.02 0.04 0.06

(eV)-1

0

0.2

0.4

0.6

0.8

1(a) (b) (c)

FIG. 2. The probability rate to excite MBSs in an extended Kitaev chain with long-range hopping in the presence of (a) Lorentzian,
(b) thermal, and (c) QPC noises. The parameters used are N = 101, J0 = 1, μ = −1 and �0 = 0.1. The value of νr determines the strength
of long-range hoppings; νr → ∞ corresponds to the original Kitaev model.

becomes

H0 = − iμ

2

N∑
j=1

c2 j−1c2 j + iJ0

2

r∑
l=1

N−l∑
j=1

1

lνr

× (c2 jc2( j+l )−1 − c2 j−1c2( j+l ) ) + i�0

2

s∑
l=1

N−l∑
j=1

1

lνs

× (c2 j−1c2( j+l ) + c2 jc2( j+l )−1). (13)

We consider a finite open chain with odd number of sites N
and r = s = (N − 1)/2, and work in a regime of parameters
where the model is in a topological superconducting phase.
For the sake of simplicity and arguments we consider two
cases separately: (1) the case of nearest-neighbor pairing and
long-range hoppings is studied in Sec. III A, and (2) the case
of nearest-neighbor hopping and long-range pairings is dis-
cussed in Sec. III B. To connect to our discussions of noises
in the preceding section Sec. II, a dynamical shift in chemical
potential μ → μ + ζ f (t ) in Eq. (13) yields M = σ y, where
σ y is the Pauli matrix in Majorana basis for spinless fermions.
Note that for models with spins, as discussed in next sections,
M = σ x; see Apendices for details. Using Eq. (10) and eigen-
vectors and eigenvalues of the Hamiltonian, we evaluate the
transition rate 
 of MBSs.

A. Kitaev chain with long-range hopping

For this case the hopping terms are long-ranged, i.e., νr

in Eq. (13) is finite, but the nearest-neighbor pairing is ob-
tained by taking the limit νs → ∞. This model has a rich
phase diagram studied in Ref. [36]. The topological phase is
characterized by the nontrivial winding numbers w = ±1 in
the following regime of parameters:

−2J0

N−1∑
l=1

1

lνr
< μ < 2J0

N−1∑
l=1

(−1)l+1

lνr
. (14)

In this regime the chain hosts Majorana modes localized
at the ends. The transition probabilities of MBSs affected by
distinct types of noises are shown in Fig. 2. In all panels the
black solid curve corresponds to the behavior of 
 in the ori-
ginal Kitaev model obtained by νr → ∞. Therefore, the plots

provide insights on how the range of hopping affects the
transition.

The first panel exhibits the behavior of 
 versus the central
frequency ω0/ωD of the Lorentzian noise in Eq. (1). For
all range of hoppings νr , a peak appears for ω0/ωD < 1,
which is attributed to the resonance with superconducting gap.
It is seen that the strength of the long-range hopping can
significantly affect the transition probability. In the regime
of short-range hopping interactions (νr > 1), the probability
rate surpasses the corresponding values of the original Kitaev
model (black curve), and by further increase of νr the curves
approach the latter model. In the long-range hopping regime,
where νr < 1, the probability rate shows a totally different
behavior. For values around νr = 0.2, the 
 is quite large,
while for νr = 0.4 is exceedingly small. An inspection of
Eq. (10) shows that two factors conspire to determine the
probability rate: the transition matrix element 〈q|M|0〉|2 and
the accumulation of states whose energies εq are close to ω0.
The latter makes SLorentz quite appreciable for many states.

We found that for example for νr = 0.2 the matrix element
is rather large for states near the energy gap. Also, the gap
in the energy spectrum is small, and therefore many states
|q〉 contribute to the noise spectrum which is detrimental in
having small values of 
. For other values of long-rang hop-
ping, say νr = 0.4, 0.6, the gap in the spectrum pushes many
states away from MBSs, suppressing the transition probability
rate. However, for νr > 1 the superconducting energy gap
is relatively large, so less states are involved in the noise
spectrum, and since the |〈q|M|0〉|2s become rather large for
states near the gap, a relatively large value of 
 arises. And, in
the limit of νr → ∞ the original Kitaev model is reached out.

