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We study finite-temperature properties of the Kondo effect in a carbon nanotube (CNT) quantum dot using the
Wilson numerical renormalization group (NRG). In the absence of magnetic fields, four degenerate energy levels
of the CNT consisting of spin and orbital degrees of freedom give rise to the SU(4) Kondo effect. We revisit the
universal scaling behavior of the SU(4) conductance for quarter- and half-filling in a wide temperature range. We
find that the filling dependence of the universal scaling behavior at low temperatures T can be explained clearly
with an extended Fermi-liquid theory. This theory clarifies that a T 2 coefficient of conductance becomes zero at
quarter-filling, whereas the coefficient at half-filling is finite. We also study a field-induced crossover from the
SU(4) to SU(2) Kondo state observed at the half-filled CNT dot. The crossover is caused by the matching of the
spin and orbital Zeeman splittings, which lock two levels among the four at the Fermi level even in magnetic
fields B. We find that the conductance shows the SU(4) scaling behavior at μBB < kBT SU(4)

K and it exhibits the
SU(2) universality at μBB � kBT SU(4)

K , where T SU(4)
K is the SU(4) Kondo temperature. To clarify how the excited

states evolve along the SU(4) to SU(2) crossover, we also calculate the spectral function. The results show that
the Kondo resonance width of the two states locked at the Fermi level becomes sharper with increasing fields.
The spectral peaks of the other two levels moving away from the Fermi level merge with atomic limit peaks for
μBB � kBT SU(4)

K .

DOI: 10.1103/PhysRevB.102.165106

I. INTRODUCTION

Quantum dots provide an ideal testbed to investigate strong
correlations between the electrons in localized levels and the
conduction electrons in reservoirs. Kondo effect [1,2] is a
typical many-body phenomenon that occurs also in quantum
dots having local spin degrees of freedom. The Kondo effect
in quantum dots has been studied theoretically [3,4] and ex-
perimentally [5,6]. In addition to the spin degrees of freedom,
carbon nanotube (CNT) quantum dots have also the orbital
(valley) degrees of freedom, corresponding to clockwise and
counter clockwise orbitals around the nanotube axis [7]. Four
energy levels consisting of the spin and orbital degrees of
freedom give rise to the SU(4) Kondo effect in the case where
the four localized states are degenerate [8–14]. A number
of experiments for nonequilibrium transport have observed
the SU(4) Kondo effect [15–20]. Perturbations such as spin-
orbit coupling �SO, valley mixing �K,K ′ and magnetic fields
B break the SU(4) symmetry. Effects of such perturbations
on the Kondo state are theoretically studied for instance,
using Wislon’s numerical renormalization group (NRG) ap-
proach [21–23], which has been extended to explore transport

coefficients and spectral functions with very high accuracy
[12,24–26].

The main purpose of the present paper is to clarify the finite
temperature properties of the Kondo effect in CNT dots. In
the first half of this paper, we study the scaling behavior of the
SU(4) conductance at quarter- and half-filling. Although the
scaling behavior has been studied [12,16,27–29], we revisit
it with an extended microscopic Fermi-liquid theory which
describes transport phenomena at low temperatures [30–34].
It has recently been shown that the T 2 coefficient CT for
the conductance is determined in terms of five Fermi-liquid
parameters: electron filling, two linear susceptibilities, and
two nonlinear susceptibilities which are defined with respect
to the equilibrium ground state. Calculating these parameters
using the NRG, we successfully explain the filling dependence
of the scaling with the description. Specifically, we explore
the filling dependence of a T 2 coefficient CT and find that
CT becomes zero at quarter-filling whereas it is finite at half-
filling.

In the second half of this paper, we examine a field induced
crossover from SU(4) to SU(2) Kondo state at half-filling
nanotube dot [35,36]. At the valley where the crossover
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occurs, the SU(4) Kondo resonance emerges in the absence
of magnetic field, because �K,K ′ and �SO are smaller than
the SU(4) Kondo energy scale, kBT SU(4)

K . The field induced
crossover is different from the other crossover occurring at
quarter-filling [27,28,37–43]. Specifically, this crossover at
half-filling occurs in a situation where two localized levels
among the four remain the Fermi level even in magnetic fields
while the other two levels move away from the Fermi level.
The situation realizes if the spin Zeeman splitting coincides
the orbital splitting. Such coincidence can reasonably occur
in real CNT dots.

In the previous work, we have studied the crossover occur-
ring in this situation, by calculating quasiparticle parameters
such as phase shift δ, wave function renormalization factor Z
and Wilson ratio R [36]. We have found that the applied mag-
netic fields enhance the electron correlations. For instance,
as magnetic fields increase, the renormalization factor Z de-
creases from the SU(4) value to the SU(2) value and thus
the Kondo energy scale TK decreases. Our NRG results are
in good agreement with the experimental observations [35].

In this paper, we calculate the temperature dependence of
the conductance in magnetic fields to clarify the crossover
in a wide range of temperature T . We show that a temper-
ature scale T ∗ around which the conductance shows log T
dependence decreases with increasing magnetic fields. This
decrease of T ∗ becomes clearer in a strong Coulomb interac-
tion case and agree with the field dependence of Z . We also
examine the scaling behavior of the conductance. Whereas the
conductance follows the SU(4) scaling at μBB < kBT SU(4)

K , it
shows the SU(2) scaling at μBB � kBT SU(4)

K .
In addition to the conductance, we calculate the level re-

solved spectral functions in magnetic fields. The component
for the doubly degenerate levels shows that the Kondo reso-
nance width becomes sharper with increasing magnetic fields.
This field dependence of the width corresponds to that of
T ∗. Spectral weights of the other two states transfer from the
Fermi level, and the peaks merge with atomic limit peaks.

This paper is organized as follows. In the next section, we
describe the microscopic Fermi-liquid theory and the NRG
approach to CNT dots. In Sec. III, we examine the scaling
behavior of the SU(4) conductance at quarter- and half-filling.
We discuss how the quasiparticle parameters evolve during the
field induced crossover in Sec. IV. We present the NRG results
of conductance and discuss the influence of magnetic fields
on the temperature dependence of conductance in Sec. V. The
spectral functions in increasing magnetic fields are shown in
Sec. VI. Summary is given in Sec. VII.

II. FORMULATION

Transport properties of carbon nanotube quantum dots are
determined by a linear combination of four one-particle levels,
consisting of the spin (↑,↓) and valley (K, K ′) degrees of
freedom. The structure of these four states staying near the
Fermi level depend on the inter-valley scattering, the spin-
orbit coupling, and the Zeeman splittings of the spin and
orbital degrees of freedom. We introduce the Anderson model
for the CNT dot in this section using a diagonal form for
these local levels. We provide a more microscopic descrip-
tion specific to a real CNT dot, in which experiments have

measured the current and corresponding noise with high ac-
curacy. The renormalized parameters that characterize the
low-energy Fermi-liquid properties and details of the NRG
calculations are also described in this section.

A. Anderson model for CNT quantum dots

We start with an Anderson impurity model for a CNT dot,
which has N = 4 internal degrees of freedom and is connected
to two noninteracting leads:

H = H0
d + HU + Hc + HT , (1)

H0
d =

N∑
m=1

εmd†
mdm, HU = U

∑
m<m′

ndmndm′ , (2)

Hc =
∑

ν=L,R

N∑
m=1

∫ D

−D
dε ε c†

ν,εmcν,εm, (3)

HT =
∑

ν=L,R

N∑
m=1

vν (ψ†
ν,mdm + d†

mψν,m), (4)

ψν,m ≡
∫ D

−D
dε

√
ρc cν,ε,m, ndm ≡ d†

mdm. (5)

Here, d†
m and dm are the creation and annihilation operators,

respectively, for an electron with energy εm in the mth dis-
crete one-particle eigenstate of the dot (m = 1, 2, . . . , N). We
shall also call m the “flavour” in the following. The Coulomb
interactions U between the electrons occupying the dot levels
are assumed to be independent of m, assuming that the intra-
and intervalley Coulomb repulsions to be identical. We also
assume that Hund’s rule coupling can be neglected. This is
consistent with the CNT dot in which the field-induced SU(4)
to SU(2) Kondo crossover has been observed [19], and also
with the other nanotube dots [15]. Hc describes conduction
bands in the leads on the left and right. ν = L and ν = R
respectively denote the left and right leads. The conduction
electrons are assumed to carry the flavour index m, and the
continuous energy states in the bands are normalized such
that {cν,εm , c†

ν ′,ε′m′ } = δ(ε − ε′) δνν ′δmm′ . The Fermi level is
chosen to be εF = 0, at the center of the flat conduction bands
with the width 2D. HT describes charge transfer between the
dot and leads. We assume that the tunneling matrix element
vν is independent of flavour m, which can also be justified for
a class of CNT dots [19,35]. In this situation, the resonance
width due to these hybridizations becomes � = �L + �R

with �ν ≡ πρcv
2
ν , and ρc = 1/2D the density of states of the

conduction band. Unless otherwise stated, we set the Boltz-
mann constant kB to unity, i.e., kB = 1.

This Hamiltonian H has the SU(N ) symmetry when all
the impurity energies are equal εm ≡ εd . This is because HT

that describes charge transfer preserves the flavour index m,
and the Coulomb interaction is determined essentially by the
total number of impurities electrons N̂d ≡ ∑

m ndm as HU =
(U/2) N̂d (N̂d − 1). In Appendix A, we explain the symmetry
of this Hamiltonian in more detail.
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B. Fermi-liquid parameters

The equilibrium retarded Green Gr
m(ω) is an useful tool

to study transport coefficients of quantum dots. Gr
m(ω) is

given by

Gr
m(ω, T ) ≡ −i

∫ ∞

0
dt ei(ω+i0+ )t 〈{dm(t ) , d†

m(0)}〉 (6)

= 1

ω − εm + i� − �m(ω, T )
, (7)

Am(ω, T ) ≡ − 1

π
Im Gr

m(ω, T ). (8)

Here, 〈O〉 ≡ Tr[O e−H/T ]/� with � ≡ Tr e−H/T is the ther-
mal average of an observable O.

The phase shift δm is a primary parameter that characterizes
the Fermi-liquid ground state. It is determined by the value of
the self-energy �m(ω, T ) at ω = T = 0,

δm = π

2
− tan−1

[
εm + �m(0, 0)

�

]
. (9)

The Friedel sum rule also relates the phase shift δm to the
occupation number 〈ndm〉 [44],

〈ndm〉 = ∂�

∂εm

T →0−−→ δm

π
. (10)

Here, � = −T ln e−H/T is the free energy. The phase
shift also determines the value of the spectral function at
ω = T = 0,

Am(0, 0) = sin2 δm

π�
. (11)

The linear susceptibilities χm1,m2 are also important param-
eters that determine the Fermi-liquid properties:

χm1,m2
≡

∫ 1/T

0
dτ

〈
δndm1 (τ ) δndm2

〉
. (12)

Here, δndm ≡ ndm − 〈ndm〉 is the fluctuation of the occupation
number, and δndm(τ ) = eτHδndme−τH. The derivative of the
self-energy with respect to the impurity level also gives the
susceptibilities,

χm1,m2 = − ∂2�

∂εm1∂εm2

= − ∂〈ndm1〉
∂εm2

T →0−−→ Am1 (0, 0)

(
δm1,m2 + ∂�m1 (0, 0)

∂εm2

)
. (13)

The Ward-Takahashi identities relate the linear susceptibil-
ities to the wave function renormalization factor Zm and the
vertex function �mm′;m′m(0, 0; 0, 0) [45,46],

χm,m = Am(0, 0)

Zm
,

1

Zm
≡ 1 − ∂�m(ω, 0)

∂ω

∣∣∣
ω=0

, (14)

χm,m′ = −Am(0, 0) Am′ (0, 0) �mm′;m′m(0, 0; 0, 0). (15)

�mm′;m′m(ω,ω′; ω′, ω) is the m = m′ component of the vertex
correction, defined at T = 0 for the causal Green’s functions.
Note that the intra-level components for m = m′ vanish at zero
frequencies, �mm;mm(0, 0; 0, 0) = 0, because of the fermionic
antisymmetrical properties, i.e., the Pauli exclusion principle.

The renormalized level position ε̃m and corresponding reso-
nance width �̃m are determined by Zm,

ε̃m ≡ Zm [ εm + �m(0)], �̃m ≡ Zm�. (16)

The residual interaction between quasiparticles Ũm,m′ is
also an essential Fermi-liquid parameter [47]:

Ũm,m′ ≡ ZmZm′�mm′;m′m(0, 0; 0, 0) . (17)

The Wilson ratio Rm,m′ corresponds to a dimensionless resid-
ual interaction [48], and it generally depends on m and m′:

Rm,m′ ≡ 1 +
√

Ãm Ãm′ Ũm,m′ . (18)

Here, Ãm ≡ Am(0, 0)/Zm is the density of states of the quasi-
particles. Using Eqs. (14)–(17), Rm,m′ can also be expressed in
terms of the linear susceptibilities,

Rm,m′ − 1 = − χm,m′√
χm,m χm′,m′

. (19)

we calculate the renormalization factor Zm and residual in-
teraction Ũm,m′ using the NRG, and deduce the Wilson ratio
Rm,m′ from Eq. (18). We note that the linear susceptibility χm,m

determines the T -linear specific heat Cdot due to the impurity,

Cdot = γ T, γ = π2

3

∑
m

χm,m . (20)

Furthermore, fluctuations of the impurity electron filling are
described by the charge susceptibility χc ≡ ∑

m χc,m, which
can also be expressed in terms of Ãm and Ũm,m′ using Eqs. (14)
and (15):

χc,m ≡ −
∑

m′

∂〈ndm〉
∂εm′

=
∑

m′
χm,m′

= Ãm(0)

[
1 −

∑
m′( =m)

Ũm,m′ Ãm′ (0)

]
. (21)

The last line shows that the residual interaction Ũm,m′ reduces
the free-quasiparticle contributions given by the first term in
the right-hand side.

