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Chiral Luttinger liquids in graphene tuned by irradiation
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We show that chiral co-propagating Luttinger liquid edge modes can be created and tuned by shining high-
frequency, (time-reversal breaking) circularly polarized light, normal to the layers. The one-dimensional chiral
modes can be localized either at the edge of the system or at a domain-wall created when different portions of the
graphene sheet are irradiated by oppositely polarized light; the number of such modes depends on the mismatch
of Chern numbers across the boundary or domain wall. These modes, under a high-frequency drive, essentially
have a static charge distribution and form a chiral Luttinger liquid under Coulomb interaction, which can be
tuned by means of the driving parameters. We also note that unlike the Luttinger liquids created by electrostatic
confinement in bilayer graphene, here there is no back-scattering, and hence our wires along the edge or domain
wall are stable to disorder.
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I. INTRODUCTION

One of the main reasons for the intense interest in bilayer
graphene in recent years has been the fact that it has a tunable
band gap [1–5], which can be modulated by an applied gate
voltage, unlike the single layer case [6], which typically re-
quire staggered fields to open up a gap. More recently, it has
been realized that it is possible to confine electrons in gated
bilayer structures by applying inhomogeneous electric fields
[7] in such a way that one dimensional states can be formed
at the domain walls separating the two different insulating
regions with different gate voltages. These states are similar to
the zero modes that form at domain walls in polyacetyline [8],
superconducting vortices [9] or other solitons in field theories
[10]. They are free to move in the direction perpendicular
to their confinement and are hence nanowires which can be
tuned by the gate voltages. The effect of electron-electron
interactions on such wires have also been studied [11] and it
has been demonstrated that these one-dimensional nanowires
behave like strongly interacting Luttinger liquids. Thus bi-
layer graphene has been shown to be a useful substrate to
create and manipulate strongly interacting one-dimensional
quantum wires.

Floquet engineering [12–19] or the generation of new
Hamiltonians that are not present in static systems but emerge
in driven systems, have recently become a very important field
of study. In the case of graphene, it has been realized that
the possibility of tuning the band gap by shining light greatly
increases the potential of applications and there has been con-
siderable work [20–29] on new topological phases obtained
by shining light on graphene, as well as bilayer graphene
[30–33]. Recent experimental observation of anomalous Hall
effect in irradiated graphene confirms the Floquet bands and
their nontrivial Berry curvature [34]. Since shining light

changes the electric field acting on the electrons in graphene
or bilayer graphene, a natural question to ask is whether it
would be possible to create confinement of electrons using in-
homogeneous light instead of an inhomogeneous electric field
using gates. As we shall see in this paper, this question can
be answered positively. Moreover, unlike externally applied
voltages, shining light breaks the time reversal invariance of
the system, and so we find that the edge states that are created
by confinement by light are chiral in nature.

Our main focus in this paper will be the edge modes of
either single-layer (SLG) or A-B stacked bilayer graphene
(BLG), which is irradiated by circularly polarized lights
(CPL) applied perpendicular to the plane of the layers. Apart
from the edge modes at the boundary of such uniformly irradi-
ated systems, confined modes can also emerge at the interface
where there is a change in the polarization or phase of the
CPL, either on SLG or BLG. We shall show that the steady-
state edge modes near each of the valleys turn out to be chiral
(either both left-handed or both right-handed), since they re-
sult from the breaking of time reversal symmetry by light. For
high-frequency driving, these modes are time-independent
and in the presence of Coulomb interaction, the interactions
between the modes are also essentially time-independent. We
shall then show that Coulomb interaction between these chiral
modes leads to their mixing, which can then be rediago-
nalized using the standard techniques of bosonization and
Luttinger liquids. We can then obtain the power-law behavior
of the charge density and spin density correlation functions
and show that the exponents, which should be sensitive to
scanning tunneling measurements, can be tuned by chang-
ing the amplitude of the impinging radiation. Although we
model our system based on single or bilayer graphene, we
expect the qualitative aspects of the resulting chiral Luttinger
liquid physics to be model independent and hence, a similar
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treatment could also work for other topological edge modes
of driven symmetry-broken phases.

The paper is organized in the following way. We review
the effect of periodic driving in single and bilayer graphene
and the topological origin of the edge modes in Sec. II. In
Sec. III, we discuss properties of such edge modes, especially
their time dependence, when the driving is weak and at high
frequency. In Sec. IV, we present the formal Luttinger liquid
analysis for interacting edge modes, focusing on the cases of
the edge modes of uniformly driven SLG and BLG as well
as the domain-wall states of differently driven SLG and BLG.
We summarize our findings in Sec. V.

II. IRRADIATION BY CPL: HIGH-FREQUENCY
APPROXIMATION

We consider the model of bilayer graphene below and
analyze the resulting effective static Hamiltonian in the high-
frequency limit. The results of a single-layer of graphene
can be recovered in the absence of interlayer hoppings.
The Hamiltonian, for the electrons of each spin, on bilayer
graphene contains the Hamiltonian of each of the single lay-
ers, HSLG, and a coupling Hamiltonian between the layers,
Hinter:

HSLG = −t
∑
〈i j〉,l

a†
l,ibl, j + H.c., (1)

Hinter = tp

∑
i∈A, j∈B

a†
2,ib1, j + H.c., (2)

where l = 1, 2 denotes the layer index, and a† and b† are,
respectively, the creation operators for the A and B sublattices
of each of the layers. t and tp are, respectively, the intra-
and interlayer hopping amplitudes and we take the estimation
tp = 0.1t with t = 2.7 eV. The notation 〈. . . 〉 denotes nearest
neighbors. For each single layer, if not coupled to a second
layer, the electrons follow a relativistic dispersion near the two
distinct Dirac nodes K and K ′ with the Fermi velocity ν given
by h̄ν = 3

2 ta0, where a0 is the lattice constant. For the rest
of the paper we set h̄ = a0 = 1, which serves as our unit of
energy and length, respectively. We consider Bernal stacking
of the two layers, where the interlayer hopping amplitudes are
only between the A sublattice of the top layer (layer 2) and
the B sublattice of the bottom layer (layer 1), as shown in
the Fig. 1, which is the most stable configuration of bilayer
graphene structure [35].