The results for thermal and QPC noises are shown in
Figs. 2(b) and 2(c), respectively. The transition rate increases
at high temperatures, since the thermal weight in Eq. (2)
is relatively large for many states and they contribute in 
.
However, it turns out at least for some ranges of small values
of long-range hopping strength νr the transition rate can be
significantly suppressed. For the QPC noise the values of tran-
sition rate do not change with gate voltage; however, again it is
seen that there exists a window of νr where the transition rate
is decreased substantially. We note that the general behavior
of probability rate with νr is similar for all three noise sources.
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FIG. 3. The probability rate to destroy MBSs in a Kitaev chain of length of N = 101 with long-range pairing terms affected by
(a) Lorentzian, (b) thermal, and (c) QPC noises. The parameters are J0 = 1, μ = −2, �0 = 0.1. The value of νs determines the strength
of long-range pairings; νs → ∞ corresponds to the original Kitaev model.

B. Kitaev chain with long-range pairing

Next we move to the second case of nonlocal super-
conducting pairing amplitudes given by finite value of νs

in Eq. (13), while the hopping amplitudes are restricted to
nearest-neighbor sites. Again note that the limit νs → ∞ re-
covers the original Kitaev model. The model with finite νs

exhibits a nontrivial topological phase in a parameter range
of −2 < μ/J0 < 2 [36].

The results of transition rate for three noise sources are
shown in Fig. 3. Again the black curves in all panels show the
variation of 
 for the original Kitaev model. It is clearly seen
that for all types of sources the transition rate for the latter
model lies at the upper limit of curves. A striking feature of
these plots is that as the strength of the long-range pairing is
increased by decreasing νs, the transition probability rate is
reduced. The reason can be traced back to the energy gap,
the number of energy states close to the zero-energy state,
and the matrix elements as discussed above. Indeed, for this
case the energy gap is increasing smoothly with increasing
νs, while the values of matrix elements remains rather small.
Both effects then cooperate in yielding comparatively small
values for 
. Having established such a unique behavior, the
results show that the harmful effects of noises on MBSs can be
reduced in systems with long-range superconducting pairing
amplitudes.

IV. NANOWIRES IN PROXIMITY TO AN s-WAVE
SUPERCONDUCTOR

In this section we present the results for noise on the
MBSs in one of the most realistic and experimentally realized
platforms. A schematic of the model is shown in the left panel
of Fig. 1(a). The system is a heterostructure of a semiconduc-
tor nanowire in proximity to an s-wave superconductor. The
role of latter superconducting substrate is to induce pairing
potential into the nanowire. The main microscopic ingredients
to have a topologically nontrivial pairing gap in the nanowire
are strong spin-orbit coupling and a moderate Zeeman field,
which is provided by a magnetic field [3–5]. The heterostruc-
ture has been designed experimentally with strong evidence
of the existence of MBSs appearing at the open ends of the
nanowire [6]. Our objection is to investigate the effects of

noises on the MBSs and determine the range of parameters
where the latter states remain less influenced by noises.

The continuum model Hamiltonian capturing the main
physics of topological superconductor in this heterostructure
is [5,41]

H =
∑
λ,λ′

∫ L

0
dxψ†

λ (x)

(
− h̄2∂2

x

2m∗ −μ+iασ̂y∂x + hσ̂x

)
λλ′

ψλ′ (x)

+�

∫ L

0
dx(ψ†

↑(x)ψ†
↓(x) + H.c.), (15)

where m∗ and μ are the effective mass and chemical potential,
respectively. The third term describes the Rashba spin orbit
coupling (RSOC) in semiconductor nanowire which lifts the
spin degeneracy. The Zeeman energy h = gμBB, where g is
the Lande g-factor and μB is the Bohr magneton, opens a gap
in the energy spectrum. A strong enough magnetic field can
push one of the bands above the Fermi level, and therefore
creates single-degenerate electron state near the Fermi level.

