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Dyakonov-like waveguide modes in an interfacial strip waveguide
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We study Dyakonov surface waveguide modes in a waveguide represented by an interface of two anisotropic
media confined between two air half-spaces. We analyze such modes in terms of perturbation theory in the
approximation of weak anisotropy. We show that in contrast to conventional Dyakonov surface waves that decay
monotonically with distance from the interface, Dyakonov waveguide modes can have local maxima of the
field intensity away from the interface. We confirm our analytical results by comparing them with full-wave
electromagnetic simulations. We believe that this work can bring new ideas in the research of Dyakonov surface
waves.
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Surface electromagnetic waves are solutions of Maxwell’s
equations in the form of monochromatic waves, which prop-
agate along the interface of two dissimilar media and decay
in the directions perpendicular to the interface. Examples of
surface waves include surface plasmon polaritons at a metal-
dielectric interface [1], Tamm surface states at a photonic
crystal boundary [2–4], surface solitons at a nonlinear inter-
face [5], and many others. A special case of surface waves is
Dyakonov surface waves (DSWs) supported at the interface
of two materials, at least one of which is anisotropic. Since
the discovery in 1988 by Dyakonov [6], extensive research
has been performed toward the theoretical study and exper-
imental realization of DSWs and finding optimal material
and geometrical configurations, which would be most suitable
for potential practical implementations. Different combina-
tions of isotropic, uniaxial, biaxial, and chiral materials have
been demonstrated to support DSWs at their interfaces [4,7–
20]. The first experimental observation of DSWs using the
prism coupling method was reported in 2009 by Takayama
et al. [21]. Due to naturally small anisotropy of birefringent
media, DSWs exist only in a narrow range of angular direc-
tions parallel to the interface plane. Wider DSW existence
regions can be achieved using ultrathin partnering nanolayers,
which can substantially release the Dyakonov condition and
simplify DSW experimental observation [22,23]. Yet another
realization of DSWs has been demonstrated theoretically and
experimentally for metamaterials with artificially designed
shape anisotropy [23–30].

In contrast to surface plasmon-polaritons and many other
surface waves, DSWs can exist at the interface of two
dielectrics. It means that DSWs potentially have no theoretical
limit in propagation length. In this sense, a study of DSW
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propagation in a corresponding waveguide would be interest-
ing for the theory of nanophotonics and also rather intriguing
from a practical viewpoint. Recently, waveguide properties
of DSWs on cylindrical surfaces have been demonstrated in
Ref. [31]. Due to the bending of the waveguide boundary,
such DSWs have inevitable radiative losses, which tend to
zero when the cylinder diameter tends to infinity.

In this Rapid Communication, we consider a waveguide
for DSWs represented by a strip of the interface between
two identical uniaxial birefringent dielectrics. We will demon-
strate that such a flat waveguide can guide DSWs without
losses.

The schematic of the waveguide for DSWs is shown in
Fig. 1. It consists of two anisotropic dielectric slabs separated
from air by planes |y| = d/2. The slabs have width d in the
y direction, are infinite in the x direction, and semi–infinite in
the z direction. These two dielectrics have different orienta-
tions of optical axes, and there is an interface between them at
the plane z = 0. Although we are mostly interested in the case
of two uniaxial media, we extend our scope to consideration
of biaxial crystals with similar dielectric tensors whose axes
are rotated by 45◦ with respect to the initial coordinate system.
Thus, the dielectric tensor inside the structure (at |y| < d/2)
has the form

ε̂(z) = ε̂0 + δε̂(z), ε̂0 = diag(ε1, ε1, ε2),

δε̂(z) = sign(z)

( 0 δε 0
δε 0 0
0 0 0

)
. (1)

We treat the parameters ε1,2 and δε as independent ones.
However, by setting ε1 − ε2 = δε, one can consider the case
of two uniaxial crystals. Please note that such a representation
of dielectric tensor ε̂ is possible only for the optical axes
rotation angles of ±45◦ relative to the x axis.