C. Conductance and nonlinear susceptibilities

The conductance gtot through a quantum dot can be ex-
pressed in the Landauer form [49–51],

gtot =
N∑

m=1

gm, (22)

gm = e2

h

4�L�R

�L + �R

∫ ∞

−∞
dω

(
−∂ f (ω)

∂ω

)
πAm(ω, T ). (23)

Here, f (ω) = 1/(eω/T + 1) is the Fermi distribution function.
It has recently been clarified that low-temperature behavior of
conductance up to order T 2 can be determined completely by
an extended Fermi-liquid theory [31–33]. This formulation is
also applicable to the multilevel Anderson impurity model at
arbitrary electron fillings, and the low-temperature expansion
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can be expressed in the following form, for symmetric tunnel-
ing couplings �L = �R [33,34],

gm = e2

h
[ sin2 δm + cT,m (πT )2 + · · · ]. (24)

Here, the first term in the right-hand side corresponds to
the ground-state value that is determined by the transmission
probability sin2 δm. The coefficient cT,m for the term of order
T 2 consists of two parts [31–34]:

cT,m = π2

3
[ wT,m + θT,m ], (25)

wT,m = − cos 2δm

(
χ2

m,m + 2
∑

m′( =m)

χ2
m,m′

)
, (26)

θT,m = sin 2δm

2π

(
χ [3]

m,m,m +
∑

m′( =m)

χ
[3]
m,m′,m′

)
. (27)

Here, wT,m represents the two-body contributions which are
determined by the linear susceptibilities χm,m′ . The other part
θT,m represents the three-body contributions, determined by
the nonlinear susceptibilities [33,34],

χ [3]
m1,m2,m3

≡ −
∫ β

0
dτ1

∫ β

0
dτ2

〈
Tτ δndm3 (τ3)δndm2 (τ2)δndm1

〉
.

(28)

Here, Tτ is the imaginary time ordering operator. This cor-
relation function corresponds also to the derivative of linear
susceptibilities:

χ [3]
m1,m2,m3

= − ∂3�

∂εm1∂εm2∂εm3

= ∂χm2,m3

∂εm1

. (29)

We note that χ [3]
m1,m2,m3

vanishes in the case at which the system
has both the particle-hole and time-reversal symmetries.

D. NRG approach to the spectral function
and transport coefficients

The NRG has successfully been applied to multi-orbital
quantum dots including CNT dots since a seminal work of
Izumida et al. [10,11,37,40,52–55]. Using the NRG, we cal-
culate the renormalized parameters such as the phase shifts of
electrons δ, the wave-function renormalization factor Z , and
the Wilson ratio R [56–58]. The present work uses the NRG
to calculate not only the renormalized parameters, but also
the linear conductance g and the spectral function Am(ω, T )
[21–23].

The key approximation of the NRG is the logarith-
mic discretization of the conduction band. A dimensionless
parameter � (>1) controls the discretization. The nonin-
teracting part of the discretized Hamiltonian H0

d + HT +
Hc is transformed into a one-dimensional tight-biding chain
with exponentially decaying hopping matrix elements tn ∼
D�−n/2. Then, the total Hamiltonian H including the inter-
actions can be diagonalized iteratively by adding the states on
the tight-biding chain, starting from the impurity site. Owing
to the exponential decay of tn, high energy states can be
discarded at each successive step without affecting low-lying
energy states so much. Although this iteration itself is an
artificial procedure, it can be interpreted as a process to probe

lower energy scale, step by step, stating from high-energy
scale [21]. We briefly explain the process of the NRG iteration
in Appendix B. Furthermore, we can deduce the quasiparticles
parameters Zm, ε̃m, and Ũm,m′ , from asymptotic behaviours
of the low-lying eigenvalues near the NRG fixed point (see
Appendix C) [22,23,48].

In the present work, we explore the CNT dots in a case
where the fourfold degeneracy is not completely lifted by the
magnetic field but still a double degeneracy remains for the
reason which will be discussed in more detail in Sec. III B.

Our NRG code uses the U(1) ⊗ [SU(2) ⊗ U(1)] ⊗ U(1)
symmetries to explore the SU(4) to SU(2) Kondo crossover.
The U(1) ⊗ U(1) ⊗ U(1) ⊗ U(1) symmetries are used to ex-
amine how perturbations, i.e., the valley mixing and spin-orbit
interaction, affect the crossover because the perturbations
break the SU(2) symmetry. The NRG calculations are carried
out keeping typically the lowest 4100 states in the trunca-
tion procedure, choosing the discretization parameter to be
� = 6.0. Furthermore, the spectral function and temperature-
dependent conductance [59,60] are obtained using the com-
plete Fock-space basis algorithm [24–26], together with the
Oliveira z averaging [59,61]. For obtaining the spectral func-
tions, we also calculate the higher-order correlation function
in order to directly deduce the self-energy �m(ω, T ) [62].
These supplemental techniques for the dynamical correlations
functions are also described in Appendix E.

III. FIELD-INDUCED SU(4) TO SU(2) CROSSOVER
OF KONDO SINGLET STATE

A. Microscopic description for the CNT-dot levels

The Hamiltonian H defined in Eqs. (1)–(4) are described
using a representation in which the dot part H0

d has already
been diagonalized. However, to see a microscopic back-
ground, the other basis set using the spin (↑, ↓) and valley
(K,K ′) degrees of freedom is more suitable.

The valley degrees of freedom capture a magnetic moment
along the CNT axis because of the cylindrical geometry of the
CNT. This orbital moment couples to an external magnetic
field parallel to the CNT axis [7,28,37,63,64]. The four levels
of the CNT dot are also coupled each other through the spin-
orbit interaction �SO and the valley mixing �KK ′ . The dot part
of the Hamiltonian can be expressed in the following form,
using the dot-electron operator ψ

†
d:�s for orbital � (= K, K ′)

and spin s (=↑,↓),

H0
d ≡

∑
�,�′

∑
s,s′

ψ
†
d:�s H0

d:�s,�′s′ ψd:�′s′ = ψ†
d H0

dψd . (30)

The matrix H0
d ≡ {H0

d:�s,�′s′ } is given by [7,28,37]

H0
d = εd 1s⊗1orb + �KK ′

2
1s⊗τx + �SO

2
σz⊗τz− −→M · �b,

(31)
−→M ≡ − 1

2
gs �σ⊗1orb − gorb 1s⊗τz �ez. (32)

Here, σ j = {σ j
ss′ } and τ j = {τ j

��′ } for j = x, y, z are the Pauli
matrices for the spin and the valley pseudo-spin spaces, re-
spectively. Correspondingly, 1s = {δss′ } and 1orb = {δ��′ } are
the corresponding unit matrices. In a finite magnetic field
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�b ≡ μB �B, where μB is the Bohr magneton, both the spin and

orbital moments contribute to the magnetization
−→M. The g

factor for the spin is gs = 2.0. The orbital moment couples
to the magnetic field along the nanotube axis, and the orbital
Zeeman splitting is given by ±gorb|�b| cos �. Here, gorb is the
orbital Landé factor and � is the angle of the magnetic field
relative to the nanotube axis, which is chosen as the z axis
with �ez the unit vector. The one-particle Hamiltonian of the
dot levels H0

d can be diagonalized via the unitary transform
with the matrix Ud = (u1, u2, u3, u4), constructed with the
eigenvectors,

H0
d um = εm um , u†

m · um′ = δmm′ . (33)

The operator dm that annihilates an electron in the eigenstate
with energy εm can be expressed in a linear combination of
ψd:�s’s via this transform with Ud .

For �SO = �KK ′ = 0, the spin component of the magneti-
zation becomes parallel to the field �e� = cos � �ez + sin � �ex
while the orbital component is in the direction along the
nanotube axis (� � π/2). Then, the eigenvalues of H0

d
can be written as ε1 = εd − (gorb cos � + gs/2)b, ε2 =
εd − (gorb cos � − gs/2)b, ε3 = εd + (gorb cos � − gs/2)b,
and ε4 = εd + (gorb cos � + gs/2)b. The eigenstates, for
m = 1, 2, 3, and 4, correspond to |K ′ ↓�b〉, |K ′ ↑�b〉, |K ↓�b〉,
and |K ↑�b〉, respectively, with ↑�b and ↓�b the spin defined
with respect to the direction along the field �b. Therefore the

thermal average of
−→M can be written in the form

〈ψ†
d

−→Mψd〉 = Morb �ez + Ms �e� , (34)

Morb = gorb[〈nd1〉 − 〈nd4〉 + 〈nd2〉 − 〈nd3〉], (35)

Ms = gs

2
[〈nd1〉 − 〈nd4〉 − 〈nd2〉 + 〈nd3〉]. (36)

In more general cases, the matrix for
−→M with respect to

one-particle eigenvector um, can be expressed in the following
forms using the Feynman theorem:

�Km ≡ u†
m

−→M um = − u†
m

∂H0
d

∂ �b um = − ∂εm

∂ �b . (37)

The thermal average of the magnetization
−→M can be written

in terms of these matrix elements,
−→M ≡ 〈ψ†

d

−→Mψd〉 =
∑

m

�Km〈nd,m〉. (38)

Therefore the magnetic susceptibility χ
μν

M ≡ ∂Mμ/∂bν ,
which is not isotropic for nano-tube dots, can be expressed
in the following form:

χ
μν

M =
∑

m

∂Kμ
m

∂bν

〈nd,m〉 +
∑
m,m′

Kμ
m

∂εm′

∂bν

∂〈nd,m〉
∂εm′

=
∑

m

∂Kμ
m

∂bν

〈nd,m〉 +
∑
m,m′

Kμ
m Kν

m′ χm,m′ ,

=
∑

m

∂Kμ
m

∂bν

〈nd,m〉 +
∑

m

Kμ
m Kν

m Ãm

−
∑
m =m′

Kμ
m Kν

m′ Ãm Ãm′ Ũmm′ . (39)

Here, the last term in the right-hand side represents the con-
tributions of the residual interaction, or the vertex corrections.
Since the Wilson ratio Rm,m′ given in Eq. (18) depends on the
residual interaction, Rm,m′ relates to the magnetic susceptibil-
ities.

B. CNT level structure and field-induced crossover

In recent experiments reported in Refs. [19,35], nonlinear
current and current noise were measured for a CNT dot with
the orbital Landé factor gorb ≈ 4 at finite magnetic fields
with an angle � ≈ 75◦. These values of gorb and � imply
that the magnitude of the orbital Zeeman splitting becomes
almost the same as the spin Zeeman splitting in this particular
situation,

gorb cos � ≈ 1
2 gorb = 1 . (40)

This situation can take place for CNT dots as the orbital Landé
factor gorb depends significantly on the diameter of nanotube
and takes a value around gorb ∼ 10 [7]. In the case where this
matching of the orbital and spin Zeeman splittings is satisfied,
the energy level of the dot has a double degeneracy which
remains unlifted in magnetic fields:

ε1 = εd − 2b, ε2 ≡ ε3 = εd , ε4 = εd + 2b. (41)

In this case, the occupation numbers of the degeneracy be-
come the same 〈nd2〉 = 〈nd3〉. Thus both the orbital and spin
magnetizations are determined by the occupation numbers of
the other two levels m = 1 and m = 4: Morb = gorb M14 and
Ms = gs

2 M14, with

M14 ≡ 〈nd1〉 − 〈nd4〉 . (42)

We note that �SO and �KK ′ are less important for the
examined CNT dot [19,35,36]. In this situation, the sys-
tem has an SU(2) rotational symmetry defined with respect
to the degenerate states in the middle, and the U(1) sym-
metry that conserves the sum of the occupation numbers
n2 + n3, in addition to the other two U(1) symmetries cor-
responding to n1 and n4 for the levels m = 1 and m = 4,
respectively. Therefore the SU(4) symmetry that the total
Hamiltonian has at zero field breaks down to the U(1)m=1 ⊗
[SU(2) ⊗ U(1)]m=2,3 ⊗ U(1)m=4 symmetry at finite magnetic
fields. This SU(2) symmetric part plays a central role in the
field-induced SU(4) to SU(2) Kondo crossover, occurring at
half-filling point Nd = 2. At this point, due to the matching
condition given in Eq. (41), the Hamiltonian H is invariant
under an extended electron-hole transformation described by
Eq. (A5).

C. Comparison of NRG and experiments results:
gate-voltage dependence at finite B or T

We have shown in the previous work [35,36] that the level
scheme, given in Eq. (41), nicely explains the field-induced
SU(4) to SU(2) Kondo crossover observed at half-filling Nd =
2 where two electrons occupy the local levels of the CNT dot.
The Coulomb interaction for this CNT dot is estimated to be
U ≈ 6 meV, and the hybridization energy is � ≡ �L + �R ≈
0.9 meV. Its asymmetric factor is 4�L�R/(�L + �R)2 =
0.92. The energy scales the interaction as U/(π�) = 2.0. The
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SU(4) Kondo temperature for the scaled U is T SU(4)
K /� =

0.41 which corresponds to TK = 4.3 K in a real scale. These
values of U and � are much larger than the value of the vally
mixing �KK ′ and than that of the spin-orbit interaction �SO.
The experimental values of �KK ′ and �SO are �KK ′ � �SO ≈
0.2 meV. We note that these values depend on the detailed
structures of carbon nanotube samples. Furthermore, it has
also estimated in the experiment that the orbital Zeemann
coupling as gorb cos θ � 0.7 [35], which is not so far from the
matching condition gorb cos θ = 1, described in Eq. (40).

