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Theory of magnetotransport in shaped topological insulator nanowires
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It is demonstrated that shaped topological insulator (TI) nanowires, i.e., such that their cross-section radius
varies along the wire length, can be tuned into a number of different transport regimes when immersed in a
homogeneous coaxial magnetic field. This is in contrast with widely studied tubular nanowires with constant
cross section, and is due to magnetic confinement of Dirac surface carriers. In flat two-dimensional systems,
such a confinement requires inhomogeneous magnetic fields, while for shaped nanowires of standard size
homogeneous fields of the order of B ~ 1 T are sufficient. We put recent work [R. Kozlovsky er al., Phys.
Rev. Lett. 124, 126804 (2020)] into broader context and extend it to deal with axially symmetric wire geometries
with arbitrary radial profile. A dumbbell-shaped TI nanowire is used as a paradigmatic example for transport
through a constriction and shown to be tunable into five different transport regimes: (i) conductance steps,
(ii) resonant transmission, (iii) current suppression, (iv) Coulomb blockade, and (v) transport through a triple
quantum dot. Switching between regimes is achieved by modulating the strength of a coaxial magnetic field and
does not require strict axial symmetry of the wire cross section. As such, it should be observable in TI nanowires

fabricated with available experimental techniques.

DOLI: 10.1103/PhysRevB.102.165105

I. INTRODUCTION

Topological materials have been a central topic in solid-
state research for roughly two decades. Many distinct
topological phases are currently known [1], that of (strong)
topological insulators (TIs) being a most prominent one [2,3].
The low-energy electronic structure of a flat TI surface is
characterized by a single Dirac cone [4]. This case, possibly
the simplest and most widely studied one, is already enough
to produce a number of notable transport phenomena.' Ge-
ometrically more complex than a flat surface, TI nanowires
(TINWSs) have also been intensively studied [5-9]. One no-
table reason for this is that their high surface-to-volume ratio
enhances the visibility of surface transport features. More-
over, transport takes place on a surface which is closed
along the transversal direction, enclosing the (nominally) in-
sulating three-dimensional (3D) TI bulk. This leads to the
interplay between the spin Berry phase of surface states and an
Aharonov-Bohm phase acquired in the presence of a coaxial
magnetic field [10-18].

Insight into the physics of 3D TI surfaces of more com-
plex geometry (beyond flat or cylindrical) can be obtained
from an effective surface Dirac theory derived either from
the 3D bulk Hamiltonian of the paradigmatic bismuth-based
TIs [19,20], or from a field-theoretic approach [21]. In this
paper we apply such a theory to axially symmetric TINWs
whose radius varies arbitrarily along their length, which we
dub from now on simply shaped TINWs. Our goal is a sys-

'See, e.g., Refs. [46-48] or Refs. [49,50] for reviews.
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tematic study of their magnetotransport properties, thereby
extending previous work [10] on truncated TI nanocones
(TINCs) [see Fig. 1(a)]. The latter were shown to offer rich
magnetotransport signatures, ranging from conductance quan-
tization to resonant transmission through Dirac Landau levels
and Coulomb blockade-type transport. We will discuss how
further regimes become available in shaped TINWSs of experi-
mentally realistic sizes. Note that such TINWs are structurally
shaped on mesoscopic scales, in stark contrast to the over-
all cylindrical but (randomly) rippled TINWs considered in
Ref. [21].

When a shaped TINW is subjected to an arbitrary magnetic
field, the latter can be decomposed into two components,
one perpendicular to the nanowire axis, the other coaxial.
It is instructive to study each component separately. If the
component perpendicular to the TINW axis is strong, i.e.,
the associated magnetic length [ is much smaller than the
nanowire diameter, the nanowire conductance will be dom-
inated by chiral side (hinge) states [10,22-26]. These states
are largely independent of the TINW shape. This geometry-
insensitive configuration is not interesting for our purposes,
ergo we focus here on purely coaxial magnetic fields B = Bz,
with Z the coaxial unit vector. In such a configuration the
TINW transport properties depend strongly on its radial pro-
file. Indeed, in a shaped TINW, the magnetic flux through
the nanowire cross section is a function of z, and so is the
out-of-surface component B, = B, (z) experienced by the
surface electrons (see Fig. 1). If the phase coherence length
is sufficiently long, the z-dependent cross section leads to a
z-dependent Aharonov-Bohm phase. We will show that the
latter, together with quantum confinement due to the finite
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FIG. 1. Examples for shaped TINWs subject to a coaxial mag-
netic field. The bulk is assumed to be perfectly insulating, while the
electronic structure on the metallic surface (blue) is modeled by the
Hamiltonian (2). (a) The region between z, and z; (which correspond
to radii Ry and R;) will be referred to as a TI nanocone (TINC).
Defining § = arctan S, where S = (R; — Ry)/(z1 — 20) is the slope
of the TINC, we get the magnetic field component B, = B sind
piercing the surface. It is negative for R; < Ry. (b) The region be-
tween zo and zz will be referred to as a TI dumbbell. For arguments
concerning transport, we will consider the cylindrical leads to either
side of the junctions to be metallic. (c) Smoothed TI dumbbell.

circumference, generates a mass-like z-dependent potential.
This potential can be used to qualitatively predict the trans-
port characteristics of any shaped TINW, and was recently
discussed for the simplest case of a single TINC [10]. In
order to understand magnetotransport in shaped nanowires,
an essential step will be to consider such TINCs as building
blocks of more complex geometries (see Fig. 1).

The paper consists of three main parts, Secs. II-IV, plus a
concluding one, Sec. V. In Sec. II we derive an effective one-
dimensional (1D) Dirac equation that can be used to describe
the electronic surface structure of shaped TINWSs. Such a
Dirac equation can be solved analytically for simple cases and
numerically for more complex TINW geometries. The reader
not interested in the technical aspect of the derivation can
skip directly to Sec. II C, which discusses the ensuing physical
picture, namely, that transport properties are determined by an
effective masslike potential entering the 1D Dirac equation.

Section III reviews pedagogically the physics of TINCs in
a coaxial magnetic field. This is instructive, as any shaped
nanowire can be constructed from a succession of infinitesi-
mal conical segments with constant slope. We will show that
provided B, is strong enough, such that /5 is small compared
to the length of the TINC, the conductance is determined by
resonant transmission through Dirac Landau levels (LLs) that
form on the wire’s surface.

In Sec. IV we introduce the dumbbell-shaped TINW of
Fig. 1(b), representing the important case of a nanowire con-
striction and simply referred to from now on as 71 dumbbell.
In magnetic fields of intermediate strength (B ~ 1 T) such
an object can be tuned into three fundamentally different
transport regimes by varying the field magnitude. First, if the
lead Fermi level Er matches the energy of a LL from the side
TINCs, the latter become transparent and resonant transmis-
sion into and out of the central region takes place. If on the
other hand Ey lies in-between LLs, the latter become opaque
and act as barriers, suppressing overall transmission (G =~ 0).
Finally, between these two special cases, the conductance of
the individual TINCs fulfills the condition 0 < G < €?/h, a
prerequisite for Coulomb blockade physics. We show that
the Coulomb blockade regime should be accessible in the TI
dumbbell, with single-particle energy levels of the confined
Dirac electrons modulating the periodicity of Coulomb block-
ade oscillations. Most notably, the dependence of the transport
regimes on Ep allows to switch on and off Coulomb blockade
physics by a simple tuning of the magnetic field strength,
which shifts the LL ladder.