In such a structure, lossless modes propagating along the x
axis can exist, which are localized in the z direction near the

2469-9950/2020/102(16)/161113(5) 161113-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4140-4947
https://orcid.org/0000-0002-3729-6621
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.161113&domain=pdf&date_stamp=2020-10-19
https://doi.org/10.1103/PhysRevB.102.161113


E. V. ANIKIN et al. PHYSICAL REVIEW B 102, 161113(R) (2020)

air

(a)

x

z

y

air

Side view

air

(b)

air

Top view

OA1 OA2

x

y
z

d
Dyakonov

wave

Anisotropic

dielectric 1

Anisotropic

dielectric 2

FIG. 1. (a) Side view and (b) top view of Dyakonov waveguide.
Optical axes (OAs) of anisotropic dielectrics 1 and 2 are perpen-
dicular to each other and form the angle of 45◦ to the waveguide
boundaries.

interface of two slabs. We will call them Dyakonov waveguide
modes (DWMs). DWMs can be analyzed in the framework of
perturbation theory by the nondiagonal part of the permittivity
tensor. Without perturbation, the waveguide is translationally
invariant in both x and z directions and all eigenmodes have
the form of plane waves �Ekx,kz (y)eikxx+ikzz, where kx and kz are
the projections of the wave vector �k. When the perturbation
is present, a DWM can appear with a lower frequency than
all waveguide modes at a fixed kx. For weak perturbation,
the DWM decays slowly away from the interface. Because of
this, it is possible to describe DWMs in terms of unperturbed
waveguide modes multiplied by a slowly varying envelope.

The general solution for waveguide modes in an
anisotropic waveguide with permittivity ε̂0 can be obtained
analytically for arbitrary kx and kz (see Supplemental Material
in Ref. [32]). For waves propagating in the x direction, the
modes are identical to those of an isotropic waveguide, i.e.,
they have the same fields and frequency. Namely, the modes
with �E ‖ Oz coincide with Transverse Electric (TE) modes of

an isotropic waveguide with permittivity ε2, and the modes
with �E ⊥ Oz coincide with Transverse Magnetic (TM) modes
of an isotropic waveguide with permittivity ε1. For ε2 < ε1,
the two lowest waveguide modes intersect [have the same
frequency ω, see Fig. 2(a)] at some value of propagation
constant kx. Thus, both of them should be taken into account
in the decomposition of DWMs over waveguide eigenmodes.

Close to the intersection of fundamental TE and TM
modes, the nondiagonal perturbation δε̂ leads to considerable
mixing of them. Moreover, the contribution of all other modes
can be neglected, provided that the mode spacing (which has
order c/d) is much larger than the distance between the two
lowest modes.

We consider Maxwell’s equations as an eigenvalue prob-
lem,

c2rotrot �E = ω2ε̂ �E , (2)

where ω is the frequency of electromagnetic oscillations and c
is the speed of light. All eigenmodes of this problem constitute
a basis in the space of fields. As the unperturbed problem has
translational symmetry in z direction, we will consider the
basis

�En
kx,kz

(y, z) = �En
kx,kz

(y)eikzz, (3)

with corresponding eigenvalues ωkx,kz,n, where n is the index
enumerating different modes. The set of all modes at par-
ticular kx, kz includes a finite number of waveguide modes
which decay exponentially away from the waveguide and a
continuum of free-space modes corresponding to plane-wave
scattering on the waveguide. Below, we don’t take the contin-
uum modes into account because, as will be shown, only the
modes with lowest frequencies contribute to DWMs, and the
expansion including lowest TE and TM modes reads