We fist of all discuss the magnetoconductance for the case
gorb cos θ = 1 and �KK ′ = �SO = 0, at which an ideal SU(4)
to SU(2) Kondo crossover occurs. Figure 1(a) compares the
NRG results of the conductance at T = 0 with the experimen-
tal results obtained at T = 16 mK. The values of U and � for
the NRG calculations are the experimental values. The com-
parisons which have been done also in Ref. [35] show that the
NRG results nicely agree with the experimental results. We
can clearly see in this figure that the Kondo ridge emerges near
half-filling Vg � 26V in the absence and presence of magnetic
fields. Its height reduces from the SU(4) value 3.68 e2/h
to the SU(2) value 1.84 e2/h as magnetic field increases.
This reduction of the height implies that the observed SU(2)
behavior is caused by the doubly degenerate states, which
are labeled as m = 2 and 3 in Eq. (41), are shifted towards
the Fermi level in the half-filled case where εd = −3U/2.
Furthermore, the additional subpeaks, which emerge outside
the Kondo ridge for large magnetic fields B � 4 T, can also
be regarded as the resonances corresponding to the other two
nondegenerate levels, labeled as m = 1 and 4. Note that the
Kodo ridges corresponding to the 1/4 and 3/4 fillings are not
so pronounced at B = 0 because the Coulomb interaction for
this CNT dot U/(π�) = 2.0 is not very large.

We also examine the case where the matching condition
described in Eq. (40) cannot be satisfied, taking the parameters
such that �KK ′ = �SO = 0.2 meV and gorb cos θ = 0.7.1 At
zero field b = 0, the level structure is given by

ε1 = ε2 = εd − 1
2

√
�2

KK ′ + �2
SO, (43)

ε3 = ε4 = εd + 1
2

√
�2

KK ′ + �2
SO. (44)

The value of the gap due to the spin-orbit interaction and
valley mixing is

√
�2

KK ′ + �2
SO�0.28 meV, which is smaller than

the resonance width. Figure 1(b) shows the NRG results,
obtained taking the other parameters the same as those for
Fig. 1(a), i.e., U/(π�) = 2.0, � = 0.9 meV. The broad peak
emerges also in Fig. 1(b) although its peak value 3.14 e2/h
is smaller than that the value 3.68 e2/h, which is for the case
of �KK ′ = �SO = 0 and gorb cos θ = 1. The flat structure is
still preserved in small magnetic fields up to B ≈ 5 T . This
preservation shows that the SU(4) to SU(2) Kondo crossover
is robust against the perturbations. The larger magnetic fields
B � 5 T split the peak into two peaks. Furthermore, other two
sub peaks grow with increasing B, and thus the four distinct
peaks emerge. Figure 1(b) shows that the magnetoconduc-
tance for B = 10 T has the four peaks.

1See Supplemental Material of Ref. [35].

FIG. 1. (a) and (b) plot the zero temperature conductance as
functions of experimental gate voltages Vg for four values of mag-
netic fields: B = 0, 2, 4, and 10 T. In the CNT dot where
the experiments observed the crossover, the experimental Vg re-
lates to theoretical the theoretical εd via a linear relation: Vg =
(0.8 εd/U + 27.18) in units of volt. The asymmetric factor in
Eq. (23) and the Coulomb interaction are respectively 4�L�R/�2 =
0.92 and U/(π�) = 2.0 for each two figure. Here, � ≡ �L + �R =
0.9 meV. In (a), the dashed lines and solid lines respectively rep-
resent NRG and experimental results. The NRG results plotted in
(a) are for parameters: �SO = �K,K ′ = 0, gorb cos θ = 1. The exper-
imental results have been obtained at T = 16 mK [19,35], which
is much lower than T SU(4)

K = 4.3 K, the Kondo temperature for the
half-filled case (at Vg � 26 mV). (b) plots only NRG results by solid
lines. The parameters for the results are �SO = �K,K ′ = 0.2 meV and
gorb cos θ = 0.7.

Our NRG results for the CNT dots, reported so far, were
restricted to ground-state properties. The present work sheds
light also on the finite-temperature and dynamic properties
of the Kondo crossover. Figure 2 compares the experimental
results [35] of the zero-field conductance measured at T =
16 mK, 2 K, and 4.5 K with the corresponding NRG results,
calculated for slightly lower temperatures T = 0 K, 1.7 K, and
3.8 K to demonstrate how these comparisons work at the best.
We see a reasonable agreement between the theoretical re-
sults and experimental results. The height of the Kondo ridge
emerging near half-filling Vg � 26V decreases as temperature
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FIG. 2. Zero-field, B = 0, conductance at finite temperatures:
experimental (solid line) and NRG (dashed line) results are plot-
ted vs Vg. The experimental data has been obtained at T = 16 mK,
2 K, and 4.5 K [19]. For NRG calculations, slightly lower tem-
peratures T = 0, 1.7, and 3.8 K are chosen. The other parameters
are the same as those used for Fig. 1. The numbers “3,” “2,” and
“1” shown in these two figures represent the electron filling Nd at
corresponding Vg.

increases. At temperatures of order T ∼ T SU(4)
K = 4.3 K, Four

peaks corresponding to the Coulomb oscillation emerge. This
agreement also indicates that the theory of the SU(4) Kondo
effect can explain the experimental results of the conductance.

D. Scaling behavior of SU(4) conductance at
quarter and half-filling

In this section, we examine scaling behavior of the SU(4)
conductance as functions of temperature especially at quarter-
filling Nd = 1 and half-filling Nd = 2. In Fig. 2, the valley
is quarter and half-filled at gate voltages, Vg � 25V and Vg �
26V , respectively. The first value of Vg corresponds to the the-
oretical value εd/U = −1/2, and the second one corresponds
to εd/U = −3/2.

Since the T 2 coefficient cT,m of conductance given in
Eq. (25) depends on linear and nonlinear susceptibilities, we
discuss properties of these susceptibilities to examine the scal-
ing. In the SU(N ) symmetric case at which the N impurity
levels are degenerate εm ≡ εd , the linear susceptibilities have
only two independent elements: a diagonal element χm,m and
the off-diagonal element χm,m′ for m = m′. The diagonal ele-
ment determines a characteristic energy scale T ∗,

T ∗ ≡ 1

4 χm,m
. (45)

In the particle-hole symmetric case εd/U → −(N − 1)/2,
it corresponds the renormalized width of the Kondo reso-
nance as T ∗ → (π/4)�̃. At any arbitrary electron fillings,
T ∗ scales the impurity specific heat defined in Eq. (20) as
Cdot = Nπ2

12 (T/T ∗).
In the SU(N ) symmetric case, the Wilson ratio R defined in

Eq. (18) also takes a simplified form R − 1 = −χm,m′/χm,m,
where the flavour index has been dropped in the left-hand
side. The Wilson ratio takes the maximum value in the strong

coupling limit U → ∞ at integer filling points:

Rmax
SU(N ) − 1

U→∞, Nd → integer−−−−−−−−−−−→ 1

N − 1
. (46)

This is because the charge fluctuations are suppressed in this
limit, and the charge susceptibility defined in Eq. (21) van-
ishes: χc,m = χm,m + (N − 1)χm,m′ → 0.

The nonlinear susceptibilities have three independent el-
ements in the SU(N ) symmetric case for N > 2: χ [3]

m,m,m,
χ

[3]
m,m′,m′ , and χ

[3]
m,m′,m′′ , where m = m′, m′ = m′′, and m = m′′.

We note that the derivative of the diagonal linear suscepti-
bility χm,m with respect to εd can be related to the first two
elements, as

∂χm,m

∂εd

= χ [3]
m,m,m + (N − 1) χ

[3]
m,m′,m′ . (47)

We next revisit the temperature dependence of conductance
for the SU(N ) Anderson model, which has been previously
studied in detail by Anders et al. [12], taking in a recent Fermi-
liquid viewpoint [31–34]. The low-energy expansion, given in
Eqs. (24) and (25), takes the following form in the SU(N )
symmetric case,

gtot = N e2

h

[
sin2 δ − CT

(πT

T ∗
)2

+ · · ·
]
, (48)

CT ≡ π2

48
(WT + �T ). (49)

The two-body contributions WT and three-body contributions
�T , defined respectively in Eqs. (26) and (27), can be rewrit-
ten in the following form using also Eq. (47),

WT ≡ −[1 + 2 (N − 1)(R − 1)2] cos 2δ, (50)

�T = sin 2δ

2π

1

χ2
m,m

∂χm,m

∂εd

. (51)

Figures 3(a) and 3(b) show the temperature dependence of
gtot at half-filling and quarter-filling, respectively. We choose
four values of the interaction, U/(π�) = 2.0, 3.0, 4.0, and
5.0. The first value is the experimental value for the valley
where the SU(4) Kondo effect occurs. In other valleys, the
experimental values of U/(π�) can be larger than 2.0, and
we also consider the larger interaction cases. The temperatures
are scaled by the Kondo energy scales T ∗ defined in Eq. (45)
for each Nd and U . In each of the two figures, we find that the
scaled conductance curves collapse into a single curve over a
wide range of temperatures T � T ∗ for U/(π�) � 3.0, and
thus the conductance shows the universality for each filling.

To clarify the filling dependence of the universality, we
replot the curves of quarter and half filling in Fig. 3(c). For
the two curves, we choose the largest U among the four,
U/(π�) = 5.0. We find that whereas these two curves al-
most overlap each other around T � T ∗, the conductance
of quarter-filling is slightly larger than that of half-filling at
low-temperatures T < T ∗, especially around T � 0.1T ∗. The
inset of Fig. 3(c) clearly shows the different behavior depend-
ing on the filling.

This filling dependence of the scaling can be explained
by the Fermi-liquid theory [31–34]. We have recently clari-
fied using also the NRG that the derivative of the diagonal
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FIG. 3. SU(4) conductance curves are plotted as functions of
temperature T . (a) and (b) show the results at half-filling and quarter-
filling, respectively. In these figures, the conductance curves are
plotted for four values of the interaction, U/(π�) = 2.0, 3.0, 4.0,

and 5.0. (c) shows the curves of half-filling and quarter-filling for
the largest value U/(π�) = 5.0. The inset of (c) is an enlarged
view for 0.01 � T/T ∗ � 1. This inset clearly shows that the T 2

coefficient CT given in Eq. (49) vanishes at quarter-filling whereas
that at half-filling does not. In (a)–(c), the x axis is scaled by the
Kondo temperature T ∗ ≡ 1/(4χm,m ). The values of T ∗/� at half-
filling are 0.41, 0.29, 0.20, and 0.13 for U/(π�) = 2.0, 3.0, 4.0,

and 5.0, respectively. Similarly, the values at quarter-filling are
0.82, 0.57, 0.37, and 0.23. The y-axis is normalized by the zero
temperature values of conductance, g0 = (4e2/h) sin2 δ. At half-
filling, sin2 δ ≡ 1 for any value of U , and at quarter-filling, sin2 δ =
0.56, 0.55, 0.54, and 0.54.

susceptibility |∂χm,m/∂εd | becomes much smaller than χ2
m,m

in a wide region of electron fillings 1 � Nd � 3 for large
interactions U � � [34]. From this result, it follows that the
three-body contributions �T given by Eq. (51) almost vanish
in the same region, and the T 2 conductance in this case is
determined by the two-body contributions, as

CT � −(π2/48)[1 + 6 (R − 1)2] cos(πNd/2). (52)

Thus CT becomes 0 at quarter filling Nd = 1, whereas it
is finite CT = (π2/48)[1 + 6(R − 1)2] at half-filling Nd =
2. Therefore the conductance at Nd = 1 persists the zero
temperature value at 0 � T/T ∗ � 0.1 as shown in the inset
of Fig. 3(c). At Nd = 2, the coefficient approaches C∞

T =
5π2/144 � 0.3427 at U → ∞. This is because the Wilson
ratio for N = 4 saturates to the strong coupling limit value
Rmax

SU(4) − 1 → 1/3. Already at U/(π�) = 3.0, the coefficient
is given by CT � 0.34, which is very close to the strong-
coupling value C∞

T .

IV. EVOLUTION OF QUASIPARTICLES ALONG
THE FIELD-INDUCED CROSSOVER

The Fermi-liquid parameters for renormalized quasipar-
ticles describe low energy properties of quantum dots. The
phase shift δm, which is the primary parameter, corresponds to
zero temperature transmission probability. The renormaliza-
tion factor Zm and the Wilson ratio Rm,m′ are also important
parameters to examine the higher-order properties of the
Fermi-liquid states. We describe how these and related param-
eters evolve along a field induced crossover from the SU(4)
to SU(2) Kondo singlet state. The crossover occurs for the
dot levels defined in Eq. (41). Specifically, we consider
the half-filled case corresponding to the point Vg � 26 V in
the middle of the Kondo ridge seen in Fig. 1. The center of
the dot levels is chosen to be εd = −(3/2)U , and thus the
average number of electrons in the dot levels conserves in a
way such that 〈nd2〉 = 〈nd3〉 = 1/2 and 〈nd1〉 + 〈nd4〉 = 1 at
finite magnetic fields.

We examine two different values for the Coulomb interac-
tion in the following: (i) U/(π�) = 2.0 and (ii) U/(π�) =
4.0. The first one, (i), simulates the situation of the CNT dot,
in which the field-induced crossover has been observed and
the parameters have been estimated as U ≈ 6 meV and � ≈
0.9 meV [19,35]. We can see more clearly the renormalization
effects due to strong correlations in the second case (ii).