We also treat the more realistic scenario of smoothly
shaped TINWs, whose geometry is comparable to experi-
mentally realized nanowires [27] [see Fig. 1(c)]. For such
geometries, yet another transport regime emerges for high
magnetic fields from the interplay between the magnetic
length and the length scale of the smoothing.

Section V concludes and sums up our findings. A series of
technical details are discussed in the Appendices A-D.

II. DIRAC SURFACE THEORY FOR A SHAPED
TI NANOWIRE

A. Surface Dirac equation

We are interested in topological surface transport [12—-14],
so the starting point is the surface Dirac Hamiltonian H. In
experimental samples, the bulk is usually not perfectly insu-
lating, but several techniques, e.g., gating or compensation,
can be used to suppress its transport contribution (see for
example Refs. [28-30]). We thus neglect bulk contributions
throughout.

The model Hamiltonian H satisfies the time-independent
surface Dirac equation

Hy = ey ey

and can be derived starting from either of the two approaches
mentioned above: microscopic or field theoretic. Both deriva-
tions can be consulted in detail in Ref. [21]. In order to
introduce our notation, the derivation of H is sketched very
briefly in Appendix A.

One finds

o 1 ih R n n h o
=vp| —p.— == o —— oy |,
F ,—1+R/2 Pz SR Py R @, y
2

where R = R(z) is the radius of the shaped TINW as a func-
tion of the coaxial coordinate z, R' = dR/dz, ® = 71 BR? the
magnetic flux enclosed by the wire, &3 = h/e the flux quan-
tum, and o, ; are Pauli matrices. The momentum operators are
defined as p, = —ihd, and p, = —ihR’law. Note the different
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origin of the second and fourth terms: The shift in coaxial
momentum is due to the spin connection [31,32], while the
shift in azimuthal momentum is due to the magnetic field.

Note that the spin connection term in Eq. (2) can be gauged
away by the local transformation

v — ¥ =VRy,

- 1
H H =+RH—, 3
— VR 7 3)

such that

~ 1 ho

H = UF[WPZUZ + (p(p —|— ]_QC}T())U)}] (4)
In terms of the arc length coordinate s running along the
TINW surface, such that ds> = dz*> + dR?, Eq. (4) becomes

N h @
H = vr|pso, + | py + R op oy |, (5
where p; = —ihd,. This last form of the Hamiltonian is par-

ticularly well suited for simulating transport through shaped
TINWSs with a numerical tight-binding approach (see Ref. [10]
or Appendix B for details).

For our analytics and general discussions we will, how-
ever, express everything in terms of the coaxial coordinate z
throughout the paper. That is, we solve the eigenvalue problem
(1) using the Hamiltonian (2). Exploiting rotational symmetry,
the solution to Eq. (1) can be written as

Y= e T2y, (©6)

where y,;(z) is a two-spinor and [/ € Z denotes the orbital
angular momentum quantum number. The latter can only as-
sume discrete values due to the azimuthal size confinement.
From now on y, = xu(z) for brevity. The shift of  in the
angular momentum quantization represents the presence of
a spin Berry phase of 7, which is a distinct feature of 3D
TINW:s [5,7,13,14]. The spin Berry phase ensures antiperiodic
boundary conditions in the azimuthal direction. The meaning
of the quantum number n € N will become clear in Sec. III.
(Essentially, for a given angular momentum /, it labels a series
of bound, quasi-bound, and/or scattering states depending on
the character of the corresponding effective potential land-
scape [cf. Eq. (8) below].) With the ansatz (6), we obtain the
1D Dirac equation

VF ih R
Vv 1+ R? pz—?ﬁ z+Vl(7y Xl = €niXni-  (7)

Here, the angular momentum term

hv 1 &
‘/IEhUFklE_TF(l—i‘z—a) ®)
0

induces a position- and magnetic-field-dependent energy gap.
For given B, this leads to a masslike potential landscape along
the wire that, unlike an electrostatic potential, does not admit
Klein tunneling [33]. Consequently, the sign of V; is unimpor-
tant: a state with angular momentum quantum number / sees
the effective potential |V;|.

The role of |V;| will be demystified in Sec. II C. Here we
just add two remarks. (i) It is enlightening to consider the

limit of a cylindrical TINW. In this case, |V;| is constant
along the wire and simply equal to the energy minimum of
the corresponding subband ¢;(k;). The quantum number n
then takes the form of a continuous coaxial wave number:
n — k. (i) In Sec. III A, we will discuss in detail the effective
potential for a TINC. In the course of this, we will point
out (and elaborate on it in Appendix C) that mass potential
landscapes analogous to |V;| appear in any system where
Dirac carriers feel an effectively inhomogeneous magnetic
field, for example, when magnetic step barriers are formed in
graphene [34,35].

B. Solution of the surface Dirac equation

Equation (7) can be decoupled into two second-order par-
tial differential equations. We define y = 1/4/1 + R? for
compact notation, insert the two-spinor x,; = ()(,El1 ), X,(j))T
and define X,ﬁ = X(l) + x(z) such that the Dirac equation (7)

nl nl
becomes
+ 4+ 2+
OF Xt = € Xr» ©))

with
1
OF = —(lvrpy)* [a} — R/<y2R” — E)az + Pf]. (10)

The magnetic field and angular momentum dependence enter
only into the last term:

1 k2 1 R/2
+ 1 ’ 2 plt
Pr=—— —ZFk + — R —— ). 11

! ]/()/ l> 2R<y 2R> ( )

Let us check the limit of a cylindrical TINW: R’ = k; =0,

=1, X,ﬁ — e”‘zz(xl“) + X/( )), and €, — ¢ (k;), where

14
X 1(1’2) are independent of z. This yields the energy dispersion

ei(k;) = £hvp/k? + k7, as expected [16,18].
For an arbitrary geometry R(z), magnetic field B, and angu-
lar momentum quantum number /, one can numerically solve

Eq. (9). The numerical implementation of R(z) is described in
Appendix D.

C. Effective mass potential: Physical picture

The purpose of this section is to convey a better under-
standing of the role of the effective mass potential |V;|, Eq. (8).
We therefore visualize its effect on the transport properties
of a shaped TINW in a coaxial magnetic field by present-
ing a concrete example, namely, a smoothed TI dumbbell
[cf. Fig. 1(c), the corresponding radial profile being defined
in Appendix D] with parameters given in Fig. 2.

Note that, in Sec. IV, we will discuss the magnetotrans-
port properties of such TI dumbbells in great detail, for all
magnetic fields from B = 0 to several Tesla, and the choice of
parameters will be very relevant; in particular, we will mostly
focus on the regime of about 1 T, where Coulomb blockade
physics arises. In this section, in contrast, our aim is purely
pedagogical, so the dimensions of the junction and B value are
not overly important. In particular, the low value B = 200 mT
chosen here is pedagogically useful (not too many / modes
present in Fig. 2), but not a very interesting choice from the
point of view of Sec. IV.
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FIG. 2. Left panel: Effective mass potential along a smoothed
dumbbell in a magnetic field of B = 200 mT. Right panel: Conduc-
tance (horizontal axis) as a function of the Fermi energy (vertical
axis). The scale is the same as in the left panel. Parameters of the
smoothed dumbbell: Ry = 156.6 nm, R, = Ry/2, z; = 594.7 nm,

72 =800 nm, o = 10 um~".