�E (y, z) =
∫

dkz

2π

[
α(kz ) �ETE

kx,kz
+ β(kz ) �ETM

kx,kz

]
. (4)
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FIG. 2. (a) The dispersions of the DWM (red solid line) and the TE and TM modes of an anisotropic waveguide (blue dashed line and green
solid line) with permittivity ε̂0 traveling along x axis. (b) The in-plane wave-vector dependence of the real and imaginary parts of the decay
constants κ1,2 (black solid and dashed line). The dispersions of the DWM (red line) and the TE waveguide mode of an anisotropic waveguide
(blue dashed line) with permittivity ε̂0 shown as a difference with the dispersion of the TM waveguide mode. In the presented diagram, the
TM waveguide mode corresponds to the horizontal line ωd/c = 0 (black thin solid line). (c), (d) Theoretically calculated fields Ey(0, z) and
Ez(0, z) (black dashed lines) shown together with COMSOL simulation results (red and yellow lines) for λ = 1550 nm and (c) kxd = 7.262,
d = 700 nm, (d) kxd = 8.1938, d = 630 nm. All calculations are made for δε = 0.5, ε1 = 9.5, ε2 = 9.
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Taking into account the orthogonality of eigenvectors of the
eigenvalue problem Eq. (2), we normalize the waveguide
modes by a condition∫ ( �En

kx,kz
, ε̂0 �En′

kx,k′
z

)
dydz = 2πδ(kz − k′

z )δnn′ . (5)

Below we obtain the equation for the envelopes α(kz ) and
β(kz ). Due to small δε, DWMs should have a slow field
dependence on z and, hence, the field envelopes α(kz ) and
β(kz ) are significant only at small kz. After substituting this
expansion in Maxwell equations and taking scalar product of
both sides of these equations by �ETE

kx,kz
and �ETM

kx,kz
, one obtains

γ TE
kx,kz

α(kz ) = ω2
∫

dk′
z

(2π )
β(k′

z )
〈 �ETE

kx,kz
δε̂ �ETM

kx,k′
z

〉
,

γ TM
kx,kz

β(kz ) = ω2
∫

dk′
z

(2π )
α(k′

z )
〈 �ETM

kx,kz
δε̂ �ETE

kx,k′
z

〉
, (6)

where γ TE(TM)

kx,kz
= (ωTE(TM)

kxkz
)2 − ω2.

The matrix elements 〈 �ETE
kx,kz

δε̂ �ETE
kx,k′

z
〉 and 〈 �ETM

kx,kz
δε̂ �ETM

kx,k′
z
〉 are

not present in Eqs. (6) because they turn out to be zero due
to symmetry properties of TE and TM modes. Also, at small
wave vectors, the matrix element corresponding to mixing
between TE and TM modes 〈 �ETE

kx,kz
δε̂ �ETM

kx,k′
z
〉 reads

〈 �ETE
kx,kz

δε̂ �ETM
kx,k′

z

〉 = 2iP
(

1

kz − k′
z

)
kzδεσ,

σδε =
∫ a/2

−a/2
dy

(
∂kz

�E TE
kx,kz

(y)δε̂ �E TM
kx,k′

z
(y)

)∣∣
kz,k′

z=0, (7)

where P denotes the principal value. After substituting
Eqs. (7) to (6) and performing the inverse Fourier transform of
Eqs. (6), one gets a system of Ordinary differential equations
in coordinate space for Fourier images of α(kz ) and β(kz ),
α(z) and β(z).

Expanding the frequencies of TE and TM modes in kz up
to quadratic terms, one gets(

γ TE
kx,0

− 1
2m1

∂2

∂z2 iω2σδε∂zsign(z)

iω2σδεsign(z)∂z γ TM
kx,0

− 1
2m2

∂2

∂z2

)(
α(z)
β(z)

)
= 0, (8)

where all the coefficients in Eq. (8) are expressed through the
quantities referring to the planar waveguide,

m−1
1(2) = ∂2

∂k2
z

(
ωTE(TM)

kx,kz

)2∣∣
kz=0, (9)

and σ is defined by Eq. (7). The system Eq. (8) has solutions in
the form of decaying exponential functions for z > 0 and z <