Since we are interested in full spectrum of an open chain,
in the following we use the corresponding Hamiltonian on a
lattice. The Hamiltonian reads as [42]

H = −μ

N∑
λ, j=1

a†
j,λa j,λ − J

N−1∑
λ, j=1

(a†
j,λa j+1,λ + H.c.)

+α

N−1∑
λ,λ′, j=1

[
iσ y

λ,λ′
(
a†

j,λa j+1,λ′ − a†
j+1,λa j,λ′

)]

− h
N∑

λ,λ′, j=1

a†
j,λσ

x
λ,λ′a j,λ′ + �

N∑
j=1

(a†
j,↑a†

j,↓ + H.c.).

(16)

Representation of this Hamiltonian in terms of the
Majorana fermions is given in Appendix A. When h >√

�2 + (μ + J )2, the induced superconducting state is topo-
logically nontrivial [5,42] and the MBSs appear. In the
topological phase we numerically diagonalize the Hamilto-
nian on a finite open system and use Eq. (10) to compute the
transition rate. In particular, we would like to find a regime
of parameters h and α where the MBSs are relatively im-
mune to dynamical noises. The spin-orbit coupling α can be
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FIG. 4. The probability rate of MBSs in a Rashba nanowire with N = 401. Different solid colored curves in top (bottom) row are for
different values of magnetic field h (spin-orbit coupling α). The panels are for (a), (d) Lorentzian, (b), (e) thermal, and (c), (f) QPC noises. The
parameters are J = 1, μ = −2, and � = 0.1. In top panels α = 0.1 and in bottom panels h = 1.

changed by utilizing material combinations having different
Lande g factor and effective electron mass [5]. For example
for the heterostructure InAs/Al αexpr = 0.2–0.8 eV Å, while
for InSb/NbTiN it is αexpr = 0.2–1 eV Å.

In the following we work in a regime of parameters h and
α where the topological superconducting phase sets in and
there exist MBSs at the ends of open chain. The results for
transition probability are shown in Fig. 4. In the first row of
panels we examine the effects of the magnetic field on the
transition rate 
 with α = 0.1. For the Lorentz noise shown
in Fig. 4(a), while for all values of magnetic fields MBSs
appear as zero-energy modes, it’s desirable to work in the
regime of weak magnetic field so that the MBSs are less
impacted by dynamic fluctuations. We found that by increase
of magnetic field the gap in the spectrum becomes smaller
and, consequently, many states are involved in the transition
probability. In fact, the number of energy states with nonzero
transition matrix elements decreases with field, but the value
of transition matrix elements is increased significantly. There-
fore, the large field limit exposes the MBSs to noise and rises
the transition probability. The thermal noises become more
prominent at high temperatures and, as shown in Fig. 4(b),
small values of magnetic field can suppress the transition rate.
Similar effects of suppression of transition rate by decreasing
magnetic field are also demonstrated for the QPC noise in
Fig. 4(c).

Another very important parameter as discussed above is
the spin-orbit coupling α. The results are shown in the second
row of panels in Fig. 4. For the Lorentzian noise, the tran-
sition rates for several values of α are shown in Fig. 4(d).
The results indicate that for small values of α the transition
rate becomes large for lower part of spectrum. Our detailed
analysis show that for small α, despite having a small gap,
the matrix element is large for excited states near the gap

giving rise to a large transition rate. It starts diminishing
by increasing α within the low-frequency window of noise
spectrum. For larger frequencies, however, the rise of matrix
elements leads to increment of transition rate. The results for
thermal and QPC noises are shown in Figs. 4(e) and 4(f),
respectively. Now we see that the noise effects are substan-
tially diminished by increasing α, and thus the transition rate
is decreased. These results show that choosing nanowires with
large spin-orbit interaction will make the MBSs more immune
to noises.

