
PHYSICAL REVIEW B 102, 165104 (2020)

Interaction induced hybridization of Majorana zero modes in a coupled
quantum-dot–superconducting-nanowire hybrid system
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We study the low-energy transport properties of a hybrid device composed by a native quantum dot coupled
to both ends of a topological superconducting nanowire section hosting Majorana zero modes. The account
of the coupling between the dot and the farthest Majorana zero mode allows one to introduce the topological
quality factor, characterizing the level of topological protection in the system. We demonstrate that the Coulomb
interaction between the dot and the topological superconducting section leads to the onset of the additional
overlap of the wave functions describing the Majorana zero modes, leading to the formation of trivial Andreev
bound states even for spatially well-separated Majoranas. This leads to the spoiling of the quality factor and
introduces a constraint for the braiding process required to perform topological quantum computing operations.
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I. INTRODUCTION

Errors coming from quantum decoherence are undoubt-
edly one of the most significant obstacles for successful
realization of a reliable quantum computer. In this regard,
topological quantum computing has been considered as an
attractive solution for overcoming the related problems [1–4].
It processes quantum information in a nonlocal fashion, and
in addition exploits the peculiarities of non-Abelian braiding
statistics [5], allowing the performence of decoherence-free
and fault-tolerant quantum logical operations [6]. In this con-
text, so-called Majorana zero modes (MZMs) emerging at
opposite ends of a one-dimensional (1D) spinless p-wave
superconductor [7–10] exhibiting pronounced non-Abelian
behavior associated topological degeneracy [5,11] have been
proposed as elementary building blocks of a topological quan-
tum computing hardware [12].

Although p-wave superconductivity is very rare in nature
[13–16], it can be engineered in quasi-1D semiconducting
nanowires with strong Rashba spin-orbit coupling, brought
into close proximity with a conventional superconductor and
placed in a strong external magnetic field parallel to the spin-
orbit intrinsic field [8–10,17]. In this configuration, MZMs
manifest themselves at the opposite ends of the topological
superconducting segment [10,17]. They can be probed by
means of tunneling spectroscopy experiments [18], where the
appearance of a robust zero-bias anomaly (ZBP), verified in a
set of experiments [19–24], was considered as direct evidence
of their presence.
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However, other physical mechanisms can be responsible
for the formation of ZBPs, such as,e.g., Kondo effect [25,26]
and formation of Andreev bound states (ABSs) [27–36].
These latter can be viewed as overlapping MZMs which
can remain pinned at zero energy for a wide range of
tunable parameters and even show perfect quantized con-
ductance patterns [37,38], mimicking exactly the behavior
expected for topologically protected MZMs. Strong disor-
der can also lead to such trivial ZBPs [37,39]. In order
to distinguish between the ZBPs stemming from authentic
topological MZMs and those arising from trivial zero-energy
ABSs, a plethora of strategies have been proposed [30,40–47].
Among them, we draw attention to those which sug-
gest experimental verification of “how topological” are
the MZMs, either by means of the measurement of so-
called topological quality factor [41] or degree of Majorana
nonlocality [42,43].

In the present paper, we analyze the effect of the Coulomb
interaction between electrons located in quantum dot (QD)
and MZMs on the above-mentioned quantities. We study
the low-energy spectrum of a hybrid system composed by a
QD coupled to a topological superconducting section hosting
MZMs at the opposite ends, as sketched in Fig. 1(a). Our
findings reveal that the Coulomb interaction between the QD
and the superconducting section leads to the additional over-
lap of the wave functions describing the individual MZMs,
even when they are spatially far apart. Hence, the informa-
tion about either the topological quality factor or degree of
Majorana nonlocality cannot be unambiguously extracted in
the interacting case. We discuss the effects of the Coulomb
charging energy on topological operations, demonstrating that
a braiding step must be performed diabatically with respect
to the Coulomb strength in order to be considered as being
topologically protected.
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FIG. 1. (a) The sketch of the considered device, consisting of
a hybrid topological superconducting nanowire in spinless regime
(blue region), hosting left (γL) and right (γR) MZMs at the opposite
ends, which are both coupled to a single level quantum dot (red
region). λL and λR give the coupling amplitudes between the QD
and left/right MZMs, respectively, while the parameter εM charac-
terizes the spatial overlap between the wave functions describing
the MZMs. There is also a Coulomb repulsion U between the QD
and MZMs. (b) Equivalent scheme of the device. The topological
superconducting section is now represented in terms of a nonlocal
fermionic site with energy εM , constructed as a linear combination of
spatially separated MZMs. In this formulation, U gives the strength
of the intersite Coulomb charging repulsion between the QD and
the nonlocal fermion. Moreover, the QD connects to the fermionic
site via normal tunneling and crossed Andreev reflection terms, with
amplitudes t and �, respectively.