In order to analyze the pristine effect of |V;| on the conduc-
tance of the dumbbell, we take a clean system (no disorder)
with simple cylindrical TINW leads attached. The conduc-
tance simulations are performed with KWANT [36]. For details
on the numerics, such as the nonuniform lattice we use, we
refer to Appendix B. Note that we fix the Fermi velocity to
vr = 5x10° ms™! for all our numerical calculations, which
is a typical value for bulk TIs [4].

The effective potential |V;(z)| for the set of parameters
given in the caption of Fig. 2, and the corresponding conduc-
tance G as a function of the Fermi level Ep, are displayed
in Fig. 2. The transport characteristics of the smoothed TI
dumbbell can be qualitatively understood in terms of |V;| in
the following way: Transport is blocked below Er ~ 4.7 meV
(below the red dashed line) because all open lead modes [i.e.,
modes with €;(k, = 0) < 4.7 meV in the cylindrical leads, see
| = 3 (brown) and [ = 2 (purple)] do not have enough energy
to overcome the central barriers. For Ep = 4.7 meV, thel = 1
mode can pass through the TINW since the local maximum of
|[Vi—1| (red) at the wire center is only slightly above 2 meV.
Hence, we observe a conductance step at Ep & 4.7 meV. The
situation is slightly different for the / =2 mode (purple).
It is already present in the leads at Er ~ 2.6 meV, but the
potential has its maximum in the center at |V;—;| &~ 6.3 meV.
Comparing the corresponding conductance step with the one
at Er ~ 4.7 meV, it is apparent that its slope is lower. The
reason for this is that the electronic mode can tunnel through
the / =2 barrier at energies below 6.3 meV, leading to a
finite conductance contribution at lower energies. The same
behavior can be observed for the / = 3 mode. This exemplary
discussion shows that plotting |V;| for all values of / relevant
at low energy is an efficient way to predict qualitative fea-
tures of the conductance G(Er) in shaped TINWs, for any
given B.

Note that due to rotational symmetry, coupling between
different / modes is absent and the crossings in Fig. 2 are
real crossings, not avoided crossings. Thus, an electron cannot
traverse the wire by changing its orbital angular momentum
quantum number. Rotational symmetry is broken for instance
by disorder, which allows coupling between [ modes. We will
see the effect of /-mode coupling later on.

III. MAGNETOTRANSPORT CHARACTERISTICS
OF A TINANOCONE

The TI nanocone (TINC) depicted in Fig. 1(a) represents
the elementary building block of shaped TINWs, so we shall
study in detail its transport characteristics. The latter were
recently pointed out in Ref. [10], and we provide here a more
pedagogical and complete treatment of the subject, focusing
exclusively on coaxial magnetic fields.

A. Effective mass potential of a TI nanocone

For a given TINC geometry, Fig. 3 shows how the po-
tential |V;| evolves as a function of the magnetic field. For
B =0, |V| « 1/R due to size confinement only, and modes
with angular momentum quantum number / and —/ — 1 are
degenerate. Upon turning on the magnetic field the degen-
eracy is lifted: modes with / < 0 move upward in energy,
while ! > 0 modes move downward. The potential for a given
mode possesses a root inside the TINC as soon as the critical

radius
o)y ] (12)
B 2

fulfills the condition R;(B) < Ry. This root is located at

R;(B) =

1 .
u(B) = E[RI(B) — Ro] 13)

since R = Ry + Sz with the slope S = 151:500 < 0. The higher
the magnetic field, the larger the number of effective potentials
[Vi>o| developing a wedge-shaped well, whose minimum mi-
grates from Z; = zp to Z; = z; and vanishes as soon as Ri(B) <
R;. We will see in Sec. III B that this can be understood as the
formation of Landau levels.?

Note the interesting analogy to graphene in an inhomo-
geneous magnetic field: Consider the steplike profile of B
[see inset to Fig. 1(a)]. Due to the Dirac character of the
surface electrons, we expect similar physics as for a mag-
netic step barrier in graphene, studied in Ref. [34]. In the
same way, more complicated profiles of B, [see for example
Fig. 1(b)] are analogous to more complicated magnetic barri-
ers in graphene (see Ref. [35]). Indeed, a shaped TINW with
profile B (z) is, in many respects, similar to graphene subject
to an equivalent inhomogeneous magnetic field. In such 2D
Dirac systems, the role of the (angular momentum-based)
effective potential (8) is taken by a transverse momentum-
based effective potential, as we point out in Appendix C;
this potential develops wedges similar to those in Fig. 3 for
suitable system parameters.

In view of this analogy (for more details see Appendix C),
one expects that a TINC may act as a strong magnetic barrier
(indeed, we will see that it does) and that Dirac electrons
can be confined in-between two TINCs. One should, how-
ever, remember that a magnetic step barrier in (2D) graphene

2As can be seen from Fig. 3, the twofold angular momentum
degeneracy gets lifted for B # 0 and is never restored for higher B,
due to the out-of-surface component. This is in marked contrast to
cylindrical TINWs.
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FIG. 3. Effective potential landscape |V;(z)| on a TINC as de-
picted in Fig. 1(a) with zo = 0, z; = 100 nm, Ry = 2R; = 200 nm,
for several magnetic field strengths and as obtained from Eq. (8).
Upon increasing B, modes with / > 0 become dominant at low
energies, and a growing number of them feature a root on the TINC.
Around these roots, wedge-shaped potential wells are formed, giving
rise to bound states at Dirac LL energies E, [cf. Eq. (14)].

requires an inhomogeneous magnetic field, while the (3D)
TINC allows for similar physics by just using a homogeneous
magnetic field.

B. Electronic structure of a TI nanocone

We now discuss solutions of the 1D effective Dirac
equation (9) for the TINC geometry with leads as de-
picted in Fig. 1(a). Note that |V;| is constant in the
leads with values [Vi(zo)| [|Vi(z1)|] in the left (right)
lead. There are different regimes separated by the en-
ergy thresholds elmi“ = min(|V;(zo)|, [Vi(z1)]) and "™ =
max(|V;(zo)l, |Vi(z1)]), which is explained in the following.

For energies €, > "%, a solution yx,; of Eq. (9) is fully
extended across the TINC and extends into both leads, and
n is a continuous index; in the limit of zero slope, this in-
dex is simply n = k,. For elmi“ < €u < €™, any solution x,y
extends into one of the leads, while decaying exponentially
on the other side, and again # is continuous. For intermediate
and high magnetic fields potential wedges are present (see,
for instance, the last panel in Fig. 3), and elmi“ represents the
depth of such a wedge. Thus, the possibility for bound states
within the effective potential with energies €,; < e,mi" arises.
As pointed out in Ref. [10], the energies of these bound states

are given by the Dirac LL energies
hUF
E, = sgn(n)l—\/2|n|, nez (14)
B

where Ip = /hi/(e|B1|) is the magnetic length and B, is
the magnetic field component perpendicular to the surface
of the TINC [cf. Fig. 1(a)]. This outcome is corroborated in
the following with numerical results and an intuitive physical
picture.