A. Evaluation of transition rates for InAs/Al heterostructure

Now we are in a good position to evaluate the transition
rates for MBSs realized in InAs/Al nanowire heterostructure
shown schematically in Fig. 1. To compute 
 we have to eval-
uate amplitude of noise spectrum S0 and also the prefactore
ζ 2S0/h̄2 in Eq. (10). The Lorentzian noise source exhibits
random telegraph signal (RTS) with the following noise power
spectral density [43]:

S(ω) = 2(�I )2 nnt

(n + nt )2

1/vthsn(n + nt )

1 + ω2/[vthsn(n + nt )]2
, (17)

where �I is the amplitude of the RTS waveform, vth is the
thermal velocity of carriers, and sn is the trap’s electron
capture cross-section. Here, n is the mobile electron density
around the trap location, and nt = Nc exp(−Ec−Et

kBT ) is the ef-
fective electron density associated with the energy level of
trap Et . Also, Nc and Ec are the electron density and energy
of conduction band. Upon the comparison with Eq. (10), the
value of S0 can be estimated as S0 = 2(�I )2 1

vthsn

nnt
(n+nt )3 .

To evaluate ζ 2S0/h̄2 we note that for the Lorentzian
noise, ζ = e/(�G), where �G = eμeNDA/L is conductance
change of nanowire and ND is density of donors. Also,
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μe denotes the mobility of electrons, and A and L are
cross section and length of nanowire, respectively, and �I =
eμeVa/L2, where Va is the applied voltage. The parame-
ters adapted for InAs nanowire are: L = 100 nm, tempera-
ture T = 20 mK, activation energy Ec − Et  0.1 meV, Va 
1 meV, n  1015 cm−3, and ND  1014 cm−3 [5,44]. There-
fore, we obtain ζ 2S0/h̄2 = 2e2V 2

h̄2N2
DA2L2

nnt
vthsn (n+nt )3  109s−1.

For the thermal noise, S0 = 2m∗
gωl2/8εF and ζ =

e2/4πεε0d , where m∗
g  0.1me is the effective mass of elec-

trons, εF  1 eV is the Fermi energy in the gate, and ε0 is the
vacuum permittivity. Other parameters are dielectric constant
ε  10, width of Gaussian profile l  d and the typical gate-
wire distance d [21]. It yields ζ 2S0/h̄2  106s−1.

Finally, for the case of QPC noise, ζ = e/G with G =
e2N⊥lm/2π h̄L, where N⊥ denotes the number of trans-
verse conducting channels and lm is the mean free path
of electrons. We use typical values as N⊥ ∼ 300, V =
1V, lm = 200 nm, L = 100 nm, and Tn = 0.6. We then ob-
tain ζ 2S0/h̄2  109s−1.

In Fig. 5 we summarize the estimate of transition rate 
 for
three dynamical noises. The parameters in all plots are within
the experimental reach. The results are highly suggestive that
MBSs remain less affected by noises at low temperatures,
weak magnetic fields, and strong spin-orbit coupling. Also
one can see that the Lorenztian, Figs. 5(a) and 5(d), and QPC
noises, Figs. 5(c) and 5(f), produce a large degree of transition
rate, much larger than the thermal noise in Figs. 5(b) and 5(e).

Therefore, any protocol for creating and manipulating of
MBSs has to be designed in a way to mitigate the effects of
such noises significantly. In particular, our results for dynam-
ical noises imply that the latter may desctructively affect gate
operations in topological quantum computation protocols due
to decoherence and overwhelmed excitations. To reduce the

effects of noises, one possible way would be to remove oxides
from the contacts as suggested in Ref. [45]. Also, one may
think of designing gate operations acting within a nanosecond
time scale as investigated theoretically for vortex Majoranas
before decoherence takes place [46,47].

V. CHAIN OF MAGNETIC ATOMS
ON A SUPERCONDUCTOR

The last system we study is a linear chain of magnetic
atoms deposited on the surface of an s-wave superconductor,
as schematically shown in the right panel of Fig. 1. Using the
state-of-the-art spin-polarized scanning tunneling microscopy,
it is observed that magnetic chains with more than eight atoms
exhibit stable Néel states which is described by the classical
spin model aligned along a local axis [48]. The magnetic
ordering naturally breaks the time-reversal symmetry, and
therefore the need for an applied external field is lifted. The
magnetic texture induces the effective spin-orbit interaction
as electrons move along the chain.