The low-energy Hamiltonian, at a single Dirac node is
given by [1,7]

H =

⎛
⎜⎝

0 νπ† 0 0
νπ 0 tp 0
0 tp 0 νπ†

0 0 νπ 0

⎞
⎟⎠, (3)

written in the basis of the wave functions � =
(ψA1, ψB1, ψA2, ψB2). The canonical momenta are
defined as π = px + ipy, π

† = px − ipy, in terms of the
quasimomentum operators px and py.

We now apply high-frequency circularly polarized light
(CPL) perpendicular to the plane of the layers. The vector

FIG. 1. The primary setup of our study: an A/B stacked bilayer
graphene nanoribbon (with a finite width in the x direction) is being
irradiated with circularly polarized light of opposite polarizations
across a boundary (marked with a dashed line).

potential of the radiation is of the form

A(t ) = (Ax cos(ωt ), Ay sin(ωt + θ ), 0), (4)

where ω is the frequency of the light and θ is its polarization
angle. To work legitimately in the low-energy sector around a
single Dirac node, post the application of radiation, we need
to assume that the amplitudes Ax and Ay are weak enough
to allow for a linear dispersion approximation to hold. The
Hamiltonian for BLG in the presence of such a driving force
is given by

H(t ) =

⎛
⎜⎝

0 νπ̃†(t ) 0 0
νπ̃ (t ) 0 tp 0

0 tp 0 νπ̃†(t )
0 0 νπ̃ (t ) 0

⎞
⎟⎠, (5)

where

π̃ (t ) = (px − eAx cos(ωt )) + i(py − eAy sin(ωt + θ ))

denotes the canonical momentum with the gauge field A(t )
being included in H in a minimally coupled fashion, with
e being the electronic charge and setting the speed of light
c = 1. Since we take the frequency of the light to be very high,
i.e., much larger than all other scales (such as intralayer or
interlayer hoppings) in the problem, it is possible to compute
an effective time-independent Hamiltonian for the system.
There are several high-frequency approximations [25,36–41]
that one can use to obtain the static Hamiltonian, all of which
agree to first order in the inverse frequency 1/ω. Using one
such approximation, we obtain the effective static Hamilto-
nian, given by

Heff ≈ H0 + 1

ω

∞∑
n=1

[Hn,H−n]

n
+ O(ω−2). (6)

Here, Hn denote the Fourier coefficients of the periodic time-
dependent Hamiltonian [H(t ) in Eq. (5) in our case] and [,]
denotes a commutator bracket. Rewriting the Hamiltonian
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H(t ) in Eq. (5) as

H(t ) = H0 + H1eiωt + H−1e−iωt ,

we obtain

H0 =

⎛
⎜⎝

0 νπ† 0 0
νπ 0 tp 0
0 tp 0 νπ†

0 0 νπ 0

⎞
⎟⎠

and the Fourier coefficients Hn=±1 as

H±1 =

⎛
⎜⎜⎝

0 − λ
2 (Ax ∓ Aye±iθ ) 0 0

− λ
2 (Ax ± Aye±iθ ) 0 0 0

0 0 0 − λ
2 (Ax ∓ Aye±iθ )

0 0 − λ
2 (Ax ± Aye±iθ ) 0

⎞
⎟⎟⎠,

where λ = νe. The effective time-independent Hamiltonian for the BLG system driven by high-frequency CPL is thus obtained
from Eq. (6) (restricting n � 1), up to order 1/ω, as

Heff =

⎛
⎜⎜⎜⎝

− λ2γ

4ω
cos θ νπ† 0 0

νπ
λ2γ

4ω
cos θ tp 0

0 tp − λ2γ

4ω
cos θ νπ†

0 0 νπ
λ2γ

4ω
cos θ

⎞
⎟⎟⎟⎠, (7)

where γ = 4AxAy. Hence, the effect of the CPL, in the high-frequency limit, is essentially to introduce an on-site modulation on
the sublattice sites of the two layers. This amounts to a sublattice staggered potential at the A and B sites of both layers. Thus we
see that shining light gives rise to an effective Haldane gap at both the valleys.

In the above effective Hamiltonian, if we set tp = 0, we recover the effective Hamiltonian for each of the single layers of the
graphene sheet as

HSLG
eff =

(− λ2γ

4ω
cos θ νπ†

νπ
λ2γ

4ω
cos θ

)
, (8)

which has the form of a two-dimensional Dirac equation with the mass term given by m = λ2γ

4ω
cos θ . This immediately implies

that the sign of the mass term, and thus the Chern number can be modified by changing the sign of cos θ , near each of the Dirac
points. If we have opposite polarization of the irradiation for x > 0 and x < 0, then this gives rise to two resulting topological
edge modes at x = 0, of the same chirality, one each near momenta K and K ′.

For BLG with tp 	= 0, our next step is to compute the effective low-energy two band model which describes the physics from
the four-band Hamiltonian (7) using a prescription [42] similar to that which has been used for gated bilayer graphene [7]. To
do that, we first rewrite the Heff in a modified site basis (A1, B2, B1, A2) where the effective Hamiltonian takes the form

Heff =

⎛
⎜⎜⎜⎝

− λ2γ

4ω
cos θ 0 νπ† 0

0 λ2γ

4ω
cos θ 0 νπ

νπ 0 λ2γ

4ω
cos θ tp

0 νπ† tp − λ2γ

4ω
cos θ

⎞
⎟⎟⎟⎠ ≡

(H11 H12

H21 H22

)
, (9)

where Hi j denote the appropriate 2 × 2 blocks. The eigenvalues ε of Heff can then be shown to follow the identity

det(Heff − ε) = det(H11 − H12(H22 − ε)−1H21 − ε) × det(H22 − ε). (10)