In Fig. 4, we choose parameters {Ro, Ry, 20,21, B}
with lp < Leone = (21 — 20)/ €08(8/2) (Ip ~ 50 nm, Leope =
600 nm), which highlights the formation of LLs. Here, Lcone
is the arc length along the TINC and g the opening angle.
Figure 4(a) shows the effective potentials |V;| for the corre-
sponding TINC together with the probability distributions of
the eigenstates |x,;(z)|> for the two wedges [ = 15 and 25,
where the solid (dashed) line corresponds tothen = 0 (n = 1)
state. Note that, for clarity of the figure, |V;| is not plotted
for all / values (unlike in Fig. 3). Figure 4(b) shows a bar
plot which counts eigenenergies €,; in an energy window of
0.4 meV. Here, all energies €,; were used for which the states
X are bound states on the TINC, i.e., reside between zy and
71. As expected, we observe a large degeneracy in [ at the
Dirac LL energies E,, (up to numerical precision) marked with
vertical dashed lines. Moreover, the eigenstate probability
distributions | x,;(z)|> show one maximum for n = 0 and two
maxima for n = 1, as expected from quantum Hall (QH) states
which derive from a harmonic oscillator equation (for which
a state with index »n has n + 1 maxima). Hence, we can indeed
identify the bound states of the effective potential wedges |V;|
as QH states, and all QH states (labeled by n, /) for a given n
together form the nth LL.

The intuitive physical picture is the following: The perpen-
dicular magnetic field component is constant throughout the
cone, which means that the 2D Dirac electrons on the surface
are subject to a homogeneous magnetic field and thus form
LLs. The only condition which needs to be fulfilled is that
the magnetic length is small compared to the length of the
cone, such that the QH states (in classical terms cyclotron
orbits) fit onto the TINC. This is equivalent to the condition
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FIG. 4. (a) Effective potentials |V;| for cone parameters zo = O,
71 = 594.7 nm, Ry = 2R, = 156.6 nm, and B = 2 T, which yields
Ip ~ 50 nm, L., = 600 nm. Note that |V;| are plotted for every
fifth / value only. Additionally, the eigenstate probability distribu-
tions [for the solutions of Eq. (7)] |xu—0.=15(z)|* (blue solid line),
[ Xn=1.1=15(z)|*> (blue dashed line), |x,—0.—25(z)|* (green solid line),
and |x,=1.=25(z)|> (green dashed line) are shown (using arbitrary
units). The bound states are identified as QH states (see main text).
(b) Bar plot for the bound-state energies ¢,,. The width of the bars
is 0.4 meV. Dashed vertical lines give the analytical values of the
Dirac LL energies with the perpendicular magnetic field component
|By| = B sin(B/2). The inset shows a schematic side view of the
TINC, with opening angle 8.

that effective potential wedges form within the TINC. These
arguments are also reflected in the degeneracies of the LLs in
Fig. 4(b), which is given by the height of the bars. Quantum
Hall states with larger n extend more in space, and thus less
QH states fit onto the cone. Consequently, the degeneracy
decreases with increasing n.

C. Transport through a TI nanocone

The setup we consider for transport is a TINC connected
to cylindrical, highly doped TI leads in a coaxial magnetic
field [see Fig. 1(a)]. Its transport properties are determined by
the states available at a given energy, i.e., those discussed in
Sec. III B:

(a) At high energies (¢, > €, n continuous), states are
fully extended across the TINC and hybridize with both leads.

(b) At intermediate energies (elmi“ < €y < €™, n contin-
uous), states couple strongly to one of the leads and weakly if
at all to the other.

) Ifey < 61“““, quasi-bound states centered at 7;(B) ex-

ist. For €,; < €™" their energy coincides with LL states €,; =
E,. Closer to the potential threshold, €,; < €™, the tail of the
wave function enters the leads, and €,; < E,,.
The considerations above, together with knowledge from
Sec. IIC, allow us to make qualitative predictions for the
conductance G as a function of the lead Fermi level Er and the
coaxial magnetic field B. These predictions will be confirmed
by numerical transport simulations later on.

Low magnetic field. Inspecting the effective potential in
Fig. 3, one expects G(EF) to be characterized by steps cen-
tered around energies €"** since the effective potential of the
left (right) lead is given by |V;(z0)| [|Vi(z1)I].

Intermediate and high magnetic fields. In the situation
shown in Fig. 3 for B =0.5T, only the potential wedges
belonging to [ = 7, 8 feature thresholds above the first LL.
Consequently, the first LL can only form in the central
part of the TINC, and higher LLs are absent. Thus, we
choose the TINC parameters from Fig. 4, where LLs con-
sisting of many QH states form and their role in transport
is enhanced. The effects on transport of such strong LL
quantization are presented in Fig. 5, showing |V;| and G(EF)
for a TINC geometry defined in the caption and a coaxial
magnetic field of B =2 T. Here disorder is added, which
couples different / modes (i.e., QH states). This causes a
broadening of the LLs, sketched in Fig. 5(a) as gray shaded
areas around their central (ideal) energies (horizontal orange
lines).

Independently of the value of Er, a lead electron can enter
the outer TINC region via states of type (b). However, Er
determines whether it can enter the central region:

(1) Off resonance. If Ep is far away from a LL energy, an
electron in the outer TINC region (where no LL forms) cannot
find states for elastic transport further into the TINC, hence,
the conductance is suppressed.

(i1) On resonance. If Er lies within a disorder-broadened
LL, characterized by a certain width AE,, an electron in the
outer TINC region can, via disorder-induced scattering, be
transferred to a state of type (c). From there, it can travel elas-
tically through the central TINC region (via disorder-coupled
QH states), such that the conductance is finite.

For visualization, consider a lead electron from the left at
Er < E; — AE, /2 [black dashed line in Fig. 5(a)]. It can enter
the TINC via states of type (b), with 31 < I < 40. Then, how-
ever, elastic transport is obstructed because potential wedges
in the center of the TINC only host states of type (c), with
€ ~ E,. In contrast, if E; — AE;/2 5 Er S E, + AE;/2
[black dotted line in Fig. 5(a)], a lead electron from the left,
after accessing the TINC via modes 31 </ < 40, can elasti-
cally tunnel through the core region of the TINC, via states
of type (c) which exist for 13 < I < 30, and exit the TINC on
the other side.

We conclude that, at low energies, the TINC is transpar-
ent for Er ~ E,, while it is opaque for Ep in-between two
consecutive LLs. Figure 5(b) shows the TINC conductance
around the first and second LLs, calculated using the KWANT
[36] software. The resonant conductance peaks, already
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FIG. 5. Transport through a TINC in intermediate and high mag-
netic field for parameters as in Fig. 4. (a) Effective potentials |V;| on
the TINC. Note that |V;| are plotted for every third / value only. LL
energies are indicated by orange dashed lines. The shaded stripes
denote typical broadening of the LLs, as extracted from the nu-
merical results in (b). (b) Logarithmic plot of the disorder-averaged
conductance around the first and second LL, as a function of lead
Fermi level Er and calculated using KWANT. Vertical lines have the
same meaning as in (a). The labels (I, II, III) serve to explain the
transport regimes of the TI dumbbell (see Sec. IV and Fig. 9).

numerically obtained in Ref. [10], are explained in an intuitive
way by the microscopic picture outlined above. Highly doped
leads were used for the calculations, together with Gaussian-
correlated disorder (V(r)V(r')) = Khvpe " "1/%" /2 £2),
with the (dimensionless) disorder strength K and the correla-
tion length &. For numerical results presented throughout this
paper, averages were taken over 600 disorder configurations
with K = 0.1. (For more details on the methodology of the
numerics, see Ref. [10] or Appendix B.) Importantly, Fig. 5(b)
is also the starting point for describing transport in a TT dumb-
bell.

D. Smoothed TI nanocone

Consider now a more realistically shaped TINC with
smooth connections to the leads [cf. Fig. 1(c)]. The
parametrization of the corresponding radius R(z) (cf. Fig. 6)
is given by Eq. (D1). The smoothing strength is determined
by the parameter o, where a small (large) o corresponds to
strong (weak) smoothing.