0 which can be matched using the boundary conditions at z =
0. These exponentially decaying solutions exactly correspond
to DWMs localized near the interface with field distributions
given by Eq. (4). By integrating Eq. (8) in the neighborhood
of z = 0, one gets that ∂zβ(z) is continuous, and the condition
for ∂zα(z) reads

∂zα(+0) − ∂zα(−0) = 4im1ω
2σδεβ(0). (10)

The explicit expressions for coefficients Eq. (9) in the ef-
fective equation for envelopes Eq. (8) can be easily calculated
numerically. They also drastically simplify in the limit when

ε1 − ε2 	 ε1 and all modes are very close to that of the planar
isotropic waveguide. In this limit, fundamental TE and TM
modes intersect at kxd 
 1. So, one can utilize the large wave-
vector expansion of ωTE

kx,0
and ωTM

kx,0
to find the intersection

point. The resulting wave vector of intersection reads

kxd ≈ √
ε1

(
2π2

√
ε1 − 1

ε1(ε1 − ε2)

) 1
3

. (11)

At large kx, the parameters m−1
1 and m−1

2 approach c2/ε1,
and the asymptotic behavior of the matrix element is σ =
(kxε1)−1.

The examination of the system Eq. (8) allows finding the
domain of existence, the dispersion law, and the field structure
of DWMs. Before we go into further detail, let us emphasize
that such modes propagate along the x axis completely with-
out losses. This is because, as shown below, the frequencies
of DWMs in such a structure are lower than the frequencies
of the waveguide modes. Thus, DWMs cannot scatter into
waveguide modes or free-space modes without violation of
energy or momentum conservation law. Therefore, the imag-
inary parts of the frequency and the wave vector are exactly
zero, ω′′ = 0 and k′′

x = 0.
The exponentially decaying solution of Eq. (8) obeying the

boundary conditions reads

α(z) = ω2σδεe−κ2|z|(
γ TE

kx,0
− κ2

2
2m1

) − ω2σδεe−κ1|z|(
γ TE

kx,0
− κ2

1
2m1

)
,

β(z) = −i

(
e−κ2|z|

κ2
− e−κ1|z|

κ1

)
, (12)

where κ1,2 are two roots with positive real part of the charac-
teristic equation:(

γ TE
kx,0 − κ2

2m1

)(
γ TM

kx,0 − κ2

2m2

)
+ ω4σ 2δε2κ2 = 0. (13)

The implicit dispersion follows from boundary conditions and
has the form√

m1m2γ
TE
kx,0

γ TM
kx,0

= 2m1m2(ω2σδε)2 − m2γ
TM
kx,0. (14)

Whether there exists a solution for these equations depends
on the relation between ωTE

kx,0
and ωTM

kx,0
and the off-diagonal

matrix element. In particular, the solution of Eq. (14) exists
when the lower cutoff condition is satisfied [see red curve in
Fig. 2(b)]:(

ωTM
kx,0

)2 − (
ωTE

kx,0

)2 � 2m1
(
ωTE

kx,0

)4
σ 2δε2. (15)

From expressions Eqs. (12)–(14), one can see that the
decay constants κ1,2 can be either complex and conjugate to
each other or both real. The case of complex κ1,2 implements
near the vicinity of the TE and TM mode intersection, whereas
far enough from the intersection point, both κ1 and κ2 are
real. These alternatives are separated by the branching point
where two roots of the characteristic Eq. (13) coincide. As the
DWMs are qualitatively different for these two cases, let us
consider them in more detail.