In the low-energy regime where ε � tp and where λ2γ

4ω
� tp, since H22 − ε � H22, we can project the four-band Hamiltonian

onto the two low-energy bands, given by the Hamiltonian

HL
eff = H11 − H12H−1

22 H21 =
⎛
⎝− λ2γ

4ω
cos θ

(
1 + ν2 p2

t2
p

)
− ν2π†2

tp

− ν2π2

tp

λ2γ

4ω
cos θ

(
1 + ν2 p2

t2
p

)
⎞
⎠, (11)

where p = (ππ†)
1
2 =

√
p2

x + p2
y . Under the approximation where we drop the second term in the diagonal part of the Hamilto-

nian, this Hamiltonian becomes very similar to the Hamiltonian derived for gated bilayer graphene [7]. In this approximation, the
potential terms on the diagonal and the momentum dependent terms on the off-diagonal parts of the Hamiltonian are decoupled.
Any position dependence in this Hamiltonian can now be introduced in the system consistently by simply promoting px and py
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to their corresponding differential operator representations.
This allows the eigenvalue problem to be duplicated by a
quasi-classical Hamiltonian of the kind derived in Ref. ([7]),
written as

H̃L
eff = −φ(x)σz − (

p2
x − p2

y

)
σx − 2px pyσy, (12)

where φ(x) = t2
pa2

0/2ν2 × (λ2γ cos θ (x)/4ω) in our case and
momenta are measured in units of inverse lattice constant (i.e.,
1/a0). For the case of a bilayer strip, which is finite in the
x direction and translationally invariant in y, py is a good
quantum number, whereas px is an operator. Hence, we need
to solve the pair of coupled differential equations, obtained
from the eigenvalue problem for the Hamiltonian in Eq. (12),
for the potential profile contained in φ(x). When φ(x) has
a step profile, changing sign across a boundary, topological
zero-energy modes are localized at the kink. For the case of
confined modes, we introduce a position dependence in the
polarization angle of the irradiation. The zero modes are then
confined at the domain wall obtained when we have light of
two different polarizations for x < 0 and x > 0.

In fact, the Chern number associated with the ground state
of Eq. (12) is given by sgn(φ), which is easily seen as follows.
We rewrite the effective Hamiltonian (12) as

H̃L
eff ≡

[ −φ k2e2iθ

k2e−2iθ φ

]
, (13)

with k =
√

k2
y + k2

x and θ = tan−1( kx
ky

). Diagonalization gives

the wave functions

�± =

⎡
⎢⎢⎣

eiθ k2√
k4+(φ±

√
φ2+k4 )2

e−iθ φ±
√

φ2+k4√
k4+(φ±

√
φ2+k4 )2

⎤
⎥⎥⎦ (14)

with energies ε± = ±
√

φ2 + k4. For the lower energy band,
the Chern number is then readily given by

i

2π

∫
d2k[〈∂kx �−|∂ky�−〉 − 〈∂ky�−|∂kx �−〉] = sgn(φ).

(15)

For the edge of the sample, this implies the presence of a
single chiral mode for each spin. On the other hand, Chern
number changes �C = 2, for each spin, across the boundary
of regions with different signs of φ, i.e., in the case where the
two sides are driven with different polarizations φ = +π and
φ = −π . So there are two chiral modes for each spin at the
domain wall.

All of this is at a single Dirac point. At the other Dirac
point, the operators π and π† are interchanged. It is easy
to check that this only leads to a change in sign in the ef-
fective potential term φ(x) in Eq. (12). So essentially, the
operators at the K and K ′ points are related by the symmetry
φ(x) → −φ(x), py → −py. This, in turn, comes from the fact
that the effect of radiation essentially acts like a time-reversal
symmetry breaking staggered potential and so, unlike in the
gated bilayer graphene system, the edge states at both the K
and the K ′ valleys have the same chirality (decided by the
chirality of the circular polarization of the impinging light).

In general, for an n-layer graphene sheet, one expects the
Chern number change for each boundary of the irradiated
region to be n × sign(φ) [43,44], for each spin, and at the
domain wall, since it has two “boundaries,” the change will
be twice as much. The spread of the wave function at the
domain wall depends on the driving strength and amplitude.
Further, the irradiation with two different polarizations at the
two sides may interfere near the domain-wall, giving rise to
an unpolarized region, spreading over a width of the order of
the wave length, although one expects the edge modes to be
robust given their topological origin.

III. TIME-DEPENDENT EDGE MODES

In the previous section, we discussed how the polarized
irradiation induces topological gaps at the K and K ′ Dirac
points. If a single layer of bilayer graphene is irradiated
uniformly with a circularly polarized light, the resulting
topological state results in one and two chiral edge modes,
respectively, for single and bilayer, at the boundary of the
sample. If the regions irradiated by opposite polarizations
are separate, as shown in Fig. 1, one expects edge modes
at the interface. If the two sides are irradiated by right and
left circularly polarized light (i.e., θ = 0, π on the two sides
with Ax = Ay = A0), the net change of Chern number, for
each spin, across the interface is two (four) for single-layer
(bilayer) graphene and accordingly one expects two (four)
chiral modes to run along the interface. We study the edge
modes through a tight-binding simulation, by incorporating
the vector potential Eq. (4) in the Hamiltonian (1) by Peierls
substitution, neglecting the phase difference in �A(t ) between
the two layers, which is justified as lintω/c � 1, where c is the
velocity of light and lint is the interlayer distance. The steady
states of the time-periodic Hamiltonian H (t ) after the Peierls
substitution can be found using the Floquet theorem, which
states that the eigenstates will be of the form

ψα (t ) = e−iεαt uα (t ), (16)

where εαs are the “quasienergies” and uα (t ) are periodic func-
tions, called the Floquet states, both of which can be found
from the eigensystem equation

(i∂t − H (t ))uα (t ) = εαuα (t ). (17)

For a high-frequency drive, the quasienergy spectrum of a
nanoribbon is shown in Fig. 2, highlighting the edge modes,
for both the case of edge modes at the interface of differently
driven regions of SLG and BLG, as well as at the boundary
of a uniformly driven BLG. The edge modes appear at each
K/K ′ points with a slightly different Fermi velocity v1 and
v2. Appendix A has a discussion of how higher orders in the
high-frequency expansion lead to the fact that v1 	= v2. The
spread of these edge modes depends on the topological gap,
which is proportional to A2

0/ω. In Appendix B, we briefly
discuss such dependence.