[nm]
[
N D
o O

TINC
=
o
o

o

R
©
o

FIG. 6. Radius of a smoothed TINC as given by Eq. (D1) for
three values of o, with parameters chosen such that the (perfectly
sharp) TINC geometry used in Figs. 4 and 5 is recovered in the limit
o — 00.

In the low magnetic field regime there is no qualitative
difference with the ideal TINC, and conductance steps cen-
tered around energies ¢"** are expected. In the remainder of
this section, we focus on intermediate and high fields, starting
as usual by solving Eq. (9). In Fig. 7, we show the effect
of smoothing for the same system parameters as in Fig. 5,
meaning that the TINC from Fig. 5 is recovered in the limit
o — 00. When the TINC is smoothed (by decreasing o),
the value of |B, | gets lowered, the effect being considerably
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FIG. 7. (a) Effective potentials for a smoothed TINC, with the
same parameters as in Fig. 5, but lowering the value of o in Eq. (D1)
to o = 10 um~'. Orange dashed lines represent LL energies E, in
the limit o — oo of a perfect TINC, while solid orange lines are
bound-state energies €,,. (c) Difference in energy Ae, (o) between
LLs of the perfect TINC [dashed orange lines in (a)] and bound-state
energies €, of the potential well |V;| [solid orange lines in (a)].
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stronger in the vicinity of the leads than in the middle of the
TINC (cf. Fig. 6).

In the language of the effective potential, this means that
a given wedge |V;| shifts and gets distorted (mostly its lead-
facing branch gets lowered) [see Fig. 7(a)]. This effect is
stronger for wedges close to the leads. Therefore, the smooth-
ing can have two different effects on a given LL bound state.
(i) The bound state disappears. This is relevant for states close
to the leads. (ii) The bound state survives but gets lowered in
energy because of reduced B, (increasing magnetic length).

Thus, upon smoothing, the / degeneracy of the LLs, present
for the perfect TINC in Sec. I, is lifted [see Fig. 7(a)]. Note
that the zeroth LL stays / degenerate since it is not affected by
the smoothing. For all states belonging to class (ii), we define
the decrease in energy A€, (o) = €,(0 — 00) — €y(0) > 0,
where €,;(0 — 00) = E,. Itis plotted for LL indices n = 1 to
3 in Fig. 7(b), for a selected number of angular momenta.

Consider now the transport characteristics of the smoothed
TINC. An electron from the lead at given Er can typically
proceed a bit further into the TINC than in the limit 0 — oo.
This is due to the lowering of the lead-facing effective poten-
tial branches [see Fig. 7(a)]. However, the energies of states
in the TINC center stay practically the same as in the limit
o — oo. Thus, transport through the TINC is still suppressed
for Ef placed in-between LLs.

Pursuing this line of thought, we can predict another
interesting transport regime in smoothed TINCs. If the de-
crease in energy of bound states relatively close to the leads
[for example, the state (n,/) = (2, 14) in Fig. 7(a)] be-
comes large enough [A€, (o) > AE,/2], these energies exit
the disorder-broadened transport channel. Such states are no
longer available for elastic transport, even though the Fermi
level is tuned “on resonance,” i.e., Er =~ E,. This phenomenon
can be achieved in our setup using relatively strong magnetic
fields B 2 5 T. Consequently, magnetic barriers arise close to
the TINC ends, such that a single (smoothed) TINC becomes
a quantum-dot-like object. If a gate electrode is attached to the
TINC, this may lead to Coulomb blockade-type physics [10].

In summary, the qualitative form of the conductance G(EF)
shown in Fig. 5(b) is robust against variations of the geometry,
as long as the local QH state energies lie within the disorder
broadening. For a smoothing [as defined by Eq. (D1)] strength
for which the QH states close to the leads are moved beyond
the disorder broadening, magnetic barriers appear and we
expect transport to be dominated by Coulomb blockade-type
physics, as discussed in Ref. [10].

IV. MAGNETOTRANSPORT CHARACTERISTICS
OF A TIDUMBBELL

As an example of shaped TINWs beyond the relatively
simple TINC, we now consider a TI dumbbell [see Fig. 1(b)],
which is representative for a mesoscopic TI nanowire con-
striction and hosts a rich variety of magnetotransport regimes.
For simplicity we take the TI dumbbell to be composed of
two symmetrically arranged TINCs (R, = Ry, R3 = Ry) [cf.
Fig. 1(b)], each with the same parameters as used in Figs. 4
and 5. The length of the intermediate cylindrical part is chosen
asL =2z —z1 = (21 —2)/2.

—
54
Na?

|Vi| [meV]

0 200 400 600 800
2z [nm]

1000 1200 1400 0123456

G [€?/h]

FIG. 8. Transport through a TI dumbbell for B =0. Here
we choose zo =0, 71 =594.7 nm, z, = 3z;/2, z3 = 5z1/2, and
Ry = R; = 2R; = 2R, = 156.6 nm. (a) Effective potentials |V;| and
(b) disorder-averaged conductance as a function of the lead Fermi
level EF, calculated using KWANT.

A. Low magnetic field

The effective potentials feature an / degeneracy for B = 0
[see Fig. 8(a) and recall Fig. 3], leading to a conductance pro-
file as shown in Fig. 8(b). This / degeneracy gets lifted for B #
0. When this happens, the precise form of the conductance
G(EF) depends on the particular value of B, but its qualitative
structure (smoothed steps originating from mode opening)
stays the same as long as B, is too weak for LLs to form
on the two TINCs. (Although the dumbbell considered there
is of slightly different dimensions than the one discussed in
this section, this degeneracy lifting, as well as the qualitatively
unchanged conductance profile, can be observed explicitly in
Fig. 2, which is plotted in the low-B regime.) Due to the
mirror symmetry with respect to the plane z = (z3 — z0)/2,
these steps are located at the same values Er = " that one
would expect for a single TINC.

B. Intermediate and high magnetic fields

In this regime, a simple tuning of the magnitude of B
allows access to three scenarios: (I) current suppression, (II)
Coulomb blockade, and (IIT) resonant transmission.

Given our choice of parameters, the effective potential
landscape on the dumbbell’s left side is the one shown in
Fig. 5(a), followed by a constant |V;| in the cylindrical cen-
ter and the mirrored version of Fig. 5(a) on the right [see
Fig. 9(a)]. Potential wells appear in the central region, which
may host bound states whose coupling to the leads depends on
the transparency of the TINCs. This transparency is the same
for both TINCs, and governed by the conductance G(EF)
shown in Fig. 5(b), because the ladder of LLs depends only
on the absolute value of B .

Figure 9(b) depicts the energies [obtained from solving
Eq. (9) in the presence of cylindrical TI leads] correspond-
ing to QH states on the TINCs as orange lines, and those
corresponding to states confined between the two TINCs as
blue lines. As a guide to the eye, the extent of the lines in the
z direction is chosen such that their ends touch the potential
well they belong to (this encodes the / value of a given energy
level). Within each given /-potential well, the level spacing
(distance between blue lines) can be controlled by the longi-
tudinal confinement and is proportional to 1/L. However, it
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FIG. 9. (a) Effective potentials for a TI dumbbell for B=2T
and parameters as in Fig. 8. Note that |V;| are plotted for every
third / value only, except in the important central region, which is
the focus of this figure. (b) Zoom into the central region. Energies
of eigenstates residing on the central cylinder (on the TINCs) are
marked by blue (orange) lines.

is in general not possible to define a constant level spacing
characterizing the whole central region, as states belonging to
different [ potentials may cluster.