II. MODEL AND METHODS

Consider a hybrid nanowire in the spinless regime [7] (i.e.,
when Zeeman splitting induced by strong external magnetic
field parallel to the axis of the wire exceeds all other charac-
teristic energies in the system), composed by a native quantum
dot [22,43] with a single level coupled to both left and
right MZMs located at the ends of the topological supercon-
ducting section of the corresponding nanowire [41,42,48–50]
[see Fig. 1(a)]. The effective low-energy Hamiltonian describ-
ing such a system reads

H = εd c†
d cd + ıεMγLγR + λL(cd − c†

d )γL

+λR(cd + c†
d )γR + HU , (1)

where the operator c†
d (cd ) creates (annihilates) an electron

at the QD with energy εd and γL (γR) describes the left
(right) Majorana mode emerging at the ends of the topological
superconducting section. The Majorana operators satisfy self-
conjugation γi = γ

†
i , with {γi, γ j} = δi, j (i = L, R) [10]. The

amplitude of the spatial overlap between these MZMs is given
by εM , which decays exponentially with the length Lsc of the
superconducting nanowire segment [21,49,51]. The part of the
Hamiltonian which describes the topological superconducting
section hosting the MZMs hybridized with the QD is a well-
established and widely used effective model derived from its
corresponding tight-binding Hamiltonian and is independent

of the Coulomb correlation [42]. It faithfully describes the
low-energy spectrum of the entire system [41,42] by show-
ing a good qualitative agreement with seminal experimental
results [22,43].

In the continuum limit, the spatial wave function describing
a MZM within the spinless condition reads [42]

γi = 1√
2

∫
dx[ν (i)(x)c†

x + ν (i)∗(x)cx], (2)

where c†
x (cx ) creates (annihilates) electrons in the point x of

the superconducting nanowire section, with the normalized
wave functions ν (i)(x) localized around the left (i = L) and
right (i = R) MZMs. These opposite MZMs are related by
the spatial inversion ν (R)(x) = ıν (L)(Lsc − x) [42]. Within this
description, the real coupling amplitudes between the QD
and the left/right MZM read λi ≡ λa0ν

′(i)(0), wherein ν ′(i)(0)
is the leading term coming from the expansion of ν (i)(x)
around the first point of the superconducting section x = 0
[42,52] and a0 is the tight-binding lattice parameter.

The last term in the Hamiltonian corresponds to the
Coulomb repulsion between the electron of the QD, and
MZMs. It can be easily constructed using the representation
of a nonlocal fermion, which is a linear combination of two
MZMs, c†

f = (γL − ıγR)/
√

2, n f = c†
f c f . In this picture, the

interaction can be simply read as HU = Und n f , where nd =
c†

d cd is an operator of the occupancy of the QD and [53]

U =
∫

d�xd �x f |φd (�xd )|2 e2
0

|�xd − �x f | |φ f (�x f )|2, (3)

where �xd and �x f are the positions of the QD and the fermionic
site f , respectively, with the properly normalized wave func-
tions φm(�xm) (m = d, f ) and e2

0 = e2/4πε, where e is the
electronic charge at the QD (fermion state) and ε is the
permittivity of the semiconducting region between the QD
and the fermionic state f . Since the MZMs localized at
the superconducting nanowire segment can be viewed as a
fermionic state with nonlocal nature [Fig. 1(b)], Eq. (3) states
that the Coulomb strength is inversely proportional to the
distance d ≡ |�xd − �x f | between the QD and the supercon-
ducting nanowire section. For hybrid experimental devices
fabricated with InAs semiconducting nanowire partially cov-
ered by Al via epitaxial growth, the bare region of the parental
semiconductor where the QD is formed has the length of
∼150 nm [22,43]. Considering typical values of permittivity
for the InAs (ε ∼ 14.6ε0 [54,55]), one can estimate that U ≈
0.10d−1 eV nm, yielding a Coulomb strength with magnitude
between meV and μeV, depending on the size of the QD
formed at the bare region nanowire.