Before we proceed to analyze the properties of the topo-
logical edge modes under Coulomb interactions, which we
introduce perturbatively, a justification of the use of the non-
interacting Floquet analysis is due. A number of recent papers
[39,45–47] argue that, for a rapidly driven closed interacting
system, the heating timescale (τh) is exponentially large in
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FIG. 2. (a): Quasienergy dispersion and edge modes (marked) for an uniformly driven BLG nanoribbon as a function of the momentum
along the axis of the ribbon (identical for both the spins). At a given edge only two chiral modes are present (see main text for discussion).
The result for a uniformly driven SLG is very similar to the case of a uniformly driven BLG, except there is a single mode of each spin at
the boundary. (b) and (c) show the quasienergy modes [Eq. (17)] of the SLG nano-ribbon system with two oppositely polarized irradiation
on two patches, as a function of the momentum along the axis of the ribbon (ky, see Fig. 1), near the K and K ′ Dirac points (momentum is
measured in units of 1/a0, a0 being the lattice spacing of the hexagonal structure), in a given spin sector. A total of two edge modes, which
run along the domain-wall between the differently irradiated regions are marked in the figure. There are also edge modes at the boundary of
the sample, running between the valleys, which are shown, but not marked. Similarly, the quasi-energy dispersion and domain-wall modes,
with two oppositely polarized irradiation on two patches, are shown in (d) and (e) for BLG. For one of the two edge modes in (a), their spatial
character is depicted in (f), showing the weight of the steady-state wave functions in layers 1 and 2. For the domain-wall mode in (b), the spatial
character is depicted in (g), showing the weight of the steady-state wave functions in A and B sublattices in the single layer 1. For one of the
domain-wall modes in (d), the weights of the wave function in shown in (h), in both sublattices as well as in the two layers. The spread of the
wave functions in all cases depends on the strength and the frequency of the irradiation as well as on the gap of the bulk-states at the relevant
momentum point. A frequency of ω/t = 30, an amplitude of A0 = 0.3, and 200 sites for each layer (each site contains A and B sublattices) has
been used in the numerical simulation.

the driving frequency. In the intermediate time, the system’s
dynamics is governed by an effective Hamiltonian, which one
may obtain from a high-frequency approximation, such as
the van Vleck expansion used in our system. If our system
is weakly connected to an environment, giving rise to a re-
laxation timescale τl , then as long as τl � τh, one expects
the system to not be heated. Further, with a high-frequency
drive, even when there is a gap opening due to the breaking
of a symmetry, such as in our case, one expects no population
inversion [48,49]. This allows us to consider the occupations
to have the standard Fermi-Dirac distribution. We further con-
sider that the bulk system, which has Dirac dispersion near
the Fermi energy, is essentially noninteracting and that the
Coulomb interaction is only important in the edge modes. This
assumption, strictly speaking, needs to be further justified,
and can be argued as follows. First, since the edge modes

are topological, they are expected to be robust against weak
interactions in the bulk. Second, since the edge modes are
one-dimensional, the effect of Coulomb interaction among
them can not be neglected.

Assuming that the preceding approximations hold, we fur-
ther proceed to make an another argument to justify the
application of Luttinger liquid theory, namely, we argue that
the interaction among the edge modes are also effectively
time-independent. In the presence of perturbative interactions,
the effective interaction elements among modes with similar
quasienergies can be written as

〈ψα (t )|V̂int|ψα′ (t )〉 = 〈uα (t )|V̂int|uα′ (t )〉, (18)

where we have used the fact that |εα − εα′ | � ω. Expand-
ing in Fourier components, |uα (t )〉 = ∑

n e−inωt |u(n)
α 〉, the
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right-hand side of the above equation can be written as

=
∑
n,m

ei(n−m)ωt
〈
u(n)

α

∣∣V̂int

∣∣u(m)
α′
〉
. (19)

We show in Fig. 3 that for the edge modes, |u(0)
α 〉 is dom-

inant, and other Fourier components can be neglected [i.e.,
the time dependence of ψα (t ) is governed by only the dy-
namical phase factor]. This essentially results from the fact
that the gap opening (and thus the resulting edge modes) at
the K and K ′ points takes place even for an infinitesimal driv-
ing amplitude without any relevant change of the occupation
number [48,49]. This allows us to simplify the interaction
matrix elements among the edge modes to be effectively
time-independent.

As the effective static Hamiltonian can only predict dy-
namics in stroboscopic times [40], the states may still have
significant transverse dynamics. We check this in Fig. 3,
where, we examine the transverse dispersion of a wave packet,
initially introduced at the domain-wall of the two topolog-
ically distinct regions, when driven by the time-periodic
Hamiltonian. The results show that, for a few hundred cy-
cles, the wave packet can be considered to be confined at
the interface of the two regions, although for BLG (unlike
for SLG), the wave packet starts spreading for about a 1000
cycles. In contrast, if the dynamics had been strictly driven by
a time-independent effective Hamiltonian, as was derived in
the last section, we would have found that the wave packet
would have remained confined to the interface for a much
longer time. This hints at a nonvanishing transverse velocity
and a limit to the timescale for the validity of the effective
one-dimensional nature of the low-energy excitations. For a
uniformly irradiated sample, we find the wave packet to be
even more robust at the edge, when the edge is a zigzag edge,
also shown in Fig. 3. This variation of timescales in these
different cases can be attributed to the localization lengths
of the edge-states which one expects to be much smaller
when the bulk gap is larger (depending on the transverse
momentum).

It should also be noted that if the original wave packet
had been prepared in the state of |uα (t )〉 (or, equivalently,
≈ |u(0)

α 〉), the wave packet would have been confined to the
boundary for an infinite time, as the Floquet states would
then be eigenstates of the Hamiltonian. This, however, would
require careful initial state preparation, which may not always
be an easy task.