A model Hamiltonian describing the above observation is
as follows [7]:

H = J
∑

j,λ

a†
j,λa j+1,λ +

∑
j,λ,λ′

[(B j · σ )λ,λ′ − μδλ,λ′ ]a†
j,λa j,λ′

+
∑

j

�(a†
j,↑a†

j,↓ + a j,↓a j,↑), (18)

where the magnetic field B j = Bn̂ j with n̂ j =
(sin θ j cos φ j x̂ + sin θ j sin φ j ŷ + cos θ j ẑ) and λ, λ′ stand
for up and down spin projections. To diagonalize the
Hamiltonian we rotate the spins in a local basis with the
quantization axis directed along the unit vector n̂ j and
without loss of generality assume that φ j = 0, the details of
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this transformation and subsequent Majorana representation
are relegated to Appendix B.

For Zeeman fields satisfying√
�2 + (|μ| − 2|J f |)2 < |B| <

√
�2 + (|μ| + 2|J f |)2, (19)

where f = cos(θ/2) (see Appendix B), the superconducting
model Eq. (18) becomes topologically nontrivial.

When exposed to dynamical noises, the results of transition
rate 
 are shown in Fig. 6. All panels show a qualitatively
similar results to nanowire model discussed in preceding sec-
tion. As seen in Fig. 6(a) by decreasing the Zeeman field the
transition rate is reduced at the lower part of the spectrum. The
gap in the quasiparticle spectrum deceases with the rise of the
Zeeman field, and the matrix element of MBSs and low lying
states increases simultaneously. The cooperation of these two
effects gives rise to the enhancement of the transition rate.

VI. CONCLUSIONS

Before summarizing the main findings of this work, let us
recapitulate the main idea and outlines of what we have done.
We started by posing an important question of how resilient
the MBSs appearing at the open ends of one-dimensional
topological superconductors are against dynamical noise
sources. We studied the effects of three experimentally rel-
evant time-dependent noises such as Lorentzian, thermal
and QPC on MBSs in the Kitaev p-wave model, Rashba
nanowires, and magnetic atomic chains.

We showed that in a topological phase the response of
MBSs to noise sources depends on the microscopic parame-
ters, and provide a pathway in selecting material combinations
where the effects of noises are least. Our findings show
that long-range pairings in the Kitaev chain, which can be
tunned experimentally, reduce the destructive effects of noises
and enhance the robustness of MBSs. For the experimentally
realized Rashba nanowire (see Fig. 5 for estimation of transi-
tion rates in InAs/Al nanowire heterostructure) and magnetic
chain in proximity to an s-wave superconductor, which are
the most promising proposals for realizing MBSs, we showed
that smaller magnetic fields yield more resilience MBSs.
In the former case, we showed that the materials with strong
Rashba-spin orbit coupling support robust MBSs in a noisy
environment.
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APPENDIX A: MAJORANA REPRESENTATION OF
SUPERCONDUCTING NANOWIRE HAMILTONIAN

In the basis of the 4N-components Nambu spinor ψ† =
[. . . , a†

j,↑, a†
j,↓, a j,↑, a j,↓, . . .], the matrix representation of the

Hamiltonian Eq. (16) can be obtained as [42]

H4N×4N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 H2 0 0 0

HT
2 H1 H2 0 . . .

...

0 . . .
. . .

. . .
. . . 0

0 0 . . .
. . .

. . . 0
...

...
. . . HT

2 H1 H2

0 0 . . . 0 HT
2 H1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where

H1 =

⎛
⎜⎝

−μ −h 0 �

−h −μ −� 0
0 −� μ h
� 0 h μ

⎞
⎟⎠,

H2 =

⎛
⎜⎝

−J −α 0 0
α −J 0 0
0 0 J α

0 0 −α J

⎞
⎟⎠. (A2)

In the Majorana basis, we use the following unitary transfor-
mation:

⎛
⎜⎝

c2 j−1,↑
c2 j−1,↓
ic2 j,↑
ic2 j,↓

⎞
⎟⎠ = U

⎛
⎜⎜⎜⎜⎝

a j,↑
a j,↓
a†

j,↑
a†

j,↓

⎞
⎟⎟⎟⎟⎠, where

U = 1√
2

⎛
⎜⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞
⎟⎠, (A3)
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and we rewrite the Hamiltonian in the following form:

H = U4N×4N H4N×4NU T
4N×4N , (A4)

which yields M = IN ⊗ (σ x ⊗ I2).