Note that expressing the Majorana operators in terms of
the fermionic ones, i.e., using the transformation γL = (c†

f +
c f )/

√
2 and γR = ı(c†

f − c f )/
√

2, the interaction term reads

HU = Und n f = Und
(
iγLγR + 1

2

)
. (4)

It can be easily noted that the structure of this term closely re-
sembles those for the second term in Eq. (1), ıεMγLγR, which
describes the overlap between the MZMs. Therefore, the
QD-MZM repulsion leads to additional hybridization of the
MZMs, whose amplitude Und depends on the QD occupancy.
This has a dramatic effect on topological characteristics of the
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system, as we will show below. A tight-binding description of
HU can be obtained by considering the MZMs structure in the
continuum limit given by Eq. (2) into Eq. (4). Note that the
intradot Coulomb interaction can be safely neglected, since
only single occupancy is allowed in the QD within the spinless
regime. Moreover, the Coulomb correlation between electrons
in the superconducting section of the nanowire also can be
safely neglected, since the attractive interaction between elec-
trons forming the Cooper pairs is dominant over the Coulomb
repulsion [53].

The system Hamiltonian [Eq. (1)] can be rewritten in terms
of nonlocal fermionic operators c†

f (c f ) as [10,50,56]

H = εd c†
d cd + εMc†

f c f + (tcd c†
f + �cd c f + H.c.)

+HU + const, (5)

where λL = (t + �)/
√

2, λR = ı(� − t )/
√

2, and εM has
now the meaning of a nonlocal fermionic excitation en-
ergy. The transport between the QD and topological wire
is described in terms of a normal tunneling and crossed
Andreev reflection with t and � being the corresponding am-
plitudes, which are both chosen real [41,50,56]. The MZMs
are quadratically protected in the “sweet spot” t = � for
εM = U = 0 [56], which corresponds to the ideal situation of
well-isolated MZMs.

The system Hamiltonian given by Eq. (5) can be recast in
the matrix form as

H =

⎛
⎜⎝

0 0 0 −�

0 εM −t 0
0 −t εd 0

−� 0 0 εd + εM + U

⎞
⎟⎠, (6)

where we have chosen the following basis
{|00〉, |01〉, |10〉, |11〉} for the number states |nd n f 〉 [41,56].
It is worth noting that the results derived from Eq. (6) are
invariant under change of sign of the parameters t and �. The
same matrix Hamiltonian of Eq. (6) was previously adopted
in Ref. [56] to describe a system of two QDs coupled via an
s-wave superconductor in which the so-called “poor man’s
Majorana bound states” emerge. Distinct from our case, these
states are not topologically protected and due to the charge
screening induced by the superconductor set up between the
QDs, the interdot Coulomb repulsion can be safely neglected.

The conductance through the system is determined by the
density of states of the QD, which in the Lehmann represen-
tation reads [53]

ρd (V ) = 1

Z
∑
n,m

|〈m|c†
d |n〉|2(eβEn + eβEm )δ(V + En − Em),

(7)
where β = 1/kBT , Z is the partition function of Eq. (6) with
a complete set of eigenstates {|(m)n〉}, and associated eigen-
values Em(n). For T = 0, the differential conductance through
the QD dI/dV ∝ ρd (V ) can be probed with a pair of metallic
leads, with V being the corresponding bias voltage. Note that
the attachment of metallic leads will broaden the peaks in the
density of states, and the delta functions in Eq. (7) should be
replaced by Lorentzians with broadening � [53,57]. For situa-
tions of finite temperature, the Lorentzians will be flattened,
leading to a reduction of their heights. Thus, the condition

kBT � � must be fulfilled in order to observe the correspond-
ing peaks in the conductance profiles [23,58,59]. In our further
analysis, however, we will be focusing on the position of the
conductance peaks only and both the broadening and finite
temperature effects will be neglected.

Equation (7) determines that a peak is registered in the
conductance through the QD whenever a transition between
the ground state of the system [Eq. (6)] and an excited state
with opposite parity is allowed [41], i.e., when the matrix
elements |〈m|c†

d |n〉| = 0, and for V = (Em − En).
By taking into account the four possible eigenvalues of

the QD-topological superconducting section extracted from
Eq. (6) and considering the transition rules defined by
Eq. (7), it is straightforward to show that a conductance peak
will emerge at the low-energy spectrum of the system for
V = V1 + V2, with

V1 = ± 1
2 [

√
ε2− + (2t )2 +

√
(ε+ + U )2 + (2�)2 − U ] (8)

and

V2 = ± 1
2 [

√
ε2− + (2t )2 −

√
(ε+ + U )2 + (2�)2 − U ], (9)

where V1 describes the energy spectrum corresponding to the
QD states (dashed green lines), while V2 corresponds to the
MZM spectrum (red lines), with ε± = εd ± εM . For U = 0,
we just recover the case described by Clarke [41], who also
used the Lehmann representation for the noninteracting case.