First, we consider a large separation between TE and
TM modes. In this case, for the solutions of the character-
istic equation and the field distributions, simple asymptotic
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FIG. 3. Electric field intensity in DWMs at λ = 1.55 μm and (a) ε1 = 9.5, ε2 = 9, kxd = 7.8, d ≈ 670 nm; (b) ε1 = 9.5, ε2 = 9, kxd = 7.2,
d ≈ 625 nm; (c) ε1 = 6, ε2 = 3, kxd ≈ 3.87, d = 500 nm. White vertical lines denote the waveguide boundaries, black dashed horizontal lines
denote the interface between anisotropic dielectrics.

expressions can be obtained. Thereby, the DWM frequency
evaluated from Eq. (14) is very close to TM mode frequency:

δω = ωTM
kx,0 − ωDWM ≈ 2m1m2

(
ωTM

kx,0

)7
σ 4δε4(

ωTE
kx,0

)2 − (
ωTM

kx,0

)2 ∝ δε4. (16)

Also, the amplitudes of TE and TM modes in this limit take
the form

α(z) = 2m1
(
ωTM

kx,0

)2
σδε

κ1
e−κ1|z|, β(z) = −ie−κ2|z|, (17)

where the decay constants read κ2
1 ≈ 2m1[(ωTE

kx,0
)2 − (ωTM

kx,0
)2]

and κ2
2 ≈ 4m2ω

TM
kx,0

δω. Thus, in the considered limits, the main
contribution to DWMs is from the TM waveguide mode.
Its amplitude slowly decays with the decay length ∼1/κ2

[Fig. 3(a)], whereas the amplitude of the TE mode is small by
δε, and the TE mode is localized near the interface on a much
shorter length ∼1/κ1. The theoretically calculated profiles of
Ey and Ez for the considered case demonstrate excellent agree-
ment with the results of full-wave electromagnetic simulations
of DWMs made in COMSOL [Fig. 2(c)].

Now let us analyze the vicinity of TE and TM mode
intersections when the approximation of Eqs. (16) and (17)
becomes invalid. The exact solution of Eqs. (12)–(14) should
be utilized in this case, and the contributions of TE and TM
modes to DWMs as well as the inverse decay lengths κ1 and
κ2, become comparable. Also, the difference between DWM
frequency and the lowest TM mode frequency δω becomes
proportional to δε2, so the separation between DWM and
waveguide modes is maximal near the TE and TM mode
intersection. As it was stated before, the inverse decay lengths
κ1 and κ2 acquire nonzero imaginary part closely to the modes
intersection [see Fig. 2(b)], so the fields exhibit oscillations
with z which results in additional local maxima of the field
intensity at some distance from the interface [see Figs. 2(d)

and Fig. 3(b)]. This distinct feature distinguishes DWMs from
conventional DSWs which exist at the infinite flat interface
and decay monotonically.

It should be emphasized once again that the two-mode ap-
proximation is valid only provided that the difference between
TE and TM mode frequencies is much less then the mode

spacing, ωTE
kx,0

− ωTM
kx,0

	 π2

kxd2ε1,2
. As ωTE

kx,0
− ωTM

kx,0
grows with

kx, the two–mode approximation cannot be applied far from
the mode intersection point. The above analytical considera-
tions only apply to the case of a small anisotropy δε 	 ε1, ε2.
Properties of DWMs in a more general case of an arbitrary
anisotropy, their domain of existence, and the presence of a
branching point are subjects of separate research. However,
in Fig. 3(c), we show an example of the DWM obtained
numerically in COMSOL for ε1 = 6 and ε2 = 3. One can see
that the electric field intensity decays with distance from the
interface even faster than in the considered cases of small
anisotropy.

Finally, the considered DWMs can be generalized to a
non-45◦ rotation of optical axes as well as to other types
of partnering media, including different combinations of
isotropic, uniaxial, biaxial, chiral materials, and also photonic
crystals. Existence of DWMs in each particular case is a
subject of separate research.

In conclusion, we have analytically and numerically
demonstrated the existence of DWMs which can propagate
without losses at the interface of two anisotropic dielectric
waveguides. On the dispersion diagram, DWMs exist near the
intersection of the lowest TE and TM modes of these waveg-
uides. We have shown that DWMs are generally localized on
the interface but, under certain conditions, they also may have
additional local maxima of the field intensity at some distance
from the interface.

This work was supported by the Russian Foundation for
Basic Research (Grant No. 18-29-20032).
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