Using Fig. 5(b), three different transport regimes can be
identified, depending on the lead Fermi level position relative
to the LL energies:

(D If EF is placed such that G ~ 0 (G being the con-
ductance through a single TINC), both TINCs act as strong
barriers, and transport through the dumbbell is suppressed.
This is indicated by the dashed-dotted line in Fig. 9.

(II) If EF is placed such that the TINC conductances are
0 < G < ¢€*/h, the central cylindrical region can be viewed
as a quantum dot weakly coupled to the leads. As we dis-
cuss below, this leads to conductance oscillations of Coulomb
blockade type once the central region is gated. This is indi-
cated by the dashed line in Fig. 9.

(ITT) Both TINCs are transparent (G ~ ¢?/h) for a lead
Fermi level fulfilling Er =~ E,. If E is in addition in reso-
nance with a (disorder-broadened) bound state of the central
cylinder (blue line), we expect a finite conductance. Other-
wise, the transmission is suppressed. This is indicated by the
dotted line in Fig. 9.

In the remainder of this section, we focus on case (II).

Coulomb blockade in the TI dumbbell

If we assume a gate electrode to be applied to the cen-
tral cylindrical region, a decisive quantity is the charging
energy Ec = ¢*/C, where the capacitance C depends on the
experimental setup (the geometry and the materials, includ-
ing the dielectrics). Some typical values for C are provided
by the literature. For experiments on strained HgTe TINWs
[18] of dimensions comparable to our situation, a numer-
ical solution of the Poisson equation in the presence of
Si0,/Al,05 dielectrics and a gold top gate yields an effective
capacitance per surface area Cey &~ 4x 1074 Fm~2. A differ-
ent experiment, studying TI quantum dots based on Bi,Ses
TINWs on a SiO,/Si substrate [37], found C = 2x 107" F
for a surface area of 8.6x 107! m?, corresponding to Ceir =
2.3x10™* Fm~2. We can thus estimate the charging energy
for the TI dumbbell by E¢c = ez/ (2R LCqt). For our exam-
ple, we choose a value of E- = 1.5 meV, which corresponds
to Ceir = 7.3x10~* Fm™2, the same order of magnitude as in
the above experiments. This choice results in E¢c =~ §¢; here,
de€ is the typical level spacing in the central region, defined
as follows: Each €,; quasi-bound state in the central region
[blue lines in Fig. 9(b); n counts the quasi-bound states within
a given well |V;|] has a broadening I',; determined by its
coupling to the leads. Blue lines clustering such that their
energy distance satisfies

lear — €wrr| < Smax{Ty, Ty} (15)

cannot be resolved, yielding effectively a single central region
level (which can be multiply occupied). The spacing e is
taken among such central region levels, be they single ¢,
levels or clusters as just defined, and should be viewed as an
order-of-magnitude estimate obtained by inspecting Fig. 9(b).

In the presence of a gate electrode, we expect Coulomb
blockade oscillations [38] in the current-gate voltage char-
acteristics. The particular Coulomb blockade regime is
determined by the ratio of the three energy scales §¢, kgT', and
I',;. An order-of-magnitude estimate for I';; = 7i/t,; follows
from the dwell time 1,; in the central region. The two side
TINCs can be treated as “black boxes” with a transmission
given by the conductance from Fig. 5(b), such that the system
is mapped to a quasi-1D double-barrier structure of inner
length L. Estimating t,,; requires two ingredients: (i) The aver-
age distance (in the z direction) covered by an €,; quasi-bound
stateisd = L 171;;7]{722 ,with R;, i = 1, 2, the reflection proba-
bilities at the individual barriers. In our symmetric setup we
have Ri =R, =R, and d =L/T, with T=1—-R < 1.
(ii) The average velocity (in the z direction) can be estimated
as

hvnl ~ 3€l(kz,n)/3kz.na (16)
where
ei(ke ) = hup[d +1/2 = @/ /R +12,] (17

is the band structure of a cylindrical TINW, with k,, =
(w/L)n the wave-vector values corresponding to a given
quasi-bound state n. It follows

/) vy T (hvp) k.,

ry=— ~ - 18
! Tnl d L El(kz,n) (1%
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FIG. 10. Coulomb blockade oscillations for a (surface) quantum
dot formed due to magnetic confinement in a TI dumbbell with
the same parameters as in Fig. 9. The conductance is calculated
using Eq. (19), at a temperature 7 = 0.5 K, lead Fermi level Er =
11.3 meV and charging energy Ec = 1.5 meV.

Thus, using a typical value 7 = 5x 1073 [cf. Fig. 5(b)], one
has I';; ~ 5 peV. While this implies that a few of the €,
levels from Fig. 9(b) form clusters, spacing among the latter
is such that at temperatures around 7 = 0.5 K various central
region levels (single €,; or clusters thereof) are resolved, i.e.,
the condition I',; < kgT < §e is fulfilled.

In this regime, only a single level contributes to transport
significantly, and the conductance is given by [38]

Go € Sl = f(Aw)]
= nl ZkBT .

h 19)
The quantity A,; = €,; — Ep + (N — 1/2)Ec — aeV, enter-
ing the Fermi-Dirac distribution f(x) = 1/(1 + /%7 leads
to a conductance peak whenever A,; = 0. Here, N,; is the
number of electrons on the quantum dot, i.e., the number of
levels with €,/ < €,;. The proportionality constant o between
gate voltage V, and the associated electrostatic energy is, like
C, a function of the capacitance matrix [38] and needs to
be determined experimentally [39]. The resulting Coulomb
blockade oscillations for the dumbbell from Fig. 9 are shown
in Fig. 10, taking Er = 11.3 meV (dashed black line in Figs. 5

and 9), Ec =1.5meV, T =0.5K, and 7 = 5x1073. The
fluctuations of conductance peak positions reflect the level
spacings of the confined states living in the central cylindrical
region.

Note that our discussion of Coulomb blockade, and more
generally of all the transport regimes considered above, aims
at identifying intrinsic geometry-induced features. Therefore,
the role of additional system-specific properties, e.g., voltage
ripples [40] that might affect the Coulomb blockade oscilla-
tions, are not considered in our theoretical model (1).

C. Smoothed TI dumbbell

The knowledge about a single smoothed TINC, discussed
in Sec. IIID, is straightforwardly generalized to more com-
plex shaped TINWs. In particular, the smoothed TI dumbbell
from Fig. 1(c) (plotted for o = 15 um™") still exhibits qual-
itatively the same transport behavior as the model junction
discussed in the course of this section. As for the smoothed
TINC, a new transport regime emerges at rather high mag-
netic fields. In this case, the smoothed dumbbell is still
a double-barrier structure off resonance. However, it is a
quadruple-barrier structure on resonance, i.e., a triple quan-
tum dot, since each TINC features a pair of potential barriers.

V. SUMMARY AND CONCLUSIONS

We showed that numerous transport regimes are acces-
sible when a shaped TI nanowire (TINW), i.e., an axially
symmetric TINW with varying cross section along its length,
is immersed in a homogeneous magnetic field. The results
are summarized in Table I, which is briefly outlined in the
following.

