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Langevin simulations of the half-filled cubic Holstein model
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Over the past several years, reliable quantum Monte Carlo results for the charge density wave transition
temperature 7.4, of the half-filled two-dimensional Holstein model in square and honeycomb lattices have
become available for the first time. Exploiting the further development of numerical methodology, here we
present results in three dimensions, which are made possible through the use of Langevin evolution of the
quantum phonon degrees of freedom. In addition to determining 7.4, from the scaling of the charge correlations,
we also examine the nature of charge order at general wave vectors for different temperatures, couplings, and
phonon frequencies, and the behavior of the spectral function and specific heat.
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Introduction. Substantial effort has been devoted to devel-
oping and using quantum Monte Carlo (QMC) techniques
to study the physics of interacting electrons. Auxiliary field
methods formulated in real space, like determinant quantum
Monte Carlo (DQMC) methods [1-4], can determine cor-
relations on clusters of several hundreds of sites. However,
unbiased approaches to studying electron correlations, such
as DQMC, can be severely limited by the sign problem [5,6],
unless additional constraints are imposed [7]. The dynamic
cluster approximation [8] and cluster dynamical mean-field
theory [9,10] generalize single-site dynamical mean-field the-
ory [11-16] to finer momentum grids and generally have a
more benign sign problem than DQMC, allowing them to
access lower temperatures and/or more complex (e.g., multi-
band) models. Diagrammatic QMC is another relatively new
technology which is currently being developed [17,18]. De-
spite the numerical challenges, QMC applied to models with
electron-electron interactions, like the Hubbard model, has re-
sulted in considerable qualitative insight into phenomena such
as the Mott transition, magnetic order, and, to a somewhat
lesser extent, exotic superconductivity (SC) [19], which arise
from electron-electron interactions in real materials [20].

Analogous strong correlation effects can arise in solids due
to electron-phonon coupling, including SC and charge density
wave (CDW) formation; this is the type of interaction we
examine in this paper. A simple model where such effects can
be studied is the Holstein Hamiltonian [21]. Early QMC work
in two dimensions near half-filling [22-27] examined CDW
formation and its competition with SC. A second generation
of simulations has considerably improved the quantitative
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accuracy of results, looking at both finite-temperature [28-30]
and quantum-critical-point [31,32] physics in two spatial di-
mensions on square and honeycomb lattices. Much of this
progress has been possible thanks to newer QMC methods,
such as continuous-time [28] and self-learning Monte Carlo
[29,33]. However, despite these improvements in effective
update schemes, the cubic scaling with lattice size N of real-
space QMC methods employed in existing work has precluded
similar studies in three dimensions.

We report here QMC simulations of the half-filled Hol-
stein model on cubic lattices as large as N = 143 sites. These
studies are made possible by employing a linear-scaling QMC
method based on a Langevin evolution of the phonon degrees
of freedom [34-37]. The large linear sizes that are accessible
allow us to perform the finite-size scaling needed to extract
the CDW transition temperature 7.4y and also obtain the mo-
mentum dependence of the charge structure factor S(k) to
reasonable resolution. We supplement the extraction of Tiqy
from Scqw = S(or, 7, ) with calculation of the specific heat
and spectral function and show that while they provide a less
precise determination of T4, their features are consistent
with those obtained from Scgy, .

Model and methods. The Holstein Hamiltonian,
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describes the coupling of electrons, with creation and destruc-
tion operators 6;, ¢,,» to dispersionless phonon degrees of
freedom B, X;, with the phonon mass normalized to M = 1.
The parameter + multiplies a near-neighbor hopping (kinetic
energy) term. We set + = 1 as our unit of energy, result-
ing in an electronic bandwidth for the cubic lattice equal
to W = 12. The coupling between the phonon displacement
and electron density on site i is controlled by A while the
chemical potential, p, tunes the filling. In this study we
focus on half-filling, obtained by setting u = —1%/wf, and
report results in terms of a dimensionless electron-phonon
coupling constant Ap = A?/(w3W). Despite its simplifica-
tions, the Holstein model captures many qualitative features
of electron-phonon physics, including polaronic effects in the
dilute limit [38—40], SC and CDW formation, and their com-
petition [22,28,31,32,41-44].