APPENDIX B: MAJORANA REPRESENTATION OF
SUPERCONDUCTING MAGNETIC CHAIN HAMILTONIAN

Following the strategy used in Ref. [7], we start with the
Hamiltonian Eq. (18) and align the spin basis with the unit
vector of n̂ j by the following transformation [49]:

(
a j,↑
a j,↓

)
= Uj

(
b j,↑
b j,↓

)
,

Uj =
(

cos(θ j/2) − sin(θ j/2)e−iφ j

sin(θ j/2)eiφ j cos(θ j/2)

)
, (B1)

where b j,λ satisfies the same anti-commutation relation as a j,λ.
The Hamiltonian in the new basis reads

H = J
∑
j,λ,λ′

(� j,λ,λ′b†
j,λb j+1,λ′ + �∗

j,λ′,λb†
j+1,λb j,λ′

+ Bσ z
λ,λ′b†

j,λb j,λ′ ) − μ
∑

j,λ

b†
j,λb j,λ

+�
∑

j

(a†
j,↑a†

j,↓ + a j,↓a j,↑), (B2)

where

� j = U †
j Uj+1 =

(
f j −g∗

j

g j f ∗
j

)
, (B3)

and

f j = cos(θ j/2) cos(θ j+1/2)+ sin(θ j/2) sin(θ j+1/2)ei(φ j−φ j+1 ),

g j = cos(θ j/2) sin(θ j+1/2)eiφ j+1 − sin(θ j/2) cos(θ j+1/2)eiφ j .

(B4)

To write the Hamiltonian in the Majorana basis, we use the
following definitions:

b j,λ = 1
2 (c2 j−1,λ + ic2 j,λ), b†

j,λ = 1
2 (c2 j−1,λ − ic2 j,λ), (B5)

as well as the assumptions of φ j = 0 and the constant angle
θ between nearest-neighbor moments. We define f j := f =
cos(θ/2) and g j := g = sin(θ/2) and rewrite the Hamiltonian
Eq. (B2) as

H = iJ f

2
(c2 j−1,↑c2 j+2,↓ − c2 j,↑c2 j+1,↑ + c2 j−1,↓c2 j+2,↓

− c2 j,↓c2 j+1,↓) − iJg

2
(c2 j−1,↑c2 j+2,↓

− c2 j,↑c2 j+1,↓ − c2 j−1,↓c2 j+2,↑ + c2 j,↓c2 j+1,↑)

− iμ

2
(c2 j−1,↑c2 j,↑ + c2 j−1,↓c2 j,↓)

+ iB

2
(c2 j−1,↑c2 j,↑ − c2 j−1,↓c2 j,↓)

+ i�

2
(c2 j−1,↓c2 j,↑ − c2 j−1,↑c2 j,↓). (B6)

Introducing the following Nambu spinor:

ψ† = [. . . , c2 j−1,↑, c2 j−1,↓, ic2 j,↑, ic2 j,↓, . . .], (B7)

the matrix representation of the Hamiltonian reads as
Eq. (A1), where

H1 = 1

2

⎛
⎜⎜⎜⎜⎝

0 0 −μ + B −�

0 0 � −μ − B

−μ + B � 0 0

−� −μ − B 0 0

⎞
⎟⎟⎟⎟⎠,

H2 = 1

2

⎛
⎜⎜⎜⎜⎝

0 0 f t −gt

0 0 gt f t

f t −gt 0 0

gt f t 0 0

⎞
⎟⎟⎟⎟⎠, (B8)

leading to M = IN ⊗ (σ x ⊗ I2).
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