
PHYSICAL REVIEW B 102, 161111(R) (2020)
Rapid Communications

Resistivity and its fluctuations in disordered many-body systems: From chains to planes
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We study a quantum particle coupled to hard-core bosons and propagating on disordered ladders with R
legs, ranging from R = 1 (chains) to R � 1 (planes). The particle dynamics is studied within the framework
of rate equations for the boson-assisted transitions between the Anderson states. We demonstrate that for finite
R < ∞ and sufficiently strong disorder the dynamics is nondiffusive, while two-dimensional planar systems with
R → ∞ remain diffusive for arbitrarily strong disorder. The transition from diffusive to subdiffusive regimes
may be identified via statistical fluctuations of resistivity. Close to the transition, the corresponding distribution
function in the diffusive regime has fat tails which decrease much slower than 1/

√
L, where L is the system size.

Finally, we present evidence that similar non-Gaussian fluctuations arise also in standard models of many-body
localization.

DOI: 10.1103/PhysRevB.102.161111

Introduction. Many-body localization (MBL) emerged
from the Anderson localization, by taking into account inter-
actions between particles [1,2]. Later on, it was found that
MBL is more general and also captures systems for which
the noninteracting limit is delocalized [3–6]. The basic idea
is that at large disorder, ergodicity is broken despite the pres-
ence of many-body interactions, as it is by now supported by
numerous studies on quantum chains [7–24] and is consistent
with several experimental studies of cold atoms in optical
lattices [25–30]. Disordered, interacting systems exhibit very
slow relaxation [3,6,29,31–48] that shows up also in systems
which are not localized, e.g., due to too weak disorder or due
to the SU(2) spin symmetry [49–53]. Then, the dynamics is
typically subdiffusive [19,41,54–59], what is frequently con-
sidered as a precursor to localization [19,41,54–59] and has
been mainly attributed to the presence of the so-called weak
links [29,39,60,61].

The transport properties of the disordered systems with
interactions in higher dimensions are much less explored.
The standard numerical methods allow the study of too small
systems or too short evolution times to judge on the long-time
properties of macroscopic setups. Still, analytical arguments
based on the presence of ergodic (delocalized) grains [62]
suggest that MBL is stable only in one-dimensional (1D)
systems provided that interactions decay exponentially with
distance. On the other hand, the experiments show signa-
tures of localization also in two-dimensional (2D) [27,29]
and three-dimensional [25] systems. Thus, the dynamics of
strongly disordered systems beyond 1D remains largely an
open problem.

Here, we study a single quantum particle which is coupled
to hard-core bosons. The particle propagates on a disordered
ladder with R legs, ranging from R = 1 (chains) to R → ∞

(planes). The system’s dynamics is modeled via rate equa-
tions (REs) emerging from the Fermi golden rule (FGR) for
transitions between the localized Anderson states [59,63].
We obtain unbiased numerical results for rather large sys-
tems with N ∼ 104 sites and up to R = 102 legs. In other
words, the approach is simple enough so that we are able
to explore how the system’s dynamics depends on its di-
mensionality. Previous studies of the same Hamiltonian on
a single chain (R = 1) revealed that for strong disorder the
particle dynamics is subdiffusive [64] and that such dy-
namics may be well described within the FGR approach
[59,63].

Our results indicate that sufficiently strong disorder causes
a transition between diffusive and subdiffusive regimes for ar-
bitrary R < ∞. For weaker disorder, the diffusion constant D
decreases almost exponentially with increasing disorder and is
a self-averaging quantity with respect to various realizations
of the disorder. Namely, the sample-to-sample fluctuations of
D are Gaussian and its width decreases with system length
L as 1/

√
L. Upon approaching the transition to subdiffusion,

we observe strong non-Gaussian fluctuations of the effec-
tive resistivity, defined here as the inverse diffusion constant
ρ = D−1. The probability distribution of ρ reveals fat tails,
f (ρ) ∝ ρ−(1+α), with α → 1 and the size dependence is much
weaker than 1/

√
L. In order to test whether such statisti-

cal fluctuations arise beyond the latter system and approach,
we numerically calculate the distributions of D for three
prototype quantum many-body models describing disordered
spin chains. Our results suggest that the fat-tailed statisti-
cal fluctuations of resistivity are generic for all considered
models.