A. Fermi-liquid parameters for the real CNT dot

First of all, we consider the case U/(π�) = 2.0 that is
estimated by the recent experiments. The NRG results for this
case are shown in Fig. 4. Figure 4(a) shows the transmis-
sion probability Tm(0) = sin2 δm and magnetization M14 ≡
〈nd1〉 − 〈nd4〉, as a function of magnetic field b at half-filling.
The degenerate levels, m = 2 and 3, keep their positions
just on the Fermi level for finite magnetic fields, and show
the unitary limit transport sin2 δm = 1 as δ2 = δ3 = π/2. The
magnetic field partly lifts the degeneracy and the other two
states, m = 1 and 4. For these orbitals, sin2 δm decreases as
magnetic field increases. The magnetization M14, which in
the present case is determined by the occupation number or
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FIG. 4. (a) sin2 δm and magnetization M14 = 〈nd1〉 − 〈nd4〉, (b) renormalized level position ε̃m, (c) renormalization factor Zm, (d) Wilson
ratio Rm,m′ − 1, and (e) residual interaction Ũm,m′ are plotted as functions of magnetic field b at half-filling εd/U = −3/2 for U/(π�) = 2.0.
the x axis in (a)–(e) is scaled by the SU(4) Kondo temperature T SU(4)

K = 0.41� = (0.065U ) determined at b = 0. In (f) the axis is scaled by U
for examining the behavior of Ũm,m′ at larger magnetic fields b > T SU(4)

K . The dot levels εm are chosen in a such way that is described in Eq. (41).
In (b), the dashed lines indicate the bare Zeemann splitting, and the dash-dotted lines indicate the mean-field splitting εHF

1 = −(2b + U/2)
and εHF

4 = (2b + U/2). In a similar way, the dashed lines in (c)–(f) indicate the SU(2) symmetric values of Z2 → 0.23, R2,3 → 1.96, and
Ũ2,3/π� → 0.026, respectively.

these two levels, increases as the magnetic field increases. It
saturates to M14 → 1 in the limit of b → ∞, and the charge
fluctuations are suprressed as 〈nd,1〉 → 1 and 〈nd,4〉 → 0.

Figure 4(b) shows the renormalized resonance level po-
sition ε̃m as a function of magnetic field b. The twofold
degenerate states at the center, ε̃2 = ε̃3 = 0, remain just on the
Fermi level at arbitrary magnetic fields. The other two levels,
ε̃1 and ε̃4 move away from the Fermi level as b increases.
Slopes of them are steeper than those for the noninteracting
electrons 2b (dashed line). In the large field limit b → ∞,
the renormalized level positions approach the one described
in the mean-field theory, i.e., εHF

1 = −(2b + U/2) and εHF
4 =

(2b + U/2). These asymptotic form can be obtained as fol-
lows, substituting the mean values 〈nd1〉 = 1, 〈nd4〉 = 0 and
〈nd2〉 = 〈nd3〉 = 1/2 into the dot-part of the Hamiltonian with
εd = −(3/2)U ;

H0
d + HU = 2b(nd4 − nd1) − 3U

2
(nd2 + nd3 + nd1 + nd4)

+ U [nd2nd3 + nd1nd4 + (nd2 + nd3)(nd1 + nd4)]

b→∞−−−→ U
[
nd2nd3 − 1

2
(nd2 + nd3)

]
+

(
2b + U

2

)(
nd4 − nd1

)
+ const. (53)

Here, the Coulomb interaction between the orbitals
m = 2 and 3 is kept undecoupled. This asymptotic
Hamiltonian also shows that the symmetric SU(2) Anderson
model describes the Fermi-liquid properties of these
two orbitals.

The magnetic field dependence of the wavefunction renor-
malization factors Zm plotted in Fig. 4(c) more clearly shows
the crossover. At finite magnetic fields, only two of the four
Zm’s become independent: Z2 = Z3 and Z1 = Z4 because of
the particle-hole symmetry given in Eq. (A5). The first one
is for the degenerate levels remaining on the Fermi level, and
the second one is for the levels moving away from the Fermi
level. At zero field, where the system has the SU(4) symmetry,
these two factors for the different orbitals become identi-
cal each other: Z2 = Z1 = ZSU(4) = 0.52 for U/(π�) = 2.0.
Substituting this SU(4) value into Eq. (45) gives the SU(4)
Kondo energy scale T SU(4)

K /� = 0.41. Many-body effects sig-
nificantly renormalize Z2 from the SU(4) value as magnetic
field increases. In the limit of b → ∞, it approaches the
SU(2) symmetric value ZSU(2) = 0.23, which determines the

SU(2) Kondo energy scale T SU(2)
K /� = 0.19. The many-body

effects become less important for Z1 with increasing field, and
Z1 approaches the noninteracting value Z1 → 1 for the large
magnetic field.
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In order to clarify the many-body effects between elec-
trons occupying the different orbitals, we also examine the
orbital dependent Wilson ratio Rm,m′ and corresponding resid-
ual interaction Ũm,m′ . Figures 4(d) and 4(e) respectively show
Rm,m′ − 1 and Ũm,m′ as functions of b/T SU(4)

K . Magnetic field
dependences of Ũm,m′ are plotted also in Fig. 4(f), where
the magnetic field is scaled by U to examine behaviours of
Ũm,m′ at larger fields b � T SU(4)

K . Owing to the particle-hole
symmetry, only three of the six Ũm,m′ are independent: Ũ2,3,
Ũ1,4, and Ũ1,2 = Ũ1,3 = Ũ2,4 = Ũ3,4. Correspondingly, three
independent parameters of the Wilson ratios, R2,3, R1,4, and
R1,2, can be deduced from Eq. (18):

R2,3 − 1 = 1

Z2

Ũ2,3

π�
, (54)

R1,4 − 1 = sin2 δ1

Z1

Ũ1,4

π�
, (55)

R1,2 − 1 =
√

sin2 δ1

Z1

1

Z2

Ũ1,2

π�
. (56)

Among the three independent parameters of Rm,m′ and Ũm,m′ ,
R2,3 − 1 and Ũ2,3 are for the doubly degenerate orbitals on
the Fermi level. At zero field, R2,3 and Ũ2,3 take the SU(4)
values R2,3 − 1 = 0.31 and Ũ2,3/(π�) = 0.16 for U/(π�) =
2.0, and R2,3 − 1 already approaches very closely to the value
for the infinite Coulomb interaction: Rmax

SU(4) − 1 ≡ 1/3. These
parameters continuously evolve from the SU(4) values to the
SU(2) symmetric values: RSU(2) − 1 = 0.96 and Ũ2,3/(π�) =
0.23.

We also discuss the field dependence of the other parame-
ters, R1,2, R1,4, Ũ1,2, and Ũ1,4. Ũ1,2 decreases from the SU(4)
value with increasing magnetic field, and the corresponding
Wilson ratio R1,2 − 1 decreases to the noninteracting value 0.
In contrast to Ũ1,2, Ũ1,4 increases from the zero field value and
becomes larger than Ũ2,3 and Ũ1,2 for b > T SU(4)

K . It further
increases at the larger magnetic field regions b � T SU(4)

K as
shown in Fig. 4(f). This field dependence of Ũ1,4 is similar
to that of Ũ for a single orbital Anderson model [65,66],
although Ũ1,4 does not approach to the bare value U . We
briefly discuss the field dependence of Ũ and of the other
Fermi liquid parameters for the single orbital Anderson model
in Appendix D. This enhancement of Ũ1,4 does not result in
the enhancement of R1,4. In fact, R1,4 − 1 as well as R1,2 − 1
decreases to 0 since the factor sin2 δ1 goes to 0. We note that
R1,2 is slightly larger than R1,4 at arbitrary b in this case of
U/(π�) = 2.0.

B. Fermi-liquid parameters for larger U

We next consider a strong coupling case, taking the
Coulomb repulsion to be U/(π�) = 4.0, which is twice as
large as the one studied in the above. For this case, effects of
the interactions on the field-induced SU(4) to SU(2) Kondo
crossover emerges in a pronounced way. Such a situation is
also realistic because the experimental values of U and �

depend on individual quantum dots and on the valleys to be
measured.

Figure 5(a) plots ground-state values of Tm(0) = sin2 δm

and of M14 as functions of magnetic fields b/T SU(4)
K for

both U/(π�) = 4.0 and U/(π�) = 2.0. The results for
U/(π�) = 4.0 and U/(π�) = 2.0 are plotted with solid lines
and dashed lines, respectively. The energy scale depends on
the coupling constant as T SU(4)

K /� = 0.2 for U/(π�) = 4.0
and T SU(4)

K /� = 0.41 for U/(π�) = 2.0. We see that sin2 δm

and Md of U/(π�) = 4.0 show almost same b dependences as
those of U/(π�) = 2.0, and thus they show the universality.
The universal behavior is determined by the b dependence of
a single parameter δ1 (= π − δ4). Renormalized levels ε̃m for
U/(π�) = 4.0 plotted in Fig. 5(b) show the different b de-
pendence from those for U/(π�) = 2.0. Specifically, ε̃1 and
ε̃4 stay closer to the Fermi level than those for U/(π�) = 2.0.
However, this different b dependence does not affect the uni-
versal behavior of δ1 because a ratio of ε̃m to �̃m determines
the phase shift δm, i.e., δm = cot−1(̃εm/�̃m).

Figures 5(c) and 5(d) show the renormalization factors
Zm = �̃m/� and the Wilson ratios Rm,m′ , respectively. As
in the U/(π�) = 2.0 case, the quasiparticle parameters Z2

and R23 for the doubly degenerate states at the Fermi level
continuously evolve from the SU(4) value to the SU(2) value
as b varies from 0 to ∞. At zero field, these parameters
take the SU(4) values: ZSU(4) = 0.25 and RSU(4) − 1 = 0.33
for U/(π�) = 4.0. Note that the Wilson ratio is almost sat-
urated to the maximum possible value Rmax

SU(4) − 1 ≡ 1/3 at
zero field. In the opposite limit b → ∞, these parameters for
the twofold degenerate states (m = 2, 3) approach those for
the symmetric SU(2) Anderson model: ZSU(2) → 0.026 and
RSU(2)

23 − 1 → 0.99 for the same U . These results show that
the strong Coulomb interaction significantly affects the renor-
malization factor Z2 or �̃2. Z2 determines the energy scale for
large field as T SU(2)

K = 0.02� with Eq. (45). The quasiparticle
parameters Z1, R1,2 and R1,4, for the states moving away from
the Fermi level approach the noninteracting value in the limit
of b → ∞; i.e., Z1 → 1, R12 → 1, and R14 → 1. Notably, R1,4

becomes larger than R1,2 for U/(π�) = 4.0 at finite b. This is
quite different what we have found for the smaller interaction
case U/(π�) = 2.0.

In order to clarify this difference, we plot the residual inter-
actions Ũm,m′ as functions of magnetic fields in Figs. 5(e) and
5(f). The magnetic fields of Figs. 5(e) and 5(f) are respectively
scaled by T SU(4)

K and U . In these figures, especially in Fig. 5(f),
we can see that Ũ1,4 becomes much larger than the other two
residual interactions Ũ1,2 and Ũ2,3 as b increases. This field
dependence of Ũ1,4 clearly explain why the corresponding
Wilson ratio R1,4 becomes larger than R1,2. We also note
that Ũ2,3 for the doubly degenerate levels approach the SU(2)
symmetric value Ũ2,3/(π�) → 0.026.

All these results discussed in this section indicate that the
quantum fluctuations and many-body effects are enhanced for
large magnetic fields as the number of active channel de-
creases from 4 to 2 [36]. We have also shown the enhancement
of the fluctuations are more clearly seen for strong interac-
tions by comparing the results for U/(π�) = 4.0 to those for
U/(π�) = 2.0.

V. TEMPERATURE DEPENDENCE OF
MAGNETOCONDUCTANCE

The above discussions about the Fermi-liquid parameters
have mainly focused on the zero temperature properties of the
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FIG. 5. (a) sin2 δm and magnetization M14 = 〈nd1〉 − 〈nd4〉, (b) renormalized level position ε̃m, (c) renormalization factor Zm, (d) Wilson
ratio Rm,m′ − 1, and (e) residual interaction Ũm,m′ are plotted as functions of magnetic field b at half-filling εd/U = −3/2 for U/(π�) = 4.0.
The x axis in (a)-(e) is scaled by the SU(4) Kondo temperature T SU(4)

K = 0.2� = (0.016U ) determined at b = 0. The axis in (f) is scaled by U
for examining the behavior of Ũm,m′ at larger magnetic fields. The dot levels εm are chosen in a such way that is described in Eq. (41). In (a),
sin2 δm and Md for U/(π�) = 2.0 are also plotted by dashed lines to compare them with those for the present case U/(π�) = 4.0. Similarly,
ε̃m for U/(π�) = 2.0 are plotted in (b). The dash-dotted lines indicate the mean-field splitting εHF

1 = −(2b + U/2) and εHF
4 = (2b + U/2). In

the limit of b → ∞, Z2, R2,3 − 1, and Ũ2,3 approach the SU(2) values for U/(π�) = 4.0: Z2 → 0.026, R2,3 → 1.99, and Ũ2,3/π� → 0.026.

crossover. The results show that the quasiparticles are strongly
renormalized as the ground state undergoes the crossover from
the SU(4) Kondo state to the SU(2) Kondo state.

We also study finite temperature properties of the crossover
in this section by calculating each component of the magneto-
conductance gm for m = 1, 2, 3, 4 and the total conductance
gtot . At half-filling, εd = − 3

2U , only two components are
independent: g2 = g3 and g1 = g4 due to the level structure
described in Eq. (41). The finite-temperature conductance,
defined in Eq. (23), depends on the excited states whose
contributions enter through the spectral function Am(ω, T ).
We calculate the T -dependent Am(ω, T ), using the NRG with
some extended methods for dynamic correlation functions de-
scribed in Sec. II D and Appendix E, to obtain gm. We examine
two different interactions, U/(π�) = 2.0 and 4.0, also for
these components of the conductance assuming symmetric
couplings �L = �R = �/2.