IV. LUTTINGER LIQUID ANALYSIS

As argued in the previous section, the steady-state edge
modes in this system are essentially time-independent, allow-
ing us to consider an effective time-independent interaction
Hamiltonian, which is crucial for our use of Luttinger liquid
theory [50]. Keeping this in mind, we write the interaction
among the (effectively time-independent) edge states of the
time-periodic Hamiltonian as

Hint = 1

2

∫
d�rd �r′ρ̂(�r)V (�r − �r′)ρ̂(�r′) . (20)

Here we assume that ρ̂(r) has a trivial time-dependence,
which we justify as follows. We write the field

FIG. 3. [(a)–(c)] For one of the edge modes, the weight of the
discrete Fourier components of the Floquet states is plotted (in a
logarithmic scale), showing that the n = 0 component is several
orders of magnitude larger than the other components, giving rise
to essentially time-independent Floquet modes and allowing for an
effective time-independent interaction among them. (a) Corresponds
to the edge mode at the boundary of uniformly driven BLG, whereas
(b) and (c) correspond to the edge mode at the interface of regions
driven with opposite polarization in SLG and BLG respectively. In
(d)–(f), we show the dynamics of a Gaussian wave packet (which is
not an eigenstate) introduced at the interface of the system with two
different polarizations for these corresponding three cases. Even after
thousands of cycles, the wave packet remains essentially confined to
the edge. In (d), we depict the dynamics at the edge of uniformly
driven BLG, where we show an initial Gaussian wave packet and its
modification after 1000 cycles of the drive. Similarly, in (e) and (f),
we demonstrate the effect when the wave packet is introduced at the
interface region in SLG and BLG, respectively, where we show an
initial Gaussian wave packet and its modification after 100 as well
as 1000 cycles of the drive. The parameters used were ω/t = 30
and A0 = 0.3. The results for the edge of uniformly driven SLG (not
shown) is qualitatively similar to that of the BLG.

operator of the driven system as �†(�r, t ) = ∑
α〈�r|ψα (t )〉a†

α =∑
α,n ei(εα+nω)t 〈�r|u(n)

α 〉a†
α , where |uα (t )〉 = ∑

n e−inωt |u(n)
α 〉 are
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the Floquet states as defined earlier as well. Then,

ρ̂(�r, t ) = �†(�r, t )�(�r, t )

=
∑
α,β

∑
n,m

ei(εα−εβ )t
[
ei(n−m)ωt

〈
u(m)

β

∣∣�r〉〈�r∣∣u(n)
α

〉]
a†

αaβ

=
∑
α,β

ei(εα−εβ )t

[∑
n

〈
u(n)

β

∣∣�r〉〈�r∣∣u(n)
α

〉]
a†

αaβ

+
∑
α,β

ei(εα−εβ )t

[∑
n,m 	=n

ei(n−m)ωt
〈
u(m)

β

∣∣�r〉〈�r∣∣u(n)
α

〉]
a†

αaβ.

(21)

So, if |〈�r|u(0)〉| � |〈�r|u(n 	=0)〉| is satisfied, then generally the
nontrivial time dependence of the above equation (second
part) can be dropped. As mentioned before, we have verified
this in Figs. 3(a)–3(c). Further, we have also studied wave
packet dynamics of a Gaussian wave packet in Figs. 3(d)–
3(f), where we have obtained the timescale below which any
transverse motion due to the dynamics of the edge-states can
be neglected and a Luttinger liquid formalism based on the
time-independent density operator can be justified.

We consider four cases: (i) for a uniformly irradiated sam-
ple of SLG, within the effective time-independent description,
at low energy, we have a chiral mode of each spin at the edge
of the sample. (ii) For a uniformly irradiated sample of BLG,
we have two chiral modes (of each spin) at the edge of the
sample. (iii) For a sample with two regions irradiated with
oppositely polarized light, there is one chiral mode at each of
the Dirac points K and K ′ (in total two), for each spin (σ )
for the SLG and (iv) we have two chiral modes at each of the
Dirac points K and K ′ for each spin (σ ) for the BLG. When we
have multiple modes of each spin, we index these modes by
α = 1, 2 for the cases (ii) and (iii), and α = 1K , 2K , 1K ′ , 2K ′

for the case (iv). Assuming translation invariance along the
y direction, we can further write the field operator for each
mode, taking into account only the modes near the Fermi
energy, with �R = (x, y) as

�̂σ ( �R) =
∑

α

�̂ασ ( �R) =
∑

α

φα (x)eikα
F yξ̂ασ (y) , (22)

where ξ̂ασ (y) is a slowly varying function along y. The inter-
action Hamiltonian can then be expressed as

H̃int = 1

2Ly

∑
σσ ′yy′

∫
dydy′ �̂†

σ ( �R)�̂†
σ ′ ( �R′)V (| �R − �R′|)

× �̂σ ′ ( �R′)�̂σ ( �R) ,

≡ 1

2

∑
σσ ′yy′{α}

∫
dydy′ h, (23)

where the integrand can be written as

h = eiy�k−iȳ(kγ
F −kβ

F )√
ȳ2 + (x − x′)2

φ∗
α (x)φ∗

β (x′)φγ (x′)φδ (x)

× ξ̂ †
ασ (y)ξ̂ †

βσ ′ (y − ȳ)ξ̂γ σ ′ (y − ȳ)ξ̂δσ (y), (24)

where ȳ = y − y′ and considering the functions ξ̂ to be slowly
varying, momentum conservation requires �k = 0. Note that
we have assumed the potential V (|R − R′|) to be of the form
e2/

√
ȳ2 + (x − x′)2.

FIG. 4. Various types of scattering processes allowed by the
interaction Hamiltonian among the domain-wall modes in BLG.
(a) shows the processes which are of the density-density type
(class I), whereas (b) shows all the inter-mode scattering processes
(class II). The processes in (b) are sub-dominant by several orders of
magnitude and are neglected in our analysis. Some of the processes
are naturally not possible in case of domain-wall modes in SLG or
the edge modes of uniformly driven BLG.

Broadly speaking, the possible scattering processes can be
divided into two classes, shown as classes I and II in Fig. 4.
Computing the bare scattering amplitudes of all the processes,
we find that density-density type interactions (class I) are the
dominant ones by several orders of magnitude and hence, we
keep only such processes. Furthermore, since all scatterings
in class I take place in the same mode, we may take kγ

F = kβ
F .