Particle in a disordered potential. We study a quantum
particle on a ladder containing R legs of length L coupled to

2469-9950/2020/102(16)/161111(7) 161111-1 ©2020 American Physical Society

https://orcid.org/0000-0003-1945-1437
https://orcid.org/0000-0002-6767-921X
https://orcid.org/0000-0001-9860-2146
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.161111&domain=pdf&date_stamp=2020-10-16
https://doi.org/10.1103/PhysRevB.102.161111


M. MIERZEJEWSKI et al. PHYSICAL REVIEW B 102, 161111(R) (2020)

itinerant hard-core bosons [63],

H = −t
∑
〈i, j〉

c†
i c j +

∑
j

ε jn j + g
∑

j

n j (a
†
j + a j )

+ω0

∑
j

a†
j a j − tb

∑
〈i, j〉

a†
i a j , (1)

where ε j are independent random potentials uniformly dis-
tributed in [−W,W ]. Here, c†

j and a†
j are local fermion and

hard-core boson operators (a†
j a

†
j = 0), respectively. We set

t = 1, ω0 = g = 1, and tb = 0.2 and restrict our studies to the
case of an infinite temperature, β = 1/kBT → 0.

In order to derive RE, we first diagonalize the single-
particle part of the Anderson Hamiltonian [first two terms in
Eq. (1)], HSP = ∑

l εlϕ
†
l ϕl , where ϕl = ∑

i φlici and φli are
single-particle eigenfunctions. We then use the FGR to calcu-
late the transition rates 
lk between different l 
= k Anderson
states |l〉 = ϕ

†
l |0〉. The emerging REs allow us to study large

system sizes N = LR � 103, whereas for N ∼ 104 we use a
simplified FGR (SFGR). In the latter approach, we neglect the
momentum dependence of matrix elements for particle-boson
interactions and assume a uniform bosonic density of states.
In the case of a single chain, the explicit form of 
lk has been
derived in Refs. [59,63] for FGR and SFGR, respectively. For
convenience, we recall the main steps of the derivations in the
Supplemental Material [65].

To directly address the transport, we consider an open
system with the current source at the left rung and the current
drain at the right rung of the ladder, i.e., we study a system
with current flowing (on average) along the legs, as described
by the RE,

dnl

dt
= Il +

∑
k 
=l

(
klnk − 
lknl ). (2)

Here, nl is the occupation of the state |l〉 and Il = Is
l + Id

l
accounts for the source and the drain, respectively,

Is
l = I0

∑
i∈left

|φli|2, Is
d = −I0

∑
i∈right

|φli|2, (3)

where the summations are carried out over the left- and
right-edge rungs. Since φli are normalized, the total injected
current

∑
l I s

l = R I0, hence, I0 is the current density. Then,
the diffusion constant D is obtained from the relation between
the current density and the gradient of the particle density,
D = −I0/∇ni with ni = ∑

l nl |φli|2 and nl representing the
stationary solution of RE (2). We refer to the Supplemental
Material [65] for technical details on the stationary solution.

In Fig. 1 we depict one of main results of this Rapid
Communication, i.e., the diffusion constant D as a function
of the disorder strength W for various dimensionalities R, as
calculated with FGR and SFGR. It is evident that D decays
exponentially with increasing W [66–68], and that this de-
pendence extends to very large W for the 2D system, being
partially consistent with Ref. [69]. In the regime of finite
D, the spatial variations of ni along the legs are linear, as
shown in Figs. 2(a) and 2(c). However, for strong enough
disorder W ∼ Wc, the variation becomes inhomogeneous due
to the formation of weak links, exemplified in Figs. 2(b) and
2(d). The threshold value Wc increases with R, but apparently
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FIG. 1. Diffusion constant D obtained from the rate equations
with the Fermi golden rule (FGR) for L = 200 and simplified FGR
(SFGR, see text for details) for N = LR = 104 with various numbers
of legs R up to a 2D system for R � 1.

remains finite provided that R < ∞. Weak links ultimately
lead to vanishing of D. Such behavior signals a transition (or a
crossover) at W ∼ Wc between the diffusive and subdiffusive
regimes. Results in Fig. 1 show data obtained for a single
(typical) realization of disorder. In the remaining, we study
sample-to-sample fluctuations which support the diffusive-
subdiffusive transition.

Sample-to-sample fluctuations. In order to explain the sta-
tistical fluctuations of D, we consider as a toy model a single
chain (R = 1) where the FGR transitions are restricted to
Anderson states on neighboring sites, 
kl ∼ δk,l+1, Is

l  I0δl1,
and Id

l  I0δlL. Then, one derives from the stationary solution
of Eq. (2) that nl − nl+1 = I0/
l,l+1, and consequently

ρ = D−1  n1 − nL

LI0
= 1

L

∑
l

τl , τl = 1


l,l+1
. (4)

As previously demonstrated for the toy model [59,63], the
transition times τl = 
−1

l,l+1 can be well approximated via
independent random variables with a power-law probabil-
ity distribution function fτ (τ ) ∝ τ−(α+1) for large enough τ .
Within this simplification, ρ in Eq. (4) becomes an average of
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FIG. 2. Spatial profiles of ni for N = 104. (a), (b) and (c), (d)
show results for R = 1 and R = 4, respectively. Shaded regions
represent sections of the system where the diffusion constant is
calculated. Results for R > 1 are averaged over the rungs.
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L-independent random variables with the transition to subdif-
fusion at α = 1 [70].