Before presenting our results, it is worth discussing briefly
the so-called topological quality factor, defined as

Q = 1 − |λR|
|λL| , (10)

proposed by Clarke [41] as a quantitative criterion allowing
one to estimate if a system can be interpreted as topolog-
ical for εM ≈ 0. Well-separated MZMs correspond to the
ideal topologically protected situation, wherein λR = εM = 0,
yielding the highest quality factor Q = 1. As the nonlocal
nature of MZMs fades away, λR enhances, and Q approaches
zero, the crossover to the topologically trivial case of over-
lapping MZMs, i.e., ABSs, occurs. The quality factor also
can be viewed as an indirect way of estimating the charge of
the MZMs, since for λR = 0 the opposite MZMs hybridize
with each other via the QD, yielding a finite effective over-
lap εM = 0 between the MZMs. Although it can be smaller
(λR � εM), this effective overlap via QD plays the role of a
discrete energy level in the fermionic basis [Eq. (5)], which
can be empty or fulfilled according to its relative position
to the Fermi level introduced by the presence of leads in an
experimental device, thus estimating the amount of charge in
the fermionic state made by the MZMs. Q is directly related
with the so-called degree of Majorana nonlocality introduced
by Prada et al. [42] and experimentally studied by Deng
et al. [43].

III. RESULTS AND DISCUSSION

In the following analysis, we adopt the QD-left MZM cou-
pling amplitude λL as the energy unit. For practical situations
whose QD is coupled to metallic leads λL scales with the
QD level broadening � [57], which typically has the order
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FIG. 2. Low-energy spectrum characterizing the conductance
profiles [Eqs. (8) and (9)] as a function of the QD energy-level εd

and applied bias-voltage V for non interacting case (U = 0). The red
lines describe the position of the peak, related to the states of the
topological superconducting section hosting MZMs, dashed-green
lines correspond to the QD states. (a) The case of well-separated
MZMs (λR = εM = 0), yielding the highest topological quality fac-
tor, Q = 1. Horizontal red line corresponds to the robust ZBP.
(b) The case, when the wavefunctions describing the MZMs at
the opposite ends of the topological section are strongly overlap-
ping (εM � λR). ZBP is splitted, producing characteristic bowtie, or
double-fork, pattern. (c) The case of a finite overlap between the QD
and the right MZM, with Q = 0.6, εM = 0. (d) The case, when the
overlap between the MZMs is comparable with those between the
QD and the right MZM.

of a few μeV for QD experimental setups [48,58]. In this
scenario, the condition λL > � must be fulfilled for ensuring
that any features of the QD-MZMs low-energy spectrum are
not spoiled by the QD-leads hybridization [58].

A. Noninteracting case

We start from a brief discussion of the results for the
noninteracting case (U = 0) previously obtained by Clarke
[41], just in order to better understand the interacting case.
We emphasize that the main focus of the present work is
to study the effects of the aforementioned Coulomb intersite
correlation U , not proposing a measurement protocol as in
Ref. [41].

In Fig. 2, the corresponding low-energy spectrum is pre-
sented. The ideal situation of well-separated MZMs is shown
in Fig. 2(a). There is no overlap between either the wave func-
tion of the QD and that describing the right MZM (λR = 0),
or between the wave functions describing the right and left
MZMs (εM = 0), and Q = 1. This corresponds to the perfect
topological case with quadratically protected MZMs [56], for
which there is a robust single zero-bias conductance peak
which remains pinned to zero when the QD energy level is
tuned (red horizontal line).

The situation drastically changes when a finite overlap
between the MZMs is taken into account (εM = 0), as shown
in Fig. 2(b). In this case, the spectrum corresponding to the

MZMs (red lines) splits, revealing the crossing at εd = 0, the
pattern known as bowtie [42] or double-fork profile [50].