In this case, the form of h can be written as

h = 1√
ȳ2 + (x − x′)2

φ∗
α (x)φ∗

β (x′)φβ (x′)φα (x)

× ξ̂ †
ασ (y)ξ̂ †

βσ ′ (y − ȳ)ξ̂βσ ′ (y − ȳ)ξ̂ασ (y). (25)

We may now write the one-dimensional form of the interac-
tion Hamiltonian in terms of the standard two-body scattering
amplitudes Vαα′α′α defined below as

H̃int ≈ αg

2

∫
dy
∑
αα′

Vαα′α′α

×
∑
σσ ′

ξ̂ †
ασ (y)ξ̂ †

α′σ ′ (y)ξ̂α′σ ′ (y)ξ̂ασ (y), (26)

where the scattering amplitudes are given by

Vαα′α′α =
∑

xx′ x̄{α}

1√
ȳ2 + (x − x′)2

× φ∗
α (x)φ∗

α′ (x′)φα′ (x′)φα (x). (27)
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These amplitudes can be computed, numerically, from the
Floquet states. An effective fine-structure constant αg ≈ 2
for single-layer graphene is used, and we write all velocities
in terms of the velocity of electrons in graphene. For
bosonization, we adopt the following notations: ξ̂ασ (y) ∼
e−i2

√
π�ασ (y); ρασ (y) = ξ̂ †

ασ (y)ξ̂ασ (y) = − 1√
π
∇�ασ . Here

�ασ (y) is the bosonic field operator. Note that we have not
included Klein factors, as they can be set to unity in the
density and they do not affect the correlation functions that
we compute in this paper. In this notation, the density-density
interaction becomes

ρασ ρα′σ ′ = 1

π
∇�ασ (y)∇�α′σ ′ (y). (28)

Writing H̃ = H̃o + H̃int = ∫
dx[H0 + Hint] = ∫

dxH , the
Hamiltonian can be written in the bosonic language as

H = H0 + Hint =
∑
ασ

vα
F (∇�ασ )2

+ 1

2π

∑
αα′

Vαα′α′α

∑
σσ ′

∇�ασ ∇�α′σ ′ , (29)

where the sums over the α and σ indices include all the modes
at both Dirac points. We further introduce bosons correspond-
ing to different charge, spin sectors for different channels as
follows:

�αc = �α↑ + �α↓√
2

; �αs = �α↑ − �α↓√
2

, (30)

where α = 1 for uniformly driven SLG, α = 1, 2 (boundary
of uniformly driven BLG) or K and K ′ (interface of SLG)
or 1K , 2K , 1K ′ , 2K ′ (interface of BLG) are different channels;
here, c denotes the charge sector and s denotes the spin sector.
Simplifying we get∑

σσ ′
∇�ασ ∇�α′σ ′ = 2∇�αc∇�α′c. (31)

So the Hamiltonian can be written in terms of the charge and
spin bosons as

H0 =
∑

α

vα
F [(∇�αc)2 + (∇�αs)2], (32)

Hint = 1

π

∑
αα′

Vαα′α′α∇�αc∇�α′c, (33)

where we note that the Coulomb interaction term modifies
only the charge sector. Thus, in the absence of scatterings
involving spin, the SU(2) spin symmetry is intact and the spin
sector is not expected to be renormalized.

A. Uniformly irradiated SLG

In the case of uniformly irradiated SLG, there is a single
charge mode, which decouples itself from the spin mode,
following our previous discussion. The Hamiltonian of the
charge mode is simply then

Hc = (∇�c)2 ×
(
vF + 1

π
V
)

≡ �(∇�c)2, (34)

where V is the forward scattering amplitude, which simply
implies a renormalized Fermi velocity of � = (vF + 1

π
V ).

FIG. 5. (a) The renormalized velocity of the charge sector, � of
the edge modes at the boundary of uniformly driven SLG, under
Coulomb interaction, as a function of the driving amplitude A0.
(b) The renormalized velocities, �I and �II of the edge modes at
the boundary of uniformly driven BLG, under Coulomb interaction
as a function of the driving amplitude A0. The velocities before the
introduction of the Coulomb interaction are v1

F ≈ v2
F = vF are also

shown in both the graphs. The velocities are measured in units of
ν = 3ta0/2h̄.

The correlation functions of the fermions, which are the same
for both σ = {↑↓} spins, are given by [51,52]

〈�̂σ (y, t )�̂†
σ (0, 0)〉 ∼ exp(〈�σ (y, t )�†

σ (0, 0)〉) (35)

with �{↑↓} = �c ± �s√
2

.

If vi is the velocity of ith diagonal mode (i = c, s), one can
further write

〈�i(y, t )� j (0, 0)〉 = − 1

4π
ln(y − vit )δi j, (36)

which gives us

〈�̂σ (y, t )�̂†
σ (0, 0)〉 ∼ 1

(y − �t )
1
2

1

(y − vFt )
1
2

. (37)

We show the variation of � as a function of the driving
amplitude in Fig. 5(a).

B. Uniformly irradiated BLG and interface at SLG

The Hamiltonian for the charge sector, when there are two
edge modes, either at the boundary of a uniformly irradiated
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{

{
{

{

(c)(a) (b)

{

{

{

FIG. 6. The renormalized velocities of the edge modes, at the interface of regions driven with opposite polarizations, under Coulomb
interaction as a function of the driving amplitude A0 and the difference (θ ) of the polarization angle of the irradiation between the left and
right halves of the nanoribbon as shown in Fig. 1. θ = π represents the maximum difference—the case where the two drives are right and left
circularly polarized. In (a), we show the two renormalized velocities �SLG

I and �SLG
II for the edge modes of the SLG setup. Here, vF is the

velocity of the two original modes. Similarly in (b) and (c) we show the result for the BLG system, where only the two modes of the (+) sector
are renormalized (see the main text), with renormalized velocities �BLG

I and �BLG
II . The velocities are measured in units of ν = 3ta0/2h̄.