For the toy model, we focus on the diffusive regime,
1 < α < 2, where the average transition time is finite 〈τ 〉 =∫ ∞

0 dτ fτ (τ )τ < ∞, but 〈τ 2〉 diverges, thus the fluctuations
of ρ are non-Gaussian. It is well established [70] that for
the fat-tailed (the so-called α-stable) distributions, the random
variable

u = 1

L1/α

(
L∑

l=1

τl − L〈τ 〉
)

= L(α−1)/α (ρ − 〈τ 〉) (5)

has a limit distribution fu(u) for L → ∞ and asymptotically
fu(u) ∝ u−(α+1). Clearly, the latter determines the tails as well
as the L dependence of the resistivity distribution fρ (ρ). In
particular, close to the transition to the subdiffusive regime,
α → 1, the exponent in the right-hand side of Eq. (5) vanishes,
(α − 1)/α → 0. As a consequence, one obtains a weak, at
most logarithmic, L dependence of fρ (ρ). The fat tails can
be observed from the cumulative and the complementary cu-
mulative distribution functions of D and ρ, respectively,

FD(D) =
∫ D

0
dD′ fD′ (D′)  Dα

αLα−1
, D � 〈τ 〉−1, (6)

F c
ρ (ρ) =

∫ ∞

ρ

dρ ′ fρ (ρ ′)  1

αLα−1ρα
, ρ � 〈τ 〉. (7)

A similar (albeit not identical) toy model in Ref. [39] also
leads to a power-law dependence of fρ (ρ), however, with
a size dependence governed always by the prefactor

√
L in

Eq. (5). Hence, the L dependence is essential for testing the
present scenario.

It is by far not evident whether the same properties sur-
vive when the transition rates are not independent random
variables connecting only neighboring sites, but instead are
obtained fully from FGR or SFGR. In Fig. 3 we present
FD(D) and F c

ρ (ρ) calculated for a two-leg ladder (R = 2)
directly from the stationary solution of Eqs. (2) and with
SFGR transition rates. In the same figure, we also display
(insets) results, obtained from the toy model, Eq. (4), with
fτ (τ ) = α/τα+1 for τ � 1, where we used α = 1.05. For
modest disorder shown in Fig. 3(a) we confirm that FD(D)
represents an error function, in agreement with the Gaussian
fluctuations of D and its width decreasing approximately as
1/

√
L (not shown). However, upon approaching the subdiffu-

sive regime, as in Fig. 3(b), the FD(D) clearly differs from
the Gaussian case. Results for F c

ρ (ρ) and FD(D) now agree
with the analytical predictions, Eqs. (6) and (7) for α → 1, as
well as with numerical results for a finite toy model, shown
in the insets of Figs. 3(b) and 3(c). In particular, the statistical
fluctuations of ρ � 〈τ 〉 (or D → 0) only weakly depend on L.
Since the toy model shows a transition between the diffusive
and subdiffusive regimes exactly at α = 1 [70], we expect a
similar transition also for the studied ladders with hard-core
bosons. To be specific, here we understand the transition
as a sudden change of the transport properties. Additional
numerical data supporting such a scenario are discussed in
the Supplemental Material [65]. However due to numerical
limitations, we are not in a position to exclude a scenario
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FIG. 3. Results obtained via the rate equations with SFGR for
R = 2. (a), (b) Cumulative distribution functions of the diffusion
constant FD (D) and (c) complementary distribution functions of the
resistivity F c

ρ (ρ ). Inset (a): FD (D) for L = 5 × 103 fitted with the
error function. Insets (b) and (c): The same as in the main plots but
for a chain with independent random transition times with a fat-tailed
distribution, Eq. (4).

of (quite sharp) diffusion-subdiffusion crossover within our
approach and beyond the FRG approximation.

Diffusivity of the planar system. The toy model also offers
a simple explanation of why the 2D system remains diffusive
for arbitrary W , as shown in Fig. 1. To this end, we construct
the lower bound on D and demonstrate that it is nonzero.
Consider a network with only nearest-neighbor transitions.
We set a threshold transition time τth < ∞ and check τl on
each link in the network. For links with τl < τth we replace
τl with τth and remove links which do not satisfy the latter
inequality. As a consequence, the values of all τl increase,
hence we end up with a percolation problem for a system with
obviously smaller D than the original system. The density
of the removed links

∫ ∞
τth

dτ fτ (τ ) = 1/(ατα
th ) may be tuned

to an arbitrarily small number via increasing τth, thus the
system may be tuned above the percolation threshold for
arbitrary α > 0. Consequently, the transport is always diffu-
sive. Percolation threshold determines the density of missing
links which may block the transport in 2D, hence it can-
not be blocked by rare weak links, as noted previously in
Ref. [40].