A. Conductance for U/(π�) = 2.0 at half-filling

Figures 6(a)–(d) plot the total conductance gtot and
the components g2 = g3 and g1 = g4 as functions of the
temperature for six values of magnetic fields, b/T SU(4)

K =
0.0, 0.25, 0.5, 1.0, 2.0, and 4.0. The SU(4) Kondo energy
scale, determined at b = 0 for U/(π�) = 2.0, is estimated to
be T SU(4)

K = 0.41� as mentioned in Sec. IV A.

Figure 6(a) shows that the total counductance at b = 0
logarithmically increases around T ∼ T SU(4)

K . This logarith-
mic temperature dependence is a hallmark of the SU(4)
Kondo effect. gtot increases to the unitary-limit value 4e2/h
as temperature goes down to T → 0. As the magnetic fields
increase, the conductance at low-temperatures T � T SU(2)

K
decreases from the SU(4) unitary limit value 4e2/h to the
SU(2) one 2e2/h. We can also see that in a temperature range
of 0.1T SU(2)

K � T � T SU(4)
K the conductance curve deforms

continuously into the curve for the SU(2) symmetric case. The
SU(2) Kondo state emerges for b → ∞ where the characteris-
tic energy scale becomes T SU(2)

K = 0.19�. Therefore the finite
temperature conductance also shows the crossover behavior.
To examine how the magnetoconductance gtot evolves with
increasing b in more detail, we discuss the two components,
g2 and g1.

Figure 6(b) plots the component g2 which represents con-
tributions of the state m = 2 and m = 3 remaining at the
Fermi level. This component g2 decreases as b increases in
the temperature range of 0.1T SU(2)

K � T � T SU(4)
K . In order to

investigate the behavior of g2 in this range in more detail, we
introduce an energy scale T ∗

2 :

T ∗
2 ≡ π

4
�̃2, �̃2 = Z2 �. (57)
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FIG. 6. Temperature dependence of the linear conductance for U/(π�) = 2.0 are plotted for six values of magnetic fields b/T SU(4)
K =

0.0, 0.25, 0.5, 1.0, 2.0, and 4.0 at half-filling εd = −3U/2. (a) shows the total conductance gtot = ∑4
m=1 gm. The conductance consists of

two components, i.e., g2 = g3 and g1 = g4. (b) and (c) show the first one g2, and (d) shows the second one g1. (a)–(c) also show the results
for the SU(2) symmetric case by the symbols (+). In (a), (b), and (d), the x axis is normalized the bare resonance width �, and the axis in
(c) is normalized by a field dependent energy scale T ∗

2 = (π/4)Z2�. The inset of (b) shows T ∗
2 as functions of b/T SU(4)

K . At b = 0, T ∗
2 takes

the SU(4) symmetric value, T SU(4)
K /� = 0.41. In the opposite limit b = ∞, it takes SU(2) value, T SU(2)

K /� = 0.19 which is indicated by the
dashed line. The vertical arrows at the bottom of the panels indicate T SU(2)

K , T SU(4)
K , U/2, ε̃4 and U/2 + 2b; specifically the last two, ε4 and

U/2 + 2b, are defined with respect to b/T SU(4)
K = 4.0.

Aside from a numerical factor π/4, this energy T ∗
2 corre-

sponds to the width �̃2 (=�̃3) of the Kondo resonance for
m = 2 and 3, locked at the Fermi level even at finite mag-
netic fields. We use this energy scale to examine the scaling
behavior. T ∗

2 coincides with T SU(4)
K = 0.41� at b = 0, and

with T SU(2)
K = 0.19� in the opposite limit b → ∞. The inset

of Fig. 6(b) shows the energy scale T ∗ as functions of b.
We can see that T ∗

2 decreases from T SU(4)
K to T SU(2)

K with
increasing b. Correspondingly, a region where g2 shows the
log T dependence moves towards a low temperature side as b
increases. Although g2 decreases with increasing b at the finite
temperatures, it approaches the unitary limit e2/h for T → 0
for arbitrary magnetic fields. This is because the matching of
the spin and orbital Zeeman splitting locks the phase shifts at
δ2 = δ3 = π/2 even for magnetic fields.

Another important aspect of the crossover is the scaling
behavior of the conductance. In Ref. [28], Mantelli and his
coworkers examine effects of the spin-orbit interaction on
the scaling behavior at quarter filling, εd = − 1

2U . We exam-
ine how the magnetic field affects the scaling at half-filling,
εd = − 3

2U . To explore the scaling behavior, we rescale tem-
peratures by the field dependent energy scale T ∗

2 defined
in Eq. (57) and replot g2 for the six values of b as func-
tions of the rescaled temperatures T/T ∗

2 in Fig. 6(c). The
six curves are almost overlapped each other in this figure.
At low fields b � T SU(4)

K , the curves remain the same curve
as the SU(4) universal one over a wide temperature range.
At high fields b � T SU(4)

K , the curves collapse into the SU(2)
universal curve. At half-filling points εd = −N−1

2 U , the Wil-
son ratio determines the T 2 coefficient CT for the SU(N )
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conductance: CT = (π2/48) [1 + 2 (N − 1) (R − 1)2]. Sub-
stituting the Wilson ratio for the SU(4) case RSU(4) − 1 = 0.32
and for the SU(2) case RSU(2) − 1 = 0.96 into the formula of
CT yields the T 2 coefficients CT of each case for U/(π�) =
2.0: CSU(4)

T � 0.33 and CSU(2)
T � 0.59. Since CSU(4)

T < CSU(2)
T ,

the conductance for N = 4 is larger than that for N = 2 at the
low-temperature regions T/T ∗

2 � 0.1. Figure 6(c) shows this
magnitude relation of the conductance, and thus demonstrates
that the scaling behavior depends on the number of orbitals N
and the Wilson ratio R.

Figure 6(d) shows the other component g1(= g4) which
correspond to the contributions of the other two state moving
away from the Fermi level. At low temperatures T � T SU(4)

K ,
these components decrease as b increases and eventually van-
ish at the high magnetic fields b � T SU(4)

K . We can also see
that g1 has a peak at large mange fields b � 0.5T SU(4)

K . The
emergent peak is caused by thermal excitations from (to)
the renormalized level ε̃1 (̃ε4) which situates deep inside (far
above) the Fermi level for large fields as shown in Fig. 5(b).
Furthermore, tor the large fields, the level structure of the CNT
dot approaches the mean-field levels described in Eq. (53),
and the atomic-limit peak also emerges at U/2 + 2b (see also
Appendix F).

These results obtained for U/(π�) = 2.0 show a rather
moderate evolution of the crossover and the Kondo energy
scale T ∗

2 as T SU(2)
K is only half of T SU(4)

K .

B. Conductance for U/(π�) = 4.0 at half-filling

We next examine the conductance for a case of strong in-
teraction U/(π�) = 4.0 to see more clearly the field-induced
crossover at finite temperatures. In this case, the characteristic
energy scale for the SU(2) case is significantly suppressed
T SU(2)

K = 0.02�, which becomes much smaller than the SU(4)
energy scale T SU(4)

K = 0.2�, i.e., the difference is about one
order of magnitude.

Figure 7(a) shows that the total conductance gtot for
a temperature region 0.1T SU(2)

K � T � T SU(4)
K decreases as

magnetic field increases. Since the characteristic energy scale
T ∗

2 defined in Eq. (57) in this case becomes much smaller than
that for U/(π�) = 2.0, the region where the crossover oc-
curs moves towards a low-temperature region, T � T SU(4)

K =
0.2�. Furthermore, the shoulder structures emerging in the
high temperature region are more pronounced.

Figure 7(b) clearly shows that the curves of g2 evolve from
the SU(4) curve to the SU(2) curve during the crossover.
Specifically, the energy scale T ∗

2 around which g2 shows logT
dependence decreases with increasing magnetic field. The
inset of Fig. 6(b) shows the suppression of T ∗

2 : it decreases
from T SU(4)

K = 0.2� to T SU(2)
K = 0.02�.

The scaling behavior of g2 in Fig. 6(c) also becomes clear
because of this suppression. In a wide range of temperatures,
we can see that the scaled results collapse into two differ-
ent universal curves, i.e., the SU(4) curve for small fields
b/T SU(4)

K � 0.25, and SU(2) curve for large fields b/T SU(4)
K �

1. Since the Wilson ratios for N = 4 and 2 are respectively
saturated to the maximum possible values Rmax

SU(4) − 1 = 1/3
and Rmax

SU(2) − 1 = 1, the T 2 coefficients CT for each N are

also saturated: CSU(4)
T � 0.34 and CSU(2)

T � 0.62. Figure 6(c)

clearly shows that g2 for b = 0 is larger than that for b → ∞
at T < T ∗

2 because of CSU(4)
T < CSU(2)

T .
Furthermore, we can recognize that a broad peak emerges

for b � T SU(4)
K at T ≈ U/2. It corresponds to an thermal

energy needed to add an electron or a hole to the degenerate
states. Thus this atomic limit peak and the quasiparticle ex-
citation peak in Fig. 7(d) at T ≈ 2b + U/2 yield the shoulder
structure of gtot at the high temperatures, as shown in Fig. 7(a).

VI. SPECTRAL PROPERTIES ALONG THE
FIELD-INDUCED CROSSOVER

Spectral functions at finite magnetic fields also reflect the
crossover from the SU(4) to SU(2) Kondo states. In addition to
the Kondo resonance near the Fermi level, the Zeemann split-
ting causes a shift of the atomic-limit peak to ±(2b + U/2).
The spectral functions for the doubly degenerate states re-
main the same A2(ω, T ) = A3(ω, T ) for finite magnetic fields
owing to the dot level structure given in Eq. (41). Following
relations additionally hold in the particle-hole symmetric case
εd = −(3/2)U ,

A2(ω, T ) = A2(−ω, T ) , A1(ω, T ) = A4(−ω, T ) . (58)

The second relation shows that A4 is a mirror image of A1,
and we discuss A1 and A2 in the following. We examine
the spectral functions at T = 0, and hence we drop the sec-
ond argument of the functions, namely, Am(ω) ≡ Am(ω, T =
0), (m = 1, 2, 3, 4). As in the previous sections, we consider
the two cases for the interaction: (i) U/(π�) = 2.0 and (ii)
U/(π�) = 4.0. The spectral function obtained by the NRG
procedure is a set of discrete δ functions. To obtain a continu-
ous spectrum, the logarithmic Gaussian function is used (see
Appendix E 3).

A. Spectral function for U/(π�) = 2.0

Figure 8(a) shows the total spectral function Atot (ω) =∑4
m=1 Am(ω) for five different values of magnetic fields and

U/(π�) = 2.0. At zero magnetic field, we can see that a
single SU(4) Kondo resonance peak emerges on the Fermi
level ω = 0. As the magnetic field increases in the range of
0 < b < ∞, the height of the Kondo peak decreases from 4 to
2 in units of π� since the resonance peak positions for m = 1
and 4 move away from the Fermi level, leaving the other
positions for m = 2 and 3 just on the Fermi level, as shown in
Fig. 4(a). This field dependence of the peak positions results
in deforming the peak shape of the SU(4) Kondo resonance
into that of the SU(2) Kondo resonance on the Fermi level.
Furthermore, two sub peaks emerge at higher energies, i.e.,
±(2b + U/2).

Figure 8(b) plots A2 (= A3) for four values of b. A2 (= A3)
shows such deformation of the peak shape. The deformation
of A2 is not so clear in the case of U/(π�) = 2.0 since
T SU(2)

K is only half as large as T SU(4)
K . Nevertheless, the inset

of Fig. 8(b) which is an enlarged view around the Fermi level
shows that the resonance width on the Fermi level becomes
sharper. The sharpening of the width leads to the decrease
of the spectral weight. As the magnetic field increases, A2

also develops two sub peaks at ω = ±U/2 to compensate the
decrease of the weight. The two peak positions correspond to
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FIG. 7. Temperature dependence of the linear conductance for U/(π�) = 4.0 are plotted for six values of magnetic fields b/T SU(4)
K =

0.0, 0.25, 0.5, 1.0, 2.0, 4.0 at half-filling εd = −3U/2. (a) shows the total conductance gtot = ∑4
m=1 gm. The conductance consists of two

components, i.e., g2 = g3 and g1 = g4. (b) and (c) show the first one g2, and (d) shows the second one g1. (a)–(c) also show the results for
the SU(2) symmetric case by the symbols (+). In (a), (b), and (d), the x axis is normalized the bare resonance width �, and the axis in (c) is
normalized by characteristic energy scales T ∗

2 . The inset of (b) shows T ∗
2 as functions of b/T SU(4)

K . At b = 0, T ∗
2 takes the SU(4) symmetric

value, T SU(4)
K /� = 0.20. In the opposite limit b = ∞, it takes SU(2) value, T SU(2)

K /� = 0.02 which is indicated by the dashed line. The vertical
arrows at the bottom of the panels indicate T SU(2)

K , T SU(4)
K , U/2, ε̃4, and U/2 + 2b; specifically the last two, ε4 and U/2 + 2b, are defined with

respect to b/T SU(4)
K = 4.0.

the excitation energies on adding an electron or hole to the
dot. In Appendix F, we provide analytic expressions of the
spectral functions in the atomic limit vν → 0, where the CNT
dot is disconnected from the metallic leads. The remaining
degenerate states turn into the SU(2) Kondo state in the limit
of b → ∞. indicating that the states undergo the crossover
from the SU(4) to SU(2) Kondo state.

Figure 8(c) shows the other component A1(ω), which cor-
responds to the component of the level going down from
the Fermi level. Note that A4(ω) = A1(−ω), as mentioned.
We can see that the spectral weight transfers to the negative
frequency region ω < 0, and an evolution of its resonance
peak position shows good agreement with the field depen-
dence of ε̃1 presented in Fig. 4(a). This transfer leads to the
development of the sub peaks and decrease of the Kondo peak
of Atot . With increasing magnetic fields, the resonance peak at
ω = ε̃1 merges with the atomic-limit peak at ω = −U/2 − 2b,

which shifts from the zero field position −U/2 in the presence
of b. This shift of the atomic-limit peak, which we discuss in
the Appendix F, results from the descent of the energy level
ε1 described in Eq. (41). For much larger fields b � T SU(4)

K ,
the curve of A1 approaches the Lorentzian form. Therefore
the quasiparticle state of m = 1 is unrenormalized from the
correlated Kondo state to the bare state.