Figure 2(c) illustrates the case when the overlap amplitude
λR between the QD and the right MZM is finite and εM ≈ 0,
and the corresponding topological quality factor is Q = 0.6.
The fact that Q < 1 introduces a constraint for topological
quantum operations, as we shall see later. These quasi-MZMs
are characterized by a diamondlike profile [42,43] for the split
ZBP.

Finally, in Fig. 2(d) we illustrate the case where λR = εM

and a highly asymmetric bowtie is revealed. Both Figs. 2(c)
and 2(d) correspond quite well to the experimental conduc-
tance profiles reported by Deng. et al. [22], which means
that the experimental prototype was in fact in the trivial
phase [41,42].

B. Interacting case

The low-energy spectrum of the system drastically changes
when the Coulomb interaction U between the QD and
the topological superconducting section hosting MZMs is
taken into account. For typical experiments with hybrid de-
vices composed by a QD and a topological superconducting
nanowire, the intradot Coulomb interaction has the magnitude
of a few meV [22,42,43] in the Coulomb blockade regime.
However, in the present case of spinless regime, only the inter-
dot Coulomb interaction becomes relevant and has the order
of μeV for double quantum dot experimental arrangements
hybridized with leads [60,61], which is within our previous
estimate provided by Eq. (3). Since we are not interested in
studying the effects related to the strong capacitive coupling
limit characterized by U � λL [62–64], we consider U and
λL magnitudes on an equal footing.

As was already mentioned, in the representation of non-
local fermions this interaction describes a simple charge
repulsion, while in the basis of MZMs it has a structure
similar to those terms describing the overlap between the
MZMs [see Eq. (4)]. This leads to the splitting of the ZBP
and the formation of a bowtie structure even for the seem-
ingly ideal case, corresponding to λR = εM = 0, as shown
in Fig. 3(a). In the fermionic representation [Eq. (5)], this
ideal case corresponds to a QD coupled to a highly non-
local fermion with zero energy εM = 0 and finite Coulomb
correlation between them. In a real experimental apparatus
with the presence of metallic leads hybridized to the QD
and the corresponding broadening �, the case of εM = 0 but
U = 0 can be achieved in the so-called intermediate valence
regime [65] in which the charge fluctuations are allowed in the
localized states. This regime takes place when the state εM ap-
proaches the Fermi level εF of the leads, so that εM − εF ∼ �

or εM + U − εF ∼ �. The unexpected loss of robustness of
the ZBP shown in Fig. 3(a) is precisely owing to the Coulomb
correlation, which effectively overlaps the wave functions of
the MZMs having the QD as an intermediate, in accordance
with Eq. (4). Note that as in the considered case the am-
plitude of the overlap depends on the occupancy of the dot,
the corresponding bowtie structure becomes slightly distorted,
forming a crooked double fork with the crossing point slightly
shifted from εd = 0. The information about the strength
of the Coulomb interaction can be extracted from such a
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FIG. 3. Low-energy spectrum characterizing the conductance
profiles [Eqs. (8) and (9)] as a function of the QD energy level εd

and applied bias voltage V for the interacting case (U = 0). The red
lines describe the position of the peak, related to the states of the
topological superconducting section hosting MZMs; dashed-green
lines correspond to the QD states. (a) The case of well-separated
MZMs (λR = εM = 0), yielding the highest topological quality fac-
tor, Q = 1. The robust ZBA, represented by the horizontal red line in
Fig. 2(a) is destroyed by the intersite repulsion, and transforms into
bowtie profile. (b) The case when the wave functions describing the
MZMs at the opposite ends of the topological section are strongly
overlapping (εM � λR). The finite U leads tothe appearance of slight
asymmetry in the bowtie profile, and greater splitting of the lines.
(c) The case of a finite overlap between the QD and the right MZM,
λR = 0, εM = 0. The symmetric diamond profile, characteristic to
the noninteracting case, transforms into asymmetric bowtie due to
interaction induced hybridization of MZMs. (d) The case when
the overlap between the MZMs is comparable with those between
the QD and the right MZM. Interactions do not qualitatively change
the figures, increasing the degree of asymmetry and splitting.

low-energy spectrum profile, as indicated in the corresponding
Fig. 3(a).

If the overlap between the MZMs is already present
(εM = 0), Coulomb correlations contribute to the additional
vertical distancing of the bowtie lines, together with a hori-
zontal shift of the crossing point from εd = 0, as shown in
Fig. 3(b).