The fermionic degrees of freedom appear only quadrat-
ically in the Holstein model, Eq. (1). Consequently, the
fermions can be “integrated out,” resulting in the product of
two identical matrix determinants which are nontrivial func-
tions of the space and imaginary time dependent phonon field.
The product of the two identical determinants is positive; thus
there is no sign problem. Most prior numerical studies of the
Holstein model employed DQMC, which explicitly calculates
changes in the determinant as the phonon field is updated. At
fixed temperature, DQMC scales cubically in the number of
sites N, and hence as L°, where L is the linear system size
in three dimensions. This limits DQMC simulations in three
dimensions to relatively small L.

Instead, we use a method based on Langevin updates which
exhibits nearly linear scaling in N. Such methods were first
formulated for lattice gauge theories [45-47]. Attempts to
simulate the Hubbard Hamiltonian with Langevin updates
were limited to relatively weak coupling and high temperature
by the ill-conditioned nature of the matrices due to rapid
fluctuations of the sampled Hubbard-Stratonvich fields in the
imaginary time direction [48]. However, in the Holstein model
the sampled phonon fields have an associated kinetic energy
cost that moderates these fluctuations, giving rise to better
conditioned matrices.

Here we briefly discuss the key steps in the algorithm and
leave the details to Refs. [34,35]. The partition function for
the Holstein model is first expressed as a path integral in
the phonon coordinates, x(i, t), by discretizing the inverse
temperature 8 = L, At. After performing the trace over the
fermion coordinates, the phonon action § includes a term
In (detM), where M is a matrix of dimension NL,. The
phonon field is then evolved in a fictitious Langevin time
t, with x(i, 7, t) moving under a force dS/9x(i, t,¢) and a
stochastic noise term. The part of the derivative of S which
involves In (det M) is evaluated with a stochastic estimator. It
is necessary to compute M ™! acting on vectors of length NL.,
which is done using the conjugate gradient (CG) method.
An essential refinement of the algorithm is the application of
Fourier acceleration [45—47] to reduce critical slowing down
resulting from the slow phonon dynamics in imaginary time.
See the Supplemental Material for more information on the
simulations [49].

Elements of the fermionic Green function are also obtained
with a stochastic estimator. Once evaluated, one can measure
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FIG. 1. Specific heat C(T") as a function of temperature 7. The
low-temperature peak corresponds to the onset of charge ordering.
Here Ap = 0.23, wy = 0.60 and the lattice size is N = 8°.

all physical observables. We focus here on the charge structure
factor,

Skk)= ) c(r)e*r,
r @

c(r) = (njrng ),

(nj = njy + n;,), and the specific heat C = d(E)/dT. We also
obtain the momentum integrated spectral function A(w), the
analog of the density of states in the presence of interactions,
by analytic continuation of the Green function via the clas-
sic maximum entropy method [50,51]. We use a flat default
model, and, for simplicity, we employ only the “diagonal”
statistical errors in G(t) rather than the full covariance matrix.

Correlation length and charge structure factor. At half-
filling on a bipartite lattice the formation of a CDW phase is
the fundamental ordering tendency of the Holstein model. At
intermediate temperatures we observe the formation of local
pairs due to the effective onsite attraction Ut = —2A%/w3,
between up and down electrons. At lower T, the positions
of the pairs become correlated, since the lowering of energy
by virtual hopping is maximized by —4t?/U.; if each pair
is surrounded by empty sites. A clear signature of this low-
temperature physics is seen in the heat capacity C(T) as the
temperature is lowered, which has a sharp peak at 7 ~ 0.28
corresponding to the CDW phase transition, as shown in
Fig. 1.