BLG or at the interface of oppositely polarized irradiation on
SLG, can be written as

Hc = [∇�1c ∇�2c]R
[∇�1c

∇�2c

]
,

R =
[
v1

F + 1
π

VA
1
π

VB

1
π

VB v2
F + 1

π
VA

]
, (38)

where we have explicitly used the form of the resulting
scattering matrix. v

1/2
F are the Fermi velocities of the nonin-

teracting edge modes (1/2 correspond to K/K ′ for the case
of interface states at SLG). Here VA = Vαααα and VB = Vαα′α′α
(α 	= α′) as well as the Fermi velocities depend on specific
parameters and the system in consideration (such as whether it
is at the edge of uniformly irradiated BLG or at the interface of
differently irradiated regions at the SLG, as well as the nature
of the edge). This sector can then be diagonalized using the
canonical transformation

�Kc = cos �s�̃1c + sin �s�̃2c,

�K ′c = − sin �s�̃1c + cos �s�̃2c, (39)

with tan(2�s) = 2
π

VB/(v2
F − v1

F ). If VB 	= 0 and v1
F ≈ v2

F , one
obtains �s ≈ π/4, whereas if VB = 0, then �s = 0. The
renormalized velocities become

�I = R11 cos2 �s + R22 sin2 �s − 2R12 sin �s cos �s, (40)

�II = R11 sin2 �s + R22 cos2 �s + 2R12 sin �s cos �s. (41)

In Fig. 5(b), we show the renormalized velocities �I and �II

as a function of the strength of the incident radiation for the
edge modes of uniformly irradiated BLG. In Fig. 6(b), we also
show the corresponding renormalized velocities for the modes
at the interface at SLG, where we also study two possible
differences of the polarization angle (θ ): θ = π where the left
and right halves of the graphene layer are irradiated with left
and right circularly polarized light and for θ = 0.8π where the

polarization difference is slightly less. Interestingly, we find
that the velocities are strongly renormalized, in either case, as
a function of the amplitude of the light. They also depend on
the difference in polarization of light impinging on the two
halves of the SLG.

We next compute the correlation functions, following the
discussion in the previous section. The correlation function of
the original modes (1,2) are given by

〈�̂1σ (y, t )�̂†
1σ (0, 0)〉

∼ 1

(y − �I t )
cos2 �s

2

1

(y − �II t )
sin2 �s

2

1

(y − vFt )
1
2

, (42)

〈�̂2σ (y, t )�̂†
2σ (0, 0)〉

∼ 1

(y − �I t )
sin2 �s

2

1

(y − �II t )
cos2 �s

2

1

(y − vFt )
1
2

. (43)

We obtain �s ≈ π/4 (thus, sin2 �s ≈ cos2 �s ≈ 1/
√

2) for
the relevant parameters, with weak dependence on the ampli-
tude of the driving and the polarization angle (not shown).
It is easy to check that, if one turns off the interaction,
the correlation functions become each of a fermionic mode
with velocities vF = v1

F ≈ v2
F . Finally, for a uniformly driven

arm-chair nanoribbon of bilayer graphene, the results of ve-
locity renormalization of the edge modes are discussed in
Appendix C.

C. Interface modes of BLG

For the case of BLG, one can proceed similar to the SLG
case. We start by writing the charge sector as

Hc ≡
∑

α

Qo
αα∇�αc∇�αc +

∑
αα′

Qαα′∇�αc∇�α′c, (44)
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where

Qo=

⎡
⎢⎣

v1
F 0 0 0
0 v2

F 0 0
0 0 v1

F 0
0 0 0 v2

F

⎤
⎥⎦; Q=

[P P
P P

]
; P= 1

π

[VA VB

VB VA

]
,

(45)

where v
1K
F ≈ v

1K ′
F = v1

F and v
2K
F ≈ v

2K ′
F = v2

F . The form of the
Q and P matrices arises from the computation of the scattering
matrix elements. We proceed by performing another transfor-
mation

�+
ηc = �ηK c + �ηK ′ c√

2
; �−

ηc = �ηK c − �ηK ′ c√
2

, (46)

where η = 1, 2, to write

Hc =
∑

η

v
η
F [(∇�+

ηc)2 + (∇�−
η )2]

+ 2

π

∑
ηη′

Vηη′η′η(∇�+
ηc∇�+

η′c), (47)

Hc
+ =

∑
η

v
η
F [(∇�+

ηc)2] + 2

π

∑
ηη′

Vηη′η′η(∇�+
ηc∇�+

η′c),

(48)

Hc
− =

∑
η

v
η
F [(∇�−

ηc)2], (49)

allowing us to further write the (+) sector as

H+
c =[∇�+

1c ∇�+
2c]RBLG

[∇�+
1c

∇�+
2c

]
,

RBLG =
[
v1

F + 2
π

VA
2
π

VB

2
π

VB v2
F + 2

π
VA,

]
(50)

where it is evident that only the (+) modes are renormalized.
This sector can then be diagonalized using the canonical trans-
formation

�+
1c = cos �b�̃1c + sin �b�̃2c,

�+
2c = − sin �b�̃1c + cos �b�̃2c, (51)

with tan(2�b) = 4
π

VB/(v2
F − v1

F ). For VB 	= 0 and v1
F ≈ v2

F ,
we obtain �b ≈ π/4, whereas if VB = 0, then �b = 0. The
renormalized velocities of the (+) sector become

�BLG
I = RBLG

11 cos2 �b + RBLG
22 sin2 �b

− 2RBLG
12 sin �b cos �b, (52)

�BLG
II = RBLG

11 sin2 �b + RBLG
22 cos2 �b

+ 2R12 sin �b cos �b, (53)

whereas, for the (−) sector, the modes remain unrenormal-
ized. In Fig. 5, we show the renormalized velocities �BLG

I and
�BLG

II as a function of the strength of the incident radiation,
as well as for two values of the polarization angle (θ ), which
show strong renormalization.