Figure 3(c) illustrates the regime for which the concept of
the quality factor was originally introduced, namely, λR � εM .
One can clearly see that the account of the Coulomb cor-
rections destroys the symmetric diamond shape characteristic
to the noninteracting case and leads to the appearance of
the crossing and formation of an asymmetric bowtie profile,
which is a direct consequence of the interaction induced hy-
bridization of MZMs. As for the case when λR and εM are
comparable, the situation is qualitatively similar for the non-
interacting and interacting cases, the quantitative difference
being that the asymmetry of the profiles and the splitting
between the lines is enhanced in the interacting regime
[see Fig. 3(d)].

Using Eqs. (8) and (9), one can obtain the expres-
sion for the position of the crossing of the red lines in

FIG. 4. Low-energy spectrum characterizing the conductance
profiles [Eqs. (8) and (9)] as a function of the QD energy level εd

and applied bias voltage V for the interacting case (U = 0). The red
lines describe the position of the peak, related to the states of the
topological superconducting section hosting MZMs; dashed-green
lines correspond to the QD states. (a) The case wherein the value
of U corresponds to εcross = 0 [Eq. (11)] for εM and λR = 0, showing
a symmetric profile in relation to εd = 0. (b) The overlap strength
between the MZMs is negative, but holds the condition |εM | � λR.
(c) Same situation of the panel above, but for the condition 2εM +
U = 0, yielding an indistinguishable splitting of the states describ-
ing the MZMs. The zoomed spectrum near V = 0 is shown in the
inset panel.

Figs. 2 and 3:

εcross = 2λLλR

(2εM + U )
− U

2
. (11)

For εM → 0, U → 0, and λL = 0, εcross → ∞ and then,
there is no crossing between the near-zero-energy states, as
indeed one can verify in Fig. 2(c). However, for the interacting
case wherein U = 0.3λL, λR = 0.4λL, and εM ≈ 0, we obtain
εcross ≈ 2.5λL, which corresponds to Fig. 3(c).

Equation (11), one can verify that U = −εM +√
ε2

M + 4λLλR gives the physical solution for εcross = 0,
with εM and λL = 0, as shown in Fig. 4(a). By fulfilling this
condition, the asymmetric profile of the near-zero-energy
states in relation to εd = 0 [Fig. 3(c)] is symmetrized.

Figure 4(b) depicts the case of εM < 0 and |εM | � λR. In
the Majorana basis [Eq. (1)], this situation corresponds to a
negative overlap strength between the MZMs, once εM is pro-
portional to a cosine function, showing an oscillatory behavior
for shorter nanowires [49]. A comparison between Figs. 3(b)
and 4(b) shows that the negative value of εM reduces the width
of the near-zero-energy splitting in the interacting picture.
This feature points out that the splitting strength of the states
which correspond to the MZMs (red lines) is proportional to
εM + U . If one considers, e.g., the condition 2εM + U = 0
with εM < 0 [Fig. 4(c)], the splitting is indistinguishable (see
the zoomed inset panel), yielding an apparent plateau shifted
from V = 0.
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C. Effects of the interaction on topological operations

Both the quality factor Q < 1 (λR = 0) and spatial over-
lap εM = 0 between the MZMs introduce some restrictions
for performing topological operations given by braiding pro-
cesses [1,6,41,66,67]. Specifically, an exchange operation
involving MZMs (braid step) must be performed very quickly
with respect to characteristic times defined by the coupling
λR and the overlap εM , so that the system responds as if
it were topologically protected (λR = εM = 0, Q = 1). Once
Coulomb correlations in the considered system induce the
additional overlap of the MZMs [see Eq. (4)], it is natural
to infer that a braiding operation also must be performed
diabatically in relation to U . All these constraints imply
that [41]

h̄

λLτop
,

h̄

εMτop
,

h̄

Uτop
� 1, (12)

where τop is the operational time to take a braid step.

IV. CONCLUSIONS

We have studied the low-energy spectrum of a hybrid
system consisting of a topological nanowire hosting a pair
of MZMs at its opposite ends, and a QD simultaneously

coupled to both them. It was demonstrated that the Coulomb
interaction between the dot and the superconducting section
leads to an additional hybridization of the MZMs, which
strongly affects the density of states of the system and mod-
ifies the corresponding conductance profiles. It is shown that
the interactions compromise the analysis of the topological
quality factor, introduced as a quantitative measure of the level
of the degree of topological protection in a noninteracting
system. This leads to the additional constraint for the braiding
operation in the quantum computing process, which should be
performed diabatically with respect to the Coulomb charging
energy.
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