B. Spectral function for U/(π�) = 4.0

In order to investigate the effects of the strong interac-
tion on the spectral functions, we next discuss the spectral
functions for U/(π�) = 4.0. Figures 9(a)–9(c) respectively
show results of Atot, A2, and A1. We compare these results
with the corresponding results for the weak interaction case
in Fig. 8, Atot for the strong interaction in Fig. 9(a) shows a
similar trend as that for U/(π�) = 2.0 in Fig. 8(a). However,
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FIG. 8. Zero temperature spectral functions for U/(π�) =
2.0 are plotted for five values of magnetic fields, b/T SU(4)

K =
0.0, 0.5, 1.0, 2.0, 4.0 at half-filling εd = −3U/2: (a) Atot (ω) =∑4

m=1 Am(ω), (b) A2(ω), and (c) A1(ω). Vertical arrows at the bottom
of the panels indicate the points ω = ±U/2 and ±(2b + U/2) where
peaks emerge in the atomic limit. The peaks of ω = ±(2b + U/2)
are for the largest value of b among the five, b/T SU(4)

K = 4.0. The
position of the renormalized resonance level ε̃1 for the same value of
b are also shown in the bottom.

the width of resonance for U/(π�) = 4.0 is smaller than that
for U/(π�) = 2.0 in arbitrary magnetic fields, because U is
larger.

FIG. 9. Spectral functions for U/(π�) = 4.0 are plotted for
five values of magnetic fields, b/T SU(4)

K = 0.0, 0.5, 1.0, 2.0, 4.0 at
half-filling εd = −3U/2: (a) Atot (ω) = ∑4

m=1 Am(ω), (b) A2(ω), and
(c) A1(ω). Vertical arrows at the bottom of the panels indicate the
points ω = ±U/2 and −(2b + U/2) where peaks emerge in the
atomic limit. The peaks of ω = ±(2b + U/2) are for the largest value
of b among the five, b/T SU(4)

K = 4.0. The position of the renormalized
resonance level ε̃1 for the same value of b are also shown in the
bottom.

The component A2 in Fig. 9(b) more clearly shows the nar-
rowing of the resonance width than that for U/(π�) = 2.0,
because T SU(2)

K is smaller than T SU(4)
K by one order of mag-

nitude in this case i.e., T SU(2)
K = 0.02� and T SU(4)

K = 0.2�.
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The narrowing of the width leads to a loss of the spectral
weight around the Fermi level, which is compensated by an
enhancement of the atomic-limit peak at ±U/2.

The atomic limit peak around −U/2 − 2b of A1 is broader
in the strong interaction case shown in Fig. 9(c) than in the
weak interaction case, because the quasiparticle resonance
position ε̃1 presented in Fig. 5(b) still remains around the
Fermi level at the higher fields, b � T SU(4)

K . Owing to this
remaining, the quasiparticle state is still renormalized even at
the higher fields, and thus the shape of A1 differs from the
Lorentzian form.

VII. SUMMARY

We have studied the Kondo effect in a carbon nanotube
quantum dot in a wide range of temperature and magnetic field
using the numerical renormalization group.

In the first half of the present paper, we have studied finite
temperature properties of the SU(4) Kondo state by calcu-
lating the finite temperature conductance in a wide range of
electron filling Nd . The NRG results nicely agree with the
experimental results in the wide range, supporting an emer-
gence of the SU(4) Kondo resonance at low-temperatures,
T � T SU(4)

K . Furthermore, we have precisely examined the
temperature dependence of conductance especially at two
fixed values of Nd : quarter-filling Nd = 1 and half-filling Nd =
2. The obtained results show that the scaled conductance of
Nd = 1 is larger than that of Nd = 2 at the low temperatures.
A microscopic Fermi-liquid theory, which is extended to ar-
bitrary Nd , successfully explains such different behavior of
the conductance depending on Nd . The theory shows that a
T 2 coefficient CT for the conductance vanishes at Nd = 1. In
contrast to the quarter-filling case, CT does not become zero at
half-filling, but saturates to a strong coupling limit value. Thus
the universality depends on the electron filling. We expect that
this filling dependence of the universality can be observed.

In the second half of the present paper, we have investi-
gated how magnetic fields affect the ground state and also
excited states in the course of the SU(4) to SU(2) Kondo
crossover. Our previous papers show that quasiparticle states
remaining the Fermi level are renormalized as the number
of active levels decreases from four to two. The other two
states become unrenormalized in the course of the crossover.
The present paper has shown that the renormalization of the
quasiparticle states more clearly appear in a strong interaction
case because a characteristic energy scale T ∗

2 clearly decreases
from the SU(4) Kondo energy scale T SU(4)

K to the SU(2) Kondo
energy scale T SU(2)

K .
The finite temperature conductance in the magnetic fields

also shows such decrease of the energy scale. In addition, the
scaling behavior at half-filling shows that the excited states
undergo the crossover. Specifically, as soon as the magnetic
fields b become comparable to T SU(4)

K , the SU(4) universality
is lost, and for the much larger fields, b � T SU(4)

K , the SU(2)
universality emerges. Furthermore, the NRG results for both
SU(2) and SU(4) symmetric cases indicate that the Wilson ra-
tio and the Kondo energy scale determine the low-temperature
behavior of half-filled quantum dots.

We have also calculated total spectral function and their
components in magnetic fields. The obtained spectral function
shows that the resonance states remaining on the Fermi level
become sharper as the magnetic field increases, showing a
good agreement with the field dependence of the correspond-
ing renormalized resonance width. Furthermore, a spectral
weight of the other two states transfers towards the higher
frequency region, because the Zeeman splitting shifts the two
peak positions upward and downward from the Fermi level.
Such transfer results in the emergence of two sub-peaks whose
positions approach atomic-limit peak positions.

An interesting future work is to explore how the ther-
moelectric transport of multilevel quantum dots depends on
the electron filling [42,67,68]. We have already had the low-
temperature expansions for the thermal conductance [34], and
the progress along this line will be discussed elsewhere.
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APPENDIX A: SYMMETRIES OF HAMILTONIAN

In the case where the impurity level is degenerate εm ≡ εd ,
the Hamiltonian H defined in Eq. (1) has the SU(N ) symme-
try. This is also owing to the fact that the tunneling matrix
element and the Coulomb interaction do not depend on the
flavour m. It can also be confirmed that H commutes with
each component of the SU(N ) generators:

Jμ ≡ 1

2

N∑
m,m′=1

[
d†

mλ
μ

m,m′dm′ +
∑

ν=L,R

∫ D

−D
dεc†

ν,ε,mλ
μ

m,m′cν,ε,m

]
.

(A1)

Here, λμ for μ = 1, 2, . . . , N2 − 1 are the Gell-mann matri-
ces that satisfy the commutation relations,

[λi,λ j] = 2 i
N2−1∑
k=1

f i jk λk, (A2)

with f i jk the structure factor. The Hamiltonian H has also
an U(1)tot symmetry and commutes with the total number
operator Qtot = ∑N

m=1 Qm. Here, Qm is the number operator
for flavour m:

Qm =
[

ndm +
∑

ν=L,R

∫ D

−D
dε c†

ν,ε,mcν,ε,m

]
, (A3)

for m = 1, 2, . . . , N . Perturbations that lift the degeneracy of
the impurity level lower the symmetry from SU(N ) ⊗ U(1)tot

to U(1)m=1 ⊗ U(1)m=2 ⊗ U(1)m=3 ⊗ U(1)m=4 as H still com-
mutes with each number operator Qm.

For carbon nanotube dots, the two states of m = 2 and 3 re-
main degenerated even in magnetic fields when the matching

165106-16



FIELD-INDUCED SU(4) TO SU(2) KONDO CROSSOVER … PHYSICAL REVIEW B 102, 165106 (2020)

condition Eq. (40) holds. In the condition, H commutes with
the SU(2)-pseudospin operator,

Sμ ≡ 1

2

∑
m,m′=⇑,⇓

[
d†

mσ
μ

m,m′dm′ +
∑

ν=L,R

∫ D

−D
dεc†

ν,ε,mσ
μ

m,m′cν,ε,m

]
.

(A4)

acting on the two states. Here, σμ for μ = x, y, and z are
the Pauli matrices. The pseudospins ⇑ and ⇓ respectively
denote the state of m = 2 and 3. Thus the Hamiltonian has
the U(1)m=1 ⊗ [SU(2) ⊗ U(1)]m=2,3 ⊗ U(1)m=4 symmetries.
The SU(2) symmetry plays a central role in the field-induced
SU(4) to SU(2) Kondo crossover.

At half-filling point εd/U = −3/2, the Hamiltonian H is
invariant under an extended electron-hole transformation:

d†
1 ⇒ h4, d†

2 ⇒ h3, d†
3 ⇒ h2, d†

4 ⇒ h1, (A5)

and correspondingly, c†
ν,εm,m ⇒ − fν,−εm′ ,m′ for (m, m′) =

(1, 4), (2, 3), (3, 2), (4, 1). Here, hm and fν,εm′ ,m′ annihilate
hole in the dot and the conduction bands, respectively.

APPENDIX B: OVERVIEW OF NRG ITERATIONS

We provide a brief overview of an NRG iteration. The
NRG Hamiltonian H for an Anderson impurity model is a
semi-infinite tight-binding chain with the imuprity at a left
end. Specifically,

HNRG = H0
d + HU + Hchain + HT , (B1)

H0
d =

N∑
m=1

εmd†
mdm, HU = U

∑
m<m′

ndmndm′ , (B2)

Hchain =
∞∑

n = 0

N∑
m=1

tn( f †
n,m fn+1,m + H.c.) , (B3)

HT = V
N∑

m=1

(d†
m fm,0 + H.c.). (B4)

Here, � is a logarithmic discretization parameter. A hy-
bridization matrix element V couples the impurity site to a
0th site of the chain. Similarly, a hopping element tn couples
the nth site to (n + 1)th site. The explicit forms of V and tn
are respectively

V

D
=

√
2�A�

πD
, (B5)

tn
D

= (1 + �−1) (1 − �−n−1)

2 (1 − �−2n−1)1/2 (1 − �−2n−3)1/2 �−n/2. (B6)

Note that the logarithmic discretization corrects the tunneling
matrix element V . A� represents such a correction and can be
expressed as

A� = 1

2

(
1 + 1/�

1 − 1/�

)
ln �. (B7)

This correction A� approaches 1 in the continuum limit,

lim
�→1

A� = 1. (B8)

The hopping element tn exponentially decays with increasing
n and its asymptotic form is

tn
D

∼ 1 + �−1

2
�−n/2. (B9)

To iteratively diagonalize the Hamiltonian HNRG, we intro-
duce a Hamitonian HL which describe the chain ends at an
Lth site. The explicit form of HL is

HL = �(L−1)/2
[
H0

d + HU + HL
chain + HT

]
, (B10)

HL
chain =

L−1∑
n = 0

N∑
m=1

tn( f †
n,m fn+1,m + H.c.). (B11)

�(L−1)/2 is multiplied to the right-hand side of Eq. (B10) to
makes the hopping element �(L−1)/2 tL−1 be order of 1. Eigen-
values of HL also become order of 1 due to the multiplication.
The full Hamiltonian HNRG is recovered as the limit of

HNRG = lim
L→∞

�−(L−1)/2 HL. (B12)

Here, the prefactor corresponds to the energy scale of low-
lying excited states of HL:

TL

D
= �−(L−1)/2 . (B13)

To run the iteration, we deduce a recurrence relation for HL

from Eq. (B10),

HL+1 = �1/2 HL + �L/2 tL

N∑
m=1

( f †
L,m fL+1,m + H.c.).

(B14)

Using this relation, we can construct a matrix for HL+1 from
eigenvalues and corresponding eigenstates for the Hamilto-
nian HL. The iterative procedure yields the eigenenergies
EL(ω) at each Lth step. we keep only the NK eigenstates
with the lowest energies and discard the higher energy states
because a dimension of HL increases with increasing L.

Figure 10 plots low-lying eigenenergies of a CNT dot
as fucntions of even L with typical parameters: � = 6.0,
NK = 4100, U/(π�) = 4.0, εd/U = −3/2, and b/T SU(4)

K =
1.0. Here, the bare resonance width is �/D = 1/(100π ).
The SU(4) temperature T SU(4)

K /� = 0.2 determined at b = 0
scales the magnetic field b. In the value of b/T SU(4)

K = 1.0,
the Fermi-liquid state of the dot is in the middle of the SU(4)
to SU(2) Kondo crossover as shown in Fig. 5(a). Specifically,
Fig. 5(a) shows the magnetization Md is still not saturated to
1 at the value of b. Figure 10 shows that the energies do not
depend on L in the region of L � 20. At the last iteration L =
30, the energy scale TL given in Eq. (B13) is much smaller
not only than T SU(4)

K but also than the SU(2) Kondo tem-
perature T SU(2)

K /� = 0.02: TL/� ≈ 1.6 × 10−9, TL/T SU(4)
K ≈

8.2 × 10−9, and TL/T SU (2)
K ≈ 1.0 × 10−7. The value of T SU(2)

K
is determined at b → ∞. Therefore the low-lying energy
states approach the Fermi-liquid states for L greater than 20.
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FIG. 10. NRG energy flow of a CNT dot as functions of the even
chain length L. A CNT dot has N = 4 internal degrees of freedom.
We keep 4100 eigenvalues at each NRG step and plot the lowest
100 values in this figure. The logarithmic discretization parameter
is � = 6. Values of U , εd , and magnetic field b for the calculation
are U/(π�) = 4.0, εd/U = −3/2, and b/T SU(4)

K = 1.0, respectively.
The impurity resonance width is �/D = 1/(100π ). The SU(4) tem-
perature determined at b = 0 is T SU(4)

K /� = 0.2.