In terms of these diagonalized fields, the fields of the orig-
inal bosonic operator can be written as

�1K c = 1√
2

[cos ��̃1c + sin ��̃2c + �−
1c],

�2K c = 1√
2

[− sin ��̃1c + cos ��̃2c + �−
2c],

�1K ′ c = 1√
2

[cos ��̃1c + sin ��̃2c − �−
1c],

�2K ′ c = 1√
2

[− sin ��̃1c + cos ��̃2c − �−
2c],

�g{↑↓} = �gc ± �gs√
2

; g = {1K , 1K ′ , 2K , 2K ′ }. (54)

Similar to the case of single-layer graphene, the correlation
functions are then given by

〈�̂1(K,K ′ )σ
(y, t )�̂†

1(K,K ′ )σ
(0, 0)〉 ∼ 1(

y − �BLG
I t

) cos2 �b
4

× 1(
y − �BLG

II t
) sin2 �b

4

1(
y − v1

Ft
) 3

4

(55)

and 〈�̂2(K,K ′ )σ
(y, t )�̂†

2(K,K ′ )σ
(0, 0)〉 ∼ 1(

y − �BLG
I t

) sin2 �b
4

× 1(
y − �BLG

II t
) cos2 �b

4

1(
y − v2

Ft
) 3

4

. (56)

We obtain �b ≈ π/4 (thus, sin2 �b ≈ cos2 �b ≈ 1/
√

2) for
the relevant parameters, with a weak dependence on the am-
plitude of the driving and the polarization angle (not shown).
Similar to the case of SLG. it is easy to check that, if we turn
off the interaction, the correlation functions become each of a
fermionic mode with velocities v1

F or v2
F .

V. SUMMARY

For experimental realization, the crucial requirements are
that the topological mass gap, m = λ2γ /ω be larger than the
temperature scale and the driving frequency be larger than
the other energy scales. The intensity of the circularly polar-
ized drive (I = 1

2 cε0E2) can be written as I ≈ 1014α2
d (h̄ω/t )

W/cm2, where the unitless parameter αd = eAa0/h̄ character-
izes the driving amplitude. Assuming the topological mass to
be of the order of meV and the driving frequency to be order
of an electron volt, we obtain αd ∼ 10−2, which in turn deter-
mines the required intensity of the drive. In an experimental
setup, the possibility of heating may also need more careful
consideration.

To summarize, we have studied the possibility of tun-
able chiral Luttinger liquid states at the interface of driven,
topologically distinct states in two dimensions, specifically
focusing on single and bilayer graphene systems. The nature
of the gap opening of the bulk allows us to consider the
effective interaction among the electrons at the topological
steady states to be effectively time-independent so that we can
apply standard bosonization techniques to these interacting
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steady states. Our results suggest that these systems can act as
a platform for highly tunable chiral Luttinger liquids, which
can be further studied experimentally.
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APPENDIX A

In this Appendix, we write the van Vleck expansion up
to second order for bilayer graphene, which gives rise to

a small difference between the velocities v1 and v2 of the
topological edge modes at K and K ′ momentum points. The
second order, i.e., O(ω−2) correction to Heff , under the van
Vleck high-frequency expansion, is given by

1

2ω2

∞∑
n=1

1

n2
([[Hn,H0],H−n] + H.c.).

In our case, due to the sine and cosine nature of the driv-
ing, H±1 are the only nonzero Fourier coefficients of the
Hamiltonian and the resulting correction term reduces to
calculating ([[H1,H0],H−1])/(2ω2). For convenience of no-
tation, we introduce the following: α = Ax + Aye−iθ , β =
Ax − Ayeiθ , � = Ax + Ayeiθ , and δ = Ax − Aye−iθ . Further

we use C ≡ λ2γ

4ω
cos θ , B ≡ 1 − λ2

4ω2 (α� + βδ), D ≡ λ2

2ω2 δ�,

and E ≡ λ2

2ω2 αβ to obtain

Heff =

⎛
⎜⎝

−C νπ†B + Eνπ 0 tpE
νπB + Dνπ† C tpB 0

0 tpB −C νπ†B + Eνπ

tpD 0 νπB + Dνπ† C

⎞
⎟⎠. (A1)

It is useful here to note the relations B = 1 − λ2(A2
x+A2

y )
2ω2 and D† = E .

Using this Hamiltonian we proceed to calculate the effective two-band low-energy sector. This can be done in the same way
as was done in the main text [1] to have

HL
eff =

((
HL

eff

)
1,1

(
HL

eff

)
1,2(

HL
eff

)
2,1

(
HL

eff

)
2,2

)
, (A2)

where the matrix elements are as follows:(
HL

eff

)
1,1 = − C − Cν2

C2 + t2
pB2

((B2 + ED)π†π + BD(π†)2 + EBπ2), (A3)

(
HL

eff

)
1,2 = tpE − tpBν2

C2 + t2
pB2

(B2(π†)2 + E2π2 + 2EBπ†π ), (A4)

(
HL

eff

)
2,1 = tpD − tpBν2

C2 + t2
pB2

(B2π2 + D2(π†)2 + 2BDπ†π ), (A5)

(
HL

eff

)
2,2 =C + Cν2

C2 + t2
pB2

((B2 + ED)π†π + BD(π†)2 + EBπ2). (A6)

FIG. 7. The domain-wall state’s wave function for (a) BLG and (b) SLG for a larger system size (1200 sites for BLG and 600 sites for
SLG) and for the amplitude of the drive A0 = 0.5 and ω/t = 30, showing the confined nature of the state. (c) Plot of the standard deviation of
the amplitude of the wave function, which we estimate as spread, as a function of the amplitude of the drive A0 for the domain-wall state in
SLG.
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This is valid in the low-energy regime when ε �
tp(1 − λ2

2ω2 (A2
x + A2

y )), which holds if one ensures that
λ2AxAy

ω
� tp(1 − λ2

2ω2 (A2
x + A2

y )). We can make some simpli-
fications to the above elements of HL

eff by making approx-
imations where terms of O(ω−4) are dropped. Under these
approximations are, (B2 + ED) ≈ 1 − λ2

2ω2 (A2
x + A2

y ), BD ≈
D = λ2

2ω2 δ�, EB ≈ E = λ2

2ω2 αβ and E2 = D2 = 0. Addition-
ally, given the condition for the low-energy regime it follows
that t2

pB2 � C2. Using them, we re-examine the of-diagonal
terms of HL

eff ,(
HL

eff

)
1,2 ≈ tpE − ν2

tpB
(B2(π†)2 + 2Eπ†π ), (A7)

(
HL

eff

)
2,1 ≈ tpD − ν2

tpB
(B2