Consider first a strong (lp <« wire width) perpendicular
magnetic field (B L 2), such that the top and bottom TINW
surfaces are in the quantum Hall regime. Here, transport is
dominated by chiral side surface states which do not “feel” the
geometry of the nanowire. Thus, shaped TINWs behave quali-
tatively the same as cylindrical TINWs. A characteristic trans-
port feature in this regime is a quantized conductance plateau
in a magnetic-field-dependent energy window [10,22-26].
In contrast, for weak perpendicular magnetic fields, states
wrap around the wire and transport is thus geometry

TABLE I. Summary of low-energy magnetotransport regimes in simple examples of smoothly shaped TI nanowires, with comparison to
the cylindrical limit. Each entry describes the shape of G(Er) for fixed B with its physical origin in brackets. If the transport regime for
a given geometry and B field depends on the Fermi level Er, possible different regimes are separated by a slash. Abbreviations: osc., van
Hove singularity-induced conductance oscillation on top of an increasing conductance background; SBO, subband opening as Ep is increased;
quan. cond. pl., quantized conductance plateau; CSS, chiral side surface states; cond. steps, conductance steps; MO, mode opening; res.
trans., resonant transmission; LL, Landau levels; CB, Coulomb blockade; curr. supp., current suppression; triple QD, transport through a triple

quantum dot.

BLlz? Bz
Weak B Strong B Weak B Intermediate B Strong B
cyl. TI nanowire osc. (SBO) quan. cond. pl. (CSS) osc. (SBO) osc. (SBO) osc. (SBO)

[5-11,13-18,22-26]
TI nanocone [10]
TI dumbbell

cond. steps (MO)
cond. steps
(MO)

quan. cond. pl. (CSS)
quan. cond. pl.
(CSS)

cond. steps (MO)
cond. steps
MO)

res. trans. (LL)
res. trans./CB/curr.
supp. (LL)

CB/curr. supp. (LL)
triple QD/curr.
supp. (LL)
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dependent. For cylindrical nanowires, subbands open as Ep
is increased, which leads to van Hove singularity-induced
oscillations on top of an increasing conductance background.
For shaped TINWs in a weak perpendicular magnetic field,
quantum-confinement-induced potentials need to be over-
come. The corresponding transport signatures are steps in the
conductance due to mode opening.

In a coaxial magnetic field (B || 2), the focus of our work,
states wrap around the circumference and enclose the mag-
netic flux, hence, transport is highly sensitive to both magnetic
field and geometry.

In the presence of rotational symmetry, the angular
momentum / is a good quantum number and the effective-
mass-type potential |V;| is a useful tool to predict the transport
behavior of any shaped TINW. For cylindrical nanowires,
G(EF) is determined by van Hove singularity-induced os-
cillations on top of an increasing conductance background,
independently of the magnetic field strength, a result of trans-
lational invariance along the wire. Smoothed 77 nanocones
(TINCs) in contrast, first introduced in Ref. [10] and discussed
at length in Sec. III, can be tuned between three different
regimes by a simple variation of the coaxial magnetic field
strength: conductance steps due to mode opening (a mode
with angular momentum quantum number [ opens as soon
as Er > |Vj|), resonant transmission, and Coulomb blockade-
type transport through LLs.

Using the single TINC as a building block, more complex-
shaped TINWs can be composed. We focused on the
paradigmatic example of a TINW constriction, dubbed 77
dumbbell. In this system, a triple quantum dot structure can
form for magnetic fields beyond approximately 3—4 T (for
our choice of parameters), adding one more fundamentally
different transport regime to those available in a TINC. Most
notably, however, in the intermediate magnetic field regime
(B~ 1-2T), one can switch on and off Coulomb blockade
oscillations at will, simply upon altering the B value: If Ep
is far from the disorder-broadened LL energies, the TINCs
on the sides of the dumbbell act as infinitely strong barriers
and transport is suppressed. On the other hand, the same
TINCs act as finite tunnel barriers if Er is in the vicin-
ity of (but not exactly in resonance with) the LL energies,
so that conductance oscillations of Coulomb blockade type
should be visible if a gate electrode is applied to the central
region.

Concerning experimental realization, we point out that TI
nanowires with nonuniform cross section have been fabricated
(see, e.g., Refs. [18,27]). All-round (homogeneous) gating, as
assumed in the discussion of Coulomb blockade, is also cur-
rently possible [41,42]. The realization of a finely shaped TI
tube thus appears challenging but within current experimental
capabilities. Moreover, shaped TINWSs represent a substantial
practical advantage from the experimental point of view: The
Coulomb blockade regime in the TI dumbbell arises from
magnetic confinement of Dirac electrons. To the contrary of
proposals for 2D geometries, where nonhomogeneous mag-
netic fields are necessary to confine Dirac fermions [34,35],
in our shaped nanowires a homogeneous magnetic field is
enough (see also Appendix C). This fact is the decisive ingre-
dient behind the relatively simple (on/off)-switch mechanism
between different magnetotransport regimes.

Finally, let us stress that magnetic confinement is not
restricted to the axially symmetric TI dumbbell explicitly con-
sidered. Essentially, one can use TINCs, tunable into barriers
due to Landau quantization, and cylindrical TINWs, where
free motion follows from B; = 0, as elemental building
blocks and connect them in series to build arbitrary magnetic
barrier profiles in homogeneous magnetic fields. Furthermore,
strict axial symmetry is not required: a TINC with a somewhat
distorted cross section acts as a magnetic barrier as long as
the local /g is smaller than its geometrical size, ensuring the
formation of QH states throughout its (distorted) perimeter.
We thus expect our results to be valid guidelines for the
analysis of magnetotransport in a wide range of TINWs of
any shape.
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APPENDIX A: DIRAC SURFACE HAMILTONIAN
FOR A SHAPED TI NANOWIRE

The derivation of the Hamiltonian (2) using a field-
theoretic approach is sketched here very briefly; the details
can be found in Ref. [21]. Fermions on a (2+1)-dimensional
curved manifold fulfill the covariant Dirac equation

YD, W =0, (A1)

where D, = 9, + T, is the covariant derivative and y* =
V€4 are covariant Dirac matrices. The additional term I',,
is known as the spin connection [31,32]. The £¢ are local
Dirac matrices satisfying the Clifford algebra {£¢, £%} = 2,
where n® is the Minkowski metric, and V}* are the inverse
vielbeins.

The metric for the shaped TINW is given as [21] dI? =
—dt? + (1 + R?)dz* + R?d¢?, where ¢ is the azimuthal an-
gle and R = R(z) is the radius as a function of the coaxial
coordinate z; note that we work in natural units. We choose
the following set of Dirac matrices (different from the choice
in Ref. [21]):

§ =io, §'=0), & =-0, (A2)
such that
Y =io y! =;a, yi=——0o (A3)
For the spin connection one finds I' = I'", = 0 and
i R
Iy = - ——=o0:. (A4)

2J1+R?
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Then, the Dirac equation (A1) becomes

. 1 R 1
io o,V =|— 0, + =)o, + I—eawaz v, (AS)

V1+R? 2R

Restoring the fundamental constants and left-multiplying by
o, such that a Hamiltonian can be defined by HWV = iho, W,
one arrives at the surface Dirac Hamiltonian for a shaped
TINW:

1 ih R
H= 1 s A6
o (- SRt na] e

where p, = —ihd; and p, = —iliR™'9,,. The term xR’ /R rep-
resents the nontrivial spin connection.

In the presence of a homogeneous coaxial magnetic field
B = Bz, the vector potential in the symmetric gauge is given
by A=A, = Br/2y. We replace p, — p, + eA,, where
e > 0, to obtain

H 1 ih R +( +de>)

=vp| — ——— o, —— oy, |.

F T R? Pz 2 R )" Peo R @, y
(A7)

Here, ® = nBR? is the magnetic flux piercing the wire and
®( = h/e is the magnetic flux quantum. This is the Hamilto-
nian (2) provided in the main part of this paper.