Fluctuations in disordered spin chains. Finally, we check
whether such anomalous fluctuations may arise beyond the
semiclassical RE approach in fully many-body models. To
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FIG. 4. Cumulative distribution functions FD (D) for various dis-
order strengths (W ) and system sizes (L) calculated in the ergodic
regimes of the random-field Heisenberg model (left column) and the
random-J Heisenberg model with fJ (J ) = λJλ−1 distribution (right
column). D in (a) and (b) are normalized by the median Dmed. Results
are obtained from Nr = 103 disordered samples.

this end, we consider the standard model of MBL, i.e., the
Heisenberg chain with quenched disorder introduced via ran-
dom, on-site magnetic fields [1,2]. It is expected that the
transition from ergodic to nonergodic regimes takes place
at Wc/J ∼ 3.7, where J is the antiferromagnetic exchange
coupling [8], but larger values of Wc have also been reported
recently [71–75]. Furthermore, it has been argued that the
MBL phase in this model is preceded by the subdiffusive
regime [29,39,60,61], although the subdiffusion may be a
transient phenomenon that does not occur in the asymptotic
limit L → ∞, t � 1, as suggested in Refs. [74,76,77]. For
this reason, we study also the random-J Heisenberg chain with
a singular distribution of J , fJ (J ) = λJλ−1 for 0 � J � 1.
It emerges as an effective model for spin dynamics in the
Hubbard chain with a random charge potential [56,78–80].
Numerical results for this random-J Heisenberg chain
[56,78,79] indicate that the spin dynamics is subdiffusive for
λ < 1. Moreover, one may show [65] that the diffusion con-

stant 〈D〉 = 0 for λ < 0.5, while spins remain delocalized due
to the SU(2) symmetry [49,50,52,53].

In order to extract the diffusion constant, we calculate the
low-frequency regular part of the spin conductivity C(ω), i.e.,
D = C(ω → 0). We refer to the Supplemental Material [65]
and Ref. [81] for technical details. In Fig. 4, we present the
cumulative distribution functions FD(D) obtained for the dis-
ordered quantum spin chains. For small disorder, FD(D) may
be well fitted by the error function, reflecting the Gaussian
distribution of D. Despite a limited range of accessible sizes,
we clearly see that the width of the Gaussian decreases with
L [see Figs. 4(c) and 4(d)]. On the other hand, increasing the
disorder strength changes the functional form of FD(D). It is
evident from the results presented in Figs. 4(e) and 4(f) that
the distribution becomes non-Gaussian and weakly L depen-
dent. Similar conclusions can also be reached for the diffusive
regime in the random-transverse-field Ising chain [22,82], as
shown in the Supplemental Material [65]. Such behavior, i.e.,
a non-Gaussian, L-independent FD(D) distribution function,
closely resembles the results presented in Fig. 3(b) for the RE
approach. The latter similarity suggests that the fat-tailed fluc-
tuations of resistivity at the diffusion-subdiffusion transition
are generic for all discussed spin chains. Here, due to the even
more severe limitations of numerical methods the latter claim
should be considered as a well-justified conjecture.

Conclusions. We have studied the transport of a quantum
particle coupled to hard-core bosons in a disordered potential.
The geometry of the R-leg ladders allowed tuning the sys-
tem between one-dimensional (R = 1) and two-dimensional
(R → ∞) cases. We have demonstrated that sufficiently
strong disorder prevents diffusion and causes subdiffusive
transport for any finite R, which implies that the weak-link
scenario survives also for R > 1. On the other hand, planar
systems (R → ∞) appear to be always diffusive, albeit the
diffusion constant decreases exponentially with the disorder
strength and may eventually become undetectably small. We
have shown that the vicinity of the subdiffusion regime may
be identified via fat-tailed statistical fluctuations of resis-
tivity between different realizations of disorder. A similar
universality with a simple toy model suggests a well-defined
diffusion-subdiffusion transition (at least within present nu-
merical limitations). Numerical results obtained for various
models of disordered spin chains suggest that the latter fluctu-
ations occur also for other 1D disordered many-body quantum
systems.
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[41] M. Žnidarič, A. Scardicchio, and V. K. Varma, Diffusive
and Subdiffusive Spin Transport in the Ergodic Phase of a
Many-Body Localizable System, Phys. Rev. Lett. 117, 040601
(2016).

[42] Y. Bar Lev and D. R. Reichman, Dynamics of many-body
localization, Phys. Rev. B 89, 220201(R) (2014).

[43] Y. Bar Lev, G. Cohen, and D. R. Reichman, Absence of
Diffusion in an Interacting System of Spinless Fermions on
a One-Dimensional Disordered Lattice, Phys. Rev. Lett. 114,
100601 (2015).
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