APPENDIX C: CALCULATION METHOD OF
FERMI-LIQUID PARAMETERS

We show how to calculate Fermi-liquid parameters such
as phase shifts δm, renormalization factors Zm, and residual
interactions Ũm,m′ . Let us consider a noninteracting case of the
NRG Hamiltonian, i.e., HNRG at U = 0 since a single particle
and hole excitation from the ground state determine the phase
shifts and the renormalization factors. In such a case, a matrix
form of the Hamiltonian HL is

HL
U=0 = �(L−1)/2

⎡⎢⎢⎢⎢⎢⎢⎣

εm V 0
V 0 t0
0 t0 0 t1

. . .
. . .

. . .

tL−2 0 tL−1

0 tL−1 0

⎤⎥⎥⎥⎥⎥⎥⎦.

(C1)

The Green’s function Gd (ω) at the impurity site (i = −1) is
the (1,1) element of the resolvent of this Hamiltonian matrix,

Gm(ω) ≡ (
ω 1 − HL

U=0

)−1

1,1

= 1

ω − εm �(L−1)/2 − V 2 �(L−1) g00,m(ω)
. (C2)

An eigenvalue E of HL is a pole of Gd . Specifically, the value
is a solution of the below equation,

E − εm �(L−1)/2 − V 2 �(L−1) g00,m(E ) = 0. (C3)

In Eqs. (C2) and (C3), g00,m(ω) is the Green’s function at a
site i = 0 for a chain which starts from the zeroth site and
ends at the Lth site. A Hamiltonian HL

0 describes such a chain.
g00,m(ω) is the (1,1) element of the resolvent of HL

0 ,

g00,m(ω) ≡ (
ω 1 − HL

0

)−1

1,1 . (C4)

A ratio of the impurity level position εm to its width � is
deduced from Eq. (C3),

εm

�
= E

�
�

−(L−1)
2 − 2 A�

π
lim

L→∞
�

L − 1
2 Dg00,m(E ). (C5)

We here use the relation Eq. (B5) between the hybridization
V and �.

We henceforth discuss interacting cases, i.e., cases of U =
0, by extending the Eq. (C5) to such cases. Let Ep,m(L) denote
an excitation energy on adding an electron to the ground state.
Similarly, we define Eh,m(L) as an excitation energy on adding
a hole to the ground state. The NRG iteration procedure cal-
culates Ep,m(L) and Eh,m(L) as a function of the chain length
L. We note that Ep,m(L) > 0 and Eh,m(L) < 0. Here we set the
energy of the ground state as 0. Replacing the noninteracting
eigenvalue E in Eq. (C5) to the corresponding Ep,m(L) or
Eh,m(L) yields ratios of renormalized level position ε̃m to its
width �̃m,

ε̃m,p

�̃m,p
= Ep,m(L)

�̃m,p
�

−(L−1)
2 − 2 A�

π
�

L−1
2 Dg00,m(Ep,m(L)),

(C6)
ε̃m,h

�̃m,h
= Eh,m(L)

�̃m,h
�

−(L−1)
2 − 2 A�

π
�

L−1
2 Dg00,m(Eh,m(L)).

(C7)

Here, ε̃m,p and ε̃m,h are the renormalized resonance level po-
sitions calculated from Ep,m and Eh,m, respectively. Similarly,
�̃m,p and �̃m,h are the renormalized line widths from Ep,m and
Eh,m. The first terms in the right-hand side of the equations
can be neglected in the limit of L → ∞ because Ep,m(L) and
Eh,m(L) are of order 1. Thus the ratios become

ε̃p(h),m

�̃p(h),m
= −2 A�

π
lim

L→∞
�

L − 1
2 Dg00,m(Ep(h),m(L)). (C8)

We obtain occupation numbers 〈ndm,p〉 and 〈ndm,h〉 by substi-
tuting the ratios into the Friedel sum rule given by

〈nm,p(h)〉 = 1

2
− tan−1

(
ε̃p(h),m

�̃p(h),m

)
. (C9)

Furthermore, subtracting Eq. (C7) from Eq. (C6) gives the
renormalized level width �̃m,

�̃m = π

2A�

Ep,m(L)−Eh,m(L)

�(L−1)Dg00,m(Ep,m(L))−�(L−1)Dg00,m(Eh,m(L))
.

(C10)

Figure 11(a) plots the occupation numbers of the CNT
dot as functions of the NRG chain length L. The parame-
ters are U/(π�) = 4.0, εd/U = −3/2, and b/T SU(4)

K = 1.0
for the plots. The SU(4) Kondo temperature is T SU(4)

K /� =
0.2 for the values of U and εd . Figure 11(a) clearly shows
that 〈n1,p〉 from the particle excitation and 〈n1,h〉 from the
hole excitation converge to a same value 〈n1〉 = 0.84 with
increasing L. 〈n2,p〉 and 〈n2,h〉 also converge to the half-filled
value 〈n2〉 = 0.5. Since the extended electron-hole symmetry
described by Eq. (A5) imposes relations between the occu-
pation numbers: 〈n4,p〉 = 1 − 〈n1,h〉 and 〈n4,h〉 = 1 − 〈n1,p〉,
〈n4,p〉 and 〈n4,h〉 converge to a value 1 − 〈n1〉 = 0.16. The
values of 〈nd,1〉 and 〈nd,4〉 give a value of the magnetization
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FIG. 11. (a) shows flows of occupation numbers: 〈n1,p〉, 〈n1,h〉,
〈n2,p〉, 〈n2,h〉, 〈n4,p〉, and 〈n4,h〉. (b) shows those of renormalization
factors: Z1 and Z2. The x axis is the NRG chain length L in each fig-
ure. In (a), Following six symbols, •, ◦, �, �, �, and � respectively
denote the values of 〈n1,p〉, 〈n1,h〉, 〈n2,p〉, 〈n2,h〉, 〈n4,p〉, and 〈n4,h〉.
In (b), • and � respectively denote the values of Z1 and Z2. The
parameters are U/(π�) = 4.0, εd/U = −3/2, and b/T SU(4)

K = 1.0
for each figure. These parameters are the same as those for Fig. 10.
The SU(4) Kondo temperature is T SU(4)

K /� = 0.2 for the values of
U and εd . Eq. (41) describes the magnetic filed b dependence of the
four dot levels ε1, ε2, ε3, and ε4.

Md = 〈nd,1〉 − 〈nd,4〉 = 0.67. Figure 5(a) shows this value of
Md at the point of b/T SU(4)

K = 1.0.
Figure 11(b) plots the chain length L dependence of renor-

malization factors Zm, which are ratios of �̃m to �, i.e., Zm =
�̃m/�. We note that the electron-hole symmetry also makes
two of the four factors independent: Z1 = Z4 and Z2 = Z3 This
figure shows that values of Z1 and Z2 respectively converge
to Z1 = 0.34 and Z2 = 0.14. Since the value of Z2 is about
ten times as large as the SU(2) limit value 0.026, the Fermi-
liquid state at b/T SU(4)

K = 1.0 is in the middle of the crossover
between the SU(4) and SU(2) Kondo state.

The NRG iteration also yields higher excitation energies
from the ground state. Ek,p,m and Ek,h,m respectively repre-
sent such electron and hole excitation energies. We note that
Ek,p,m > 0 and Ek,h,m < 0. They describe a free quasiparticle
Hamiltonian,

H0 =
N∑

m=1

∑
k

(Ek,p,m p†
k,m pk,m − Ek,h,m h†

k,mhk,m). (C11)

Here, operators p†
k,m and h†

k,m respectively create the quasipar-
ticle with Ek,p,m and the quasihole with Ek,h,m. Correspond-
ingly, pk,m and hk,m annihilate the quasiparticle and quasihole.
The ground state |0〉 is defined such that pk,m|0〉 = 0 and

hk,m|0〉 = 0. A linear combination of p†
k,m and hk,m expresses

the operator d†
m which creates the impurity electron,

d†
m =

∑
k

(p†
k,mφk,p,m(−1) + hk,mφk,h,m(−1)) . (C12)

To calculate Wilson ratios Rm,m′ defined in Eq. (18), we
consider a residual interaction term,

HU
L = �(L−1)/2

∑
m<m′

Ũm,m′ N[ ndm ndm′ ]. (C13)

Here, Ũm,m′ is the strength of the residual interaction between
the quasiparticles. N is the normal ordering operator. We ex-
amine how the interaction affects the low-lying many-particle
states to a first order perturbation in Ũm,m′ . This order calcu-
lation accurately describes the effects of the interaction on
the low-energy states because the term vanishes in the limit
of L → ∞. For the explicit calculation, we introduce a two-
particle excited state from the ground state:

|A〉 = p†
1,m p†

1,m′ |0〉, (C14)

where m = m′. The NRG iteration calculates a corresponding
eigenvalue Epp(L). The first order calculation of Ũm,m′ also
gives Epp,

Epp(L) = 〈A|H0 + HU
L |A〉

= 2Ep,m(L) + Ũm,m′�− L−1
2 |β1,p,m|2|β1,p,m′ |2.

(C15)

In this equation, |β1,p,m|2 is given by

|β1,p,m |2 = �(L−1)/2

1 − Ṽ 2
m �(L−1) dg00,m(E )

dE

∣∣∣∣
E=E1,p,m

, (C16)

where Ṽ 2
m = 2D�̃mA�/π . The L dependent Ũm,m′ (L) is

deducible from Eq. (C15) since the NRG iteration proce-
dure determines Epp(L) in the left hand of the equation.
We can alternatively consider two hole excitations to calculate
Ũm,m′ . Considering particle-hole excitations and hole-particle
excitations also yields Ũm,m′ . Here, the word “particle-hole
excitations” denote one particle excitation with m flavour and
one hole excitation with m′ flavour. The word “hole-particle
excitations” similarly denote one hole and one particle ex-
citation with m and m′. Thus Ũm,m′ is calculable by four
different ways. Ũ pp

m,m′ (L), Ũ hh
m,m′ (L), Ũ ph

m,m′ (L), and Ũ hp
m,m′ (L)

denote the residual interaction deduced from the two-particle,
two-hole, particle-hole and hole-particle excitation energies,
respectively.

Figures 12(a)–12(c) respectively plot L dependence of
Ũ2,3, Ũ1,2, and Ũ1,4 which are calculated by the four ways. The
three figures show that Ũ pp

m,m′ , Ũ hh
m,m′ , Ũ ph

m,m′ , and Ũ hp
m,m′ converge

a same value Ũm,m′ for each (m, m′). Each inset clearly shows
such convergence of the four values. The converged values
are Ũ2,3/(π�) = 0.13, Ũ1,2/(π�) = 0.05, and Ũ1,4/(π�) =
0.35.
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FIG. 12. Residual interactions Ũm,m′ are plotted as functions of
the chain length L. (a), (b), and (c) respectively show (m, m′) =
(2, 3), (1,2), and (1,4) element of Ũm,m′ . The particle-hole symmetry
given by Eq. (A5) imposes following relations to the residual interac-
tions: Ũ1,2 = Ũ1,3 = Ũ2,4 = Ũ3,4. The parameters are U/(π�) = 4.0,
εd/U = −3/2, and b/T SU(4)

K = 1.0 for every three figure. The SU(4)
Kondo temperature is T SU(4)

K /� = 0.2 for the values of U and εd .
Following four symbols: �, •, �, and � respectively represent Ũ pp

m,m′ ,

Ũ hh
m,m′ , Ũ ph

m,m′ , and Ũ hp
m,m′ in each figure. The insets show an enlarged

view in the range of 8 � L � 20.

The Wilson ratios Rm,m′ are deducible from the obtained
values of δm = 〈ndm〉/π , Zm, and Ũm,m′ using Eqs. (54)–(56).
Figure 13 plots R2,3 − 1, R1,4 − 1, and R1,2 − 1 as func-

FIG. 13. Wilson ratios R2,3 − 1, R1,4 − 1, and R1,2 − 1 are plot-
ted as functions of the chain length L for the parameters: U/(π�) =
4.0, εd/U = −3/2, and b/T SU(4)

K = 1.0. Each three symbol, i.e., �,
•, and � represents values of R2,3 − 1, R1,4 − 1, and R1,2 − 1, re-
spectively. The SU(4) Kondo temperature is T SU(4)

K /� = 0.2 for the
values of U and εd .

tions of L. The four values of Ũ pp
m,m′ , Ũ hh

m,m′ , Ũ ph
m,m′ , and Ũ hp

m,m′
are averaged to calculate the ratios Rm,m′ − 1. Each of the
three ratios converges for L � 20. The converged values are
R2,3 − 1 = 0.92, R1,2 − 1 = 0.11, and R1,4 − 1 = 0.24. R2,3

becomes larger than the other two ratios because the corre-
sponding impurity levels of R2,3 remain the Fermi level.

APPENDIX D: FERMI-LIQUID PARAMETERS FOR
SINGLE ORBITAL ANDERSON IMPURITY

We briefly discuss how the Fermi liquid state of the single
Anderson impurity evolves with increasing magnetic field.
The field dependence of the Fermi liquid parameters have
been discussed also in Refs. [65,66]. Figures 14(a) and 14(b)
plot NRG results of the Fermi liquid parameters and the
residual interaction, respectively. In the NRG calculations,
the spin-dependent impurity level is chosen such that εd,σ =
εd + sgn(σ )b, and the center of the impurity level is locked
at the half-filling, εd = −U/2. Figure 14(a) shows that the
transmission probability T (0) = sin2 δ decreases as soon as
magnetic fields become comparable with the Kondo tempera-
ture T SU(2)

K , and correspondingly, the induced magnetization
is rapidly saturated to 1, i.e., Md → 1. In contrast, Z and
R − 1 vary more slowly than T (0) and Md with the scales
of U . The inset of Fig. 14(a) shows that �̃ and R − 1 are
still renormalized for small magnetic fields b � T SU(2)

K . For
large magnetic fields b � T SU(2)

K , these parameters approach
the noninteracting values, Z → 1 and R − 1 → 1.