APPENDIX B: CONDUCTANCE SIMULATIONS
WITH KWANT

Nonuniform lattice. The effective tight-binding Hamilto-
nian used to compute transport throughout this work with the
software package KWANT is obtained by discretizing Eq. (5).
In the following, we use the shorthand notation W(s;, ¢;) =
W; ; for the two-component spinor wave function ¥ on the
numerical grid defined by the grid points (i, j) (where i, j are
integers and s is the arc length along the wire). Using this nota-
tion, a discretization of the transversal wave-number operator

~

k, = —id,/R(s) with the standard symmetric finite-difference
method yields
N 1
ko($)W j — — Imm(\yi,ﬂ—l — Wi 1) B1)
i
= — ‘I’i i - \I/,' i—1), B2
2a¢(si)( JHl J-1) (B2)

where the angle Ag is determined by the number of grid
points in the transversal direction N, namely, Ag = 27 /N,,.
In Eq. (B2), we introduce the s-dependent transversal grid
constant a,(s) = R(s)A¢ to highlight that effectively the
transversal grid spacing is changing such that Nya,(s) =
2 R(s).

With the standard discretization of the longitudinal wave-
number operator lzs‘lli, = —i(Wit1,; — Vi—1,/)/(2as), where
a, is the grid spacing in the longitudinal direction, we arrive
at the tight-binding Hamiltonian

iFlUF 1 e g .
Hrg = ——— a_GZ“’])(H_l’]'
i s

1
+——0oy i, ) (i, j + 1|> +H.c. (B3)
a(p(si)

The coaxial magnetic field is implemented using the usual
Peierls substitution.

Modeling disorder on curved surfaces. For creating corre-
lated disorder we use the so-called Fourier filtering method
(FFM), which is discussed in detail for instance in Ref. [43].

For shaped TINWSs, we construct a disorder landscape with
the desired correlation length in a 3D box, in which the TINW
is embedded. The values for the disorder potential Vg;s(r) are
then evaluated within the box on the surface of the TINW and
added as an onsite potential to the tight-binding Hamiltonian
(B3).

APPENDIX C: EFFECTIVE MASS POTENTIAL FOR
GRAPHENE SUBJECT TO A MAGNETIC STEP BARRIER

In view of the steplike profile of B, for a single TINC
[see Fig. 1(a)], we here provide the connection to the related
and well-known problem of a magnetic step barrier in (single-
valley) graphene [34]. More generally, the form of Eq. (9) that
we found for a shaped TINW is very similar to the effective
Schrodinger equation found in graphene subject to various
magnetic field profiles [34,35,44,45]. In this Appendix, we
show that the results of Ref. [34] can be reinterpreted in the
language of an effective mass potential, in full analogy to the
effective potential introduced in Eq. (8).

Consider an infinite graphene sheet, subject to a magnetic
step barrier that is translationally invariant in the y direc-
tion and nonzero only in the region —d < x < d, such that
B(x,y) = By®(d? — x?) [34]. Assume intervalley scattering
to be absent. Choosing the gauge A(x, y) = A(x)y, where

—d, x < —d (regionI)
A(x) = Byj x, |x] < d (region II) (C1)
d, x > d (region III)

the Dirac equation becomes
U {pxox + [Riky + eA(x)]oy Y (x) = e (x), (C2)

where we exploited the fact that transverse momentum /ik, is
a good quantum number. Equation (C2) is easily decoupled to
give

Oy Ye = €, (C3)
where the Dirac spinor ¥ = (1, ¥_)" and
OF = —(hvp)* (3] + P5).

2
PE = :F%A’ - <ky n %A) : (C4)
The analogy to Eq. (9) is evident, discrete angular momentum
being replaced by continuous transverse momentum, and the
coaxial coordinate replaced by x. Comparing Eq. (C2) to (7),
we observe that transverse momentum acts as a mass poten-
tial: V(x) = hvpk(x) = hvplk, + eA(x)/h]. With the gauge
(C1) one has [34]

0, x < —d (region I)
k(x) = & sin¢g + {(d +x)/12, x| < d (regionIl) (C5)
2d/12, x > d (region III)

where € = ¢/(hvr), Ip = /h/(eBy) is the magnetic length,
and ¢ is the kinematic incidence angle. Now, if sin¢ > 0, itis
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FIG. 11. Effective potential landscape |k(x)| seen by a state inci-
dent on a magnetic step barrier in graphene, for different values of
transverse momentum (d and /p are fixed), and as calculated from
Eq. (C5). The linear form of the vector potential leads to perfectly
triangular potential wells.

clear that k(x) > 0, i.e., V(x) cannot become negative. How-
ever, if sin¢g < 0, we have two possibilities: (i) €| sin¢| >
2d/1§, then k(x) < 0 always. (ii) €| sin ¢| < 2d/12, then

<0, x < —d (regionI)

<0, —d < x<x (region II)
>0, xo<x<d (regionIl)
>0, x> d (region III).

k(x) (Co)

Here, xy = €| sin¢|l§ — d < d denotes the root of the effec-
tive potential, analogous to Z; [cf. Eq. (13)]. In full analogy
to Sec. [IT A, a root in V (x) corresponds to a minimum and a
surrounding potential wedge in |V (x)].

Consequently, bound states within the effective potential
|V (x)| may exist if the two necessary criteria sin¢ < 0 and
|sing| < 2d/ (Elé) are fulfilled. This is visualized in Fig. 11.
If bound states exist, they correspond to Landau levels (LLs)
[35]. This duality of Landau level formation and bound states
in the effective potential at LL energies is in complete analogy
to what we find in Sec. III B.

Moreover, the picture of an effective potential landscape
[V (x)| can explain intuitively the perfect reflection criterion

found in Ref. [34], Eq. (12):

¢ <d/l. (C7)
When considering Fig. 11 and varying the parameter € sin ¢
arbitrarily, it is clear that the minimal energy threshold ky,,x =
max(|k(—d)|, |k(d)|) an incoming state can see (the analog
of "™ in Sec. IIIB) is kpax = d/lg. Hence, no transmis-
sion can occur in principle if € < kpax. This is precisely the
criterion (C7).

Obviously, the discussion conducted in this Appendix for
a simple magnetic step barrier can be extended to situations
where more complicated inhomogeneous magnetic field pro-
files are applied to graphene. For example, for each of the
magnetic field profiles studied in Ref. [35], we can construct
the corresponding shaped TINW by choice of the profile of
B (z) (cf. the insets of Fig. 1).

APPENDIX D: PARAMETRIZATION
OF SHAPED TI NANOWIRES

We use the NDEigensystem routine in Wolfram Mathe-
matica to solve Eq. (9) numerically. The TI nanocone is
parametrized with

RZINC(Z) =Ry+ (Ri — Ry)O,(z —z1)

+S8(z—20)[0s(z —20) — Oy (z—z1)], (D)

where O,(z —7') = % + %arctan[a(z —7)] is a smoothed
Heaviside function with a step at z = 7/, such that ©,_, . (z —
7) = ®(z — 7). With this, one can construct any shaped
TINW at will. For example, for the TI dumbbell (see Fig. 1),
where we assume z3 — 2o = z1 — 20 and R, = Ry, R3 = R for
simplicity, we have

RMPB(zy = RINC(2) + R™C(—z + 2, +22) — Ri.  (D2)

Changing the value of o allows to interpolate between the
ideal TI dumbbell [Fig. 1(b)] and the smoothed version shown
in Fig. 1(c).
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