It is also possible to detect the formation of this low-
temperature CDW phase by studying the density-density
correlation function and its Fourier transform, the charge
structure factor, S(k). In Fig. 2 we show S(k), Eq. (2), versus
k for different T = 8! and Ap = 0.33 (wp = 0.5, A = 1.0).
We see that as T is lowered, the peak height atk = (w, 7, )
increases by two orders of magnitude. The value of 8 for
which the height increases most rapidly provides a rough
value for the transition temperature, which can be more pre-
cisely determined via finite-size scaling (Fig. 4).

In real space, the density-density correlation function ex-
hibits a pattern which oscillates in sign on the two sublattices,
consistent with dominant ordering at k = (;r, w, 7) seen in
Fig. 2. Above T, the correlations die off exponentially, with a
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FIG. 2. Charge structure factor as a function of momentum for I 3
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As T decreases, a peak develops at k = (7, , ). The most rapid w If;
growth is for T ~ 0.37-0.40. Finite-size scaling analysis of the ! e
crossings of S.qy in Fig. 4 precisely identifies 7, ~ 0.392 £ 0.008. (c) ' -
0 YPoeluy mm w¥m o ¥
-6 -4 -2 0 2 4 6

correlation length & which grows as T — T;; see Supplemen-
tal Material for more details [49]. In finite-size simulations &
will be bounded by the system size L, but one can nevertheless
estimate it via [52],

£ = L [S(q1)/S(g2) — 1
2\ 4—8(q1)/S(q2)

where ¢y = (7w, 7w, T — ZT”) and g =(m,m,m — 4T”) are the
two closest wave vectors to the ordering vectork = (, 7, 7).

Figure 3 shows the ratio £ /L as a function of temperature
for three lattice sizes L = 8, 10, 12. £ /L exhibits a character-
istic peak which sharpens with increasing lattice size. In the
following section we will present data indicating Teqw = 0.31,
which is consistent with the peak in finite lattice sizes ap-
proaching 7, from above in our data as well.
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FIG. 3. Correlation length obtained from Eq. (3) with wy =
0.6, . = 1.0 (Ap = 0.23). Shaded gray bar shows the value of T,
obtained from a finite-size scaling analysis of the CDW structure
factor (Fig. 4).

Ll/v(T - Tc)/Tc

FIG. 4. Finite-size scaling analysis of the CDW structure factor.
Panel (a) contains the raw (unscaled) data. S.qy, is independent of L
for small 8 where the correlation length is short. At large B, Scaw
grows with L. Panel (b) scales S.q4y only. The result is a crossing plot
which yields the critical inverse temperature 8.t = 3.15 &£ 0.05. The
main panel (c) shows a full scaling plot where the data collapse in a
range of inverse temperatures near the critical point. Holstein model
parameters are wy = 0.60, A = 1.0 so that 1, = 0.23.

CDW transition. Having seen the essential qualitative
effects of the electron-phonon coupling, we now perform
finite-size scaling to locate the transition precisely. The three
panels of Fig. 4 exhibit the steps in this process. The upper-left
panel (a) exhibits raw data for S 4y, versus inverse temperature
B. Athigh T (small B) the values of S.qy for different system
sizes coincide with each other, because the charge correlations
are short ranged and the additional large distance values in the
sum over r in Eq. (2), present as L increases, make no contri-
bution. However, as T decreases (8 increases) the correlation
length reaches the lattice size, and values of S .4y now become
sensitive to the cutoff L. As a consequence, a crude estimate
of T.qw can already be made as the temperature at which the
curves begin to separate, i.e., Tegw ~ 0.31 (8. ~ 3.2).

A much more accurate determination of T4, is provided
by making a crossing plot [Fig. 4(c)] of SeqwL?/'~P ver-
sus B. Curves for different lattice sizes L should cross at
Bc = 1/Tqy. In this analysis we make use of the expected
universality class of the transition, the three-dimensional (3D)
Ising model, to provide values for the exponents § = 0.326
and v = 0.63. We conclude T4y = 0.315 £ 0.005. Finally,
Fig. 4(c) gives the full scaling collapse, using T¢4y, from panel
(b) and again employing 3D Ising exponents.