The residual interaction plotted in Fig. 14(b) also varies
from a zero field value 4T SU(2)

K = 0.23π� with increasing
b. For small magnetic fields b � 0.2U , Ũ is enhanced and
its value becomes larger than the bare Coulomb interaction
U . As magnetic fields further increase, it decreases from the
enhanced value to the bare value U .

APPENDIX E: NRG FOR DYNAMICAL CORRELATIONS

1. Spectral function and self-energy

In this work, the spectral function Am(ω) has been calcu-
lated using the “complete Fock-space basis set,” developed by
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Andes et al. [24,25] and by Weichselbaum and von Delft [26].
In this approach, contributions of the high energy states which
are discarded at the NRG steps can be recovered to form a
complete basis for the Wilson’s NRG chain, by carrying out
the backward iteration. The merit of this approach is that the
sum rule for the spectral weights can be fulfilled.

We have also employed the method due to Bulla, Hewson,
and Pruschke [62]: we have calculated not only Gm(ω) but
also the higher-order Green’s function Fm(ω)

Fm(ω) = − i
∫ ∞

0
dt ei(ω+i0+ )t

×
∑

m′( =m)

〈{ndm′ (t ) dm(t ) , d†
m(0)}〉 . (E1)

Then, the self-energy can be determined directly through
the relation �m(ω) = UFm(ω)/Gm(ω). The final form of the
Green’s function has been obtained from �m(ω) and the non-
interacting Green’s function G0

m(ω) using the Dyson equation
given in Eq. (7). The merit to treat the self-energy as an input
is that the fully analytic expression which is not affected by
the logarithmic discretization can be used for G0

m(ω).

2. The z averaging

The size of the Hilbert space to be diagonalized at each
NRG step increases as the number of conduction electron
channels increases. To ensure the accuracy of the NRG calcu-
lation, a large � is used for quantum impurities with a number
of internal degrees of freedom.

Oliveira and Oliveira found that thermodynamic averages
which are calculated for large � show an artificial oscillation
at low temperatures [59,61], and they proposed the z averag-
ing for removing such an artificial oscillation. The parameter
z slides a set of discretization points from that of the standard
Wilson chain [22],

±�−n → ±�−(n+1−z) , n = 0, 1, 2, . . . , (E2)

with 0 � z � 1. For z = 1, it coincides with the standard
Wilson chain. The discretized conduction band can be trans-
formed into a z dependent Wilson chain

Hc ⇒
∞∑

n=0

4∑
m=1

tn(z)( f †
n,m fn+1,m + f †

n+1,m fn,m). (E3)

The hopping matrix element tn(z) that can be determined
using the Hauseholder algorithm summarized in Refs. [59,61].
We have carried out NRG calculations for some fixed val-
ues of z, and calculate expectation values using the obtained
eigenstates. Then, an average is taken over “z” for two dif-
ferent values z = 0.5 and 1, which is enough to eliminate the
artificial oscillations in our case.

3. Logarithmic-Gaussian function to broaden
discrete spectral function

We have calculated the spectral function Am using the
Lehman representation given in Eq. (F1). The resulting func-
tion is a set of discrete δ functions at frequencies ωn.
Replacing the δ function to the logarithmic-Gaussian function
makes Am continuous since the NRG energy scale TL given

FIG. 14. (a) Magnetic field dependence of Fermi liquid pa-
rameters for single orbital Anderson impurity at the electron-hole
symmetric point εd/U = −1/2 for U/(π�) = 2.0. At this point,
a total occupation number is locked at one, i.e., 〈nd↓〉 + 〈nd↑〉 = 1
at arbitrary magnetic fields, and thus 〈ndσ 〉 can be expressed in
terms of the magnetization Md ≡ 〈nd↑〉 − 〈nd↓〉 as follows: 〈ndσ 〉 =
(1 + sgn(σ )Md )/2. Furthermore, sin2 δ↑ = sin2 δ↓ and Z↑ = Z↓.
(b) Residual interaction Ũ as a function of b. The x axis is scaled
by the Coulomb interaction U . Each inset shows an enlarged view of
the region around b = 0. In the insets, the axis is scaled by the Kondo
temperature T SU(2)

K = 0.19� = (0.03U ).

in Eq. (B13) exponentially falls of with increasing the chain
length L. The function to broaden a particle excitation peak at
ωn > 0 is

X (ω) = e−b2/4

bωn
√

π
exp

{
−
(

ln(ω/ωn)

b

)2}
, (E4)

which is defined for ω > 0. Correspondingly, a hole excitation
peak at ωn < 0 is broadened by

Y (ω) = e−b2/4

b |ωn|√π
exp

{
−
(

ln|ω/ωn|
b

)2}
, (E5)

for ω < 0. We set a broadening parameter b = 1.1 for the
spectral functions plotted in Figs. 8 and 9. Note that the
spectral weight is conserved because the broadening functions
are normalized to 1.

APPENDIX F: SPECTRAL FUNCTION IN ATOMIC LIMIT

We consider the atomic limit in order to show how the
spectral weight of the impurity states evolves as magnetic
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increases at high energies in the case that the Zeemann split-
tings of the impurity levels are given by Eq. (41).

At zero temperature, the flavour m-resolved single-particle
spectral function can be written in the Lehmann representation
as

Am(ω) = 1

M

M∑
i=1

∑
n

[|〈n|d†
m|�GS,i|2 δ(ω − ( En − EGS))

+ |〈n|dm|�GS,i〉|2 δ(ω + ( En − EGS))
]
. (F1)

Here, |n〉 and En are the eigenstate and eigenenergy of Hamil-
tonian H, respectively. The ground state |�GS,i〉 with the
energy EGS can generally be degenerate, and the summation
over i represents an average over M-fold degenerate states.

In the atomic limit, the CNT dot whose eigenenergies are
defined is Eq. (41) is disconnected from the leads (vν = 0
for ν = L, R), and there remains twofold degeneracy for the
ground state at half-filling εd = −3U/2,

|�GS,2〉 = d†
1 d†

2 |0〉 , (F2)

|�GS,3〉 = d†
1 d†

3 |0〉 . (F3)

Either of the two one-particle states, m = 2 or 3 situated on
the Fermi level, is occupied, and the lowest one-particle level
with the energy ε1 is occupied while the highest one with ε4

is empty. Therefore the ground energy for these two-electron
states becomes

EGS = ε1 + ε2 + U = 2εd − 2b + U . (F4)

We next consider a single-particle excitation to add an electron
into the level of m = 4, and a single-hole excitation to remove
the electron occupying the m = 1 level,

|�p4〉 = d†
4 |�GS,i〉 , Ep4 = 3εd + 3U , (F5)

|�h1〉 = d1|�GS,i〉 , Eh1 = εd . (F6)

The excitation energies from the ground state i = 2 and 3 to
these two states are given by

Ep4 − EGS = εd + 2b + 2U = 2b + U

2
, (F7)

EGS − Eh1 = εd − 2b + U = −2b − U

2
. (F8)

Therefore the spectral weights of these processes are given by

A4(ω) = δ
(
ω −

(
2b + U

2

))
,

A1(ω) = δ
(
ω +

(
2b + U

2

))
. (F9)

These weights shift towards high-energy region from the usual
atomic limit position ±U/2. We have observed the corre-
sponding shifts of the spectral weight in the NRG results
shown in Fig. 8(c) and 9(c) although these atomic peaks merge
with the resonance peak which also moves away from the
Fermi level as b increases.

The other single electron (hole) excitation from the ground
state |�GS,2〉 corresponds to an addition of an electron to
the level m = 3 (annihilation of an electron from m = 2).
The similar excitations also occur from |�GS,3〉. The peaks
corresponding to these excitations appear at ω = ±U/2 in the
spectral functions for m = 2 and 3,

A2(ω) = A3(ω) = 1

2
δ
(
ω − U

2

)
+ 1

2
δ
(
ω + U

2

)
. (F10)

These two peaks are equivalent to the Hubbard peaks for the
SU(2) symmetric case.
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[43] D. Krychowski and S. Lipiński, Eur. Phys. J. B 91, 8 (2018).
[44] D. C. Langreth, Phys. Rev. 150, 516 (1966).
[45] H. Shiba, Prog. Theor. Phys. 54, 967 (1975).
[46] A. Yoshimori, Prog. Theor. Phys. 55, 67 (1976).
[47] A. C. Hewson, J. Phys.: Condens. Matter 13, 10011 (2001).
[48] A. Hewson, A. Oguri, and D. Meyer, Eur. Phys. J. B 40, 177

(2004).
[49] R. Landauer, Philos. Mag. 21, 863 (1970).
[50] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
[51] S. Hershfield, J. H. Davies, and J. W. Wilkins, Phys. Rev. B 46,

7046 (1992).
[52] W. Izumida, O. Sakai, and S. Suzuki, J. Phys. Soc. Jpn. 70, 1045

(2001).
[53] A. Oguri, Phys. Rev. B 85, 155404 (2012).
[54] Y. Nishikawa, D. J. G. Crow, and A. C. Hewson, Phys. Rev. B

82, 115123 (2010).
[55] K. M. Stadler, A. K. Mitchell, J. von Delft, and A.

Weichselbaum, Phys. Rev. B 93, 235101 (2016).
[56] P. Nozières, J. Low Temp. Phys. 17, 31 (1974).
[57] K. Yosida and K. Yamada, Prog. Theor. Phys. Suppl. 46, 244

(1970).
[58] K. Yamada, Prog. Theor. Phys. 53, 970 (1975).
[59] W. C. Oliveira and L. N. Oliveira, Phys. Rev. B 49, 11986

(1994).
[60] T. A. Costi, Phys. Rev. B 64, 241310(R) (2001).
[61] M. Yoshida, M. A. Whitaker, and L. N. Oliveira, Phys. Rev. B

41, 9403 (1990).
[62] R. Bulla, A. C. Hewson, and T. Pruschke, J. Phys.: Condens.

Matter 10, 8365 (1998).
[63] W. Izumida, R. Okuyama, and R. Saito, Phys. Rev. B 91,

235442 (2015).
[64] W. Izumida, R. Okuyama, A. Yamakage, and R. Saito, Phys.

Rev. B 93, 195442 (2016).
[65] A. C. Hewson, J. Bauer, and W. Koller, Phys. Rev. B 73, 045117

(2006).
[66] J. Bauer and A. C. Hewson, Phys. Rev. B 76, 035119 (2007).
[67] T. A. Costi, Phys. Rev. B 100, 161106(R) (2019).
[68] A. Svilans, M. Josefsson, A. M. Burke, S. Fahlvik, C.

Thelander, H. Linke, and M. Leijnse, Phys. Rev. Lett. 121,
206801 (2018).

165106-23

https://doi.org/10.1038/nphys3556
https://doi.org/10.1103/PhysRevLett.121.247703
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevB.21.1003
https://doi.org/10.1103/PhysRevB.21.1044
https://doi.org/10.1103/PhysRevLett.95.196801
https://doi.org/10.1103/PhysRevB.74.245114
https://doi.org/10.1103/PhysRevLett.99.076402
https://doi.org/10.1103/PhysRevB.81.075437
https://doi.org/10.1016/j.physe.2015.11.023
https://doi.org/10.1103/PhysRevB.84.073406
https://doi.org/10.1103/PhysRevB.80.155322
https://doi.org/10.1103/PhysRevB.92.075120
https://doi.org/10.1103/PhysRevB.98.075404
https://doi.org/10.1103/PhysRevB.97.035435
http://arxiv.org/abs/arXiv:2001.08348
https://doi.org/10.1103/PhysRevLett.118.196803
https://doi.org/10.7566/JPSJ.85.094718
https://doi.org/10.1103/PhysRevB.91.155435
https://doi.org/10.1103/PhysRevB.95.245133
https://doi.org/10.1103/PhysRevB.75.045406
https://doi.org/10.1103/PhysRevB.74.205119
https://doi.org/10.1103/PhysRevB.96.045118
https://doi.org/10.1103/PhysRevB.86.165106
https://doi.org/10.1140/epjb/e2017-80547-y
https://doi.org/10.1103/PhysRev.150.516
https://doi.org/10.1143/PTP.54.967
https://doi.org/10.1143/PTP.55.67
https://doi.org/10.1088/0953-8984/13/44/314
https://doi.org/10.1140/epjb/e2004-00256-0
https://doi.org/10.1080/14786437008238472
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevB.46.7046
https://doi.org/10.1143/JPSJ.70.1045
https://doi.org/10.1103/PhysRevB.85.155404
https://doi.org/10.1103/PhysRevB.82.115123
https://doi.org/10.1103/PhysRevB.93.235101
https://doi.org/10.1007/BF00654541
https://doi.org/10.1143/PTPS.46.244
https://doi.org/10.1143/PTP.53.970
https://doi.org/10.1103/PhysRevB.49.11986
https://doi.org/10.1103/PhysRevB.64.241310
https://doi.org/10.1103/PhysRevB.41.9403
https://doi.org/10.1088/0953-8984/10/37/021
https://doi.org/10.1103/PhysRevB.91.235442
https://doi.org/10.1103/PhysRevB.93.195442
https://doi.org/10.1103/PhysRevB.73.045117
https://doi.org/10.1103/PhysRevB.76.035119
https://doi.org/10.1103/PhysRevB.100.161106
https://doi.org/10.1103/PhysRevLett.121.206801