Combining plots like those of Fig. 4 for different values
of A and wy allows us to obtain the finite-temperature phase
diagram of the 3D Holstein model, Fig. 5, which is the central
result of this paper. We see that T, is increased by roughly
a factor of 2 in going from various two-dimensional (2D)
geometries (square [28], Lieb [53], and honeycomb [31,32])

161108-3



B. COHEN-STEAD et al.

PHYSICAL REVIEW B 102, 161108(R) (2020)

m——— ®  Square
0.4 - LS
X @ Cubic
/ A Honeycomb
0.3 u Y Lieb
II -
% II R - “s
~ 0.2 / —
/ S=o
. #Z&"'r":{i‘ity-
LI T
0.11 /
0.0 T T T .
0.0 0.2 0.4 0.6 0.8 1.0
Ap

FIG. 5. Phase diagram of the 3D Holstein model on a cubic
lattice as a function of Ap with A =1 held fixed. For comparison,
critical temperatures on three 2D lattice geometries, square, honey-
comb, and Lieb, are also given [28,32,54].

to 3D. This increase is quite similar to that of going from
2D square (T, ~ 2.27) to 3D cubic (T ~ 4.51) for the CDW
transition of a classical lattice gas (Ising) model.

Spectral function. The preceding results are all obtained
with imaginary time-independent Green functions. More gen-
erally, one can consider

—wT

G(k, 7) = (c(k, T)c' (k, 0)) = / doAk, ©) ———  (4)
efo 4+ 1

to determine the spectral function A(k, ). We use the clas-
sic maximum entropy approach for the analytic continuation,
with a flat default model and only the “diagonal” statistical
errors in G(t) [50,51] and use our Langevin approach for
dynamical behavior. Figure 6 shows A(w) for several different
temperatures at fixed wy = 0.7, Ap = 0.17. At high temper-
atures (B8 = 3 and 4) the main effect of the electron-phonon
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FIG. 6. Momentum integrated spectral function A(w). Here wy =
0.7, Ap = 0.17, and the lattice size N = 10°. A suppression of
A(w = 0) coincides with reaching 8. ~ 5 (see Fig. 5). A full gap de-
velops at a somewhat lower temperature. Also shown for comparison
is the density of states of noninteracting electrons (Ap = 0) hopping
on a cubic lattice.

interaction is to increase the spectral function somewhat in the
region close to the band edges w = £6¢. The renormalized
bandwidth is remarkably unchanged from that of free elec-
trons on a cubic lattice, W = 12¢. When T reaches the CDW
ordering temperature, 8 ~ 5 (see Fig. 5) A(w = 0) develops a
pronounced dip. This suppression continues to increase until,
at B = 8, A(w = 0) vanishes. This sequence, in which a dip
first signals entry into the CDW phase, is consistent with the
trends reported in [30].

Conclusions. We have used a Langevin QMC method to
study the Holstein Hamiltonian on a three-dimensional cu-
bic lattice. This approach allows us to access much larger
lattice sizes, enabling us to perform a reliable finite-size
scaling analysis to determine the CDW transition tem-
perature. Using this method we obtained results that, in
momentum space, were sufficient to resolve the width of
the charge structure factor peak and the smearing of the
Fermi surface by electron-phonon interactions. The specific
heat and spectral function provide useful alternate means
to examine the low-temperature properties. Their behavior
is consistent with that seen by direct observation of charge
correlations.

While a single band model of interacting electrons does
seem to provide a reasonably accurate representation of
cuprate physics [19] (although not that of the iron pnictides),
realistic CDW materials generally have much richer band
structures. Since, at a formal level, additional sites and addi-
tional orbitals are equivalent in real-space QMC simulations,
an ability to simulate larger spatial lattices also opens the door
to the study of more complex CDW systems. Of course, the
accurate description of these materials requires not only sev-
eral electronic bands but also a refinement of the description
of the phonons and electron-phonon coupling, which are also
treated at a very simple level in the Holstein Hamiltonian.
Initial steps to include phonon dispersion have recently been
made [55]. However, refinements to the electron-phonon cou-
pling such as a momentum-dependent A(q) remain a challenge
to simulations because of the phase separation that results in
the absence of electron-electron repulsion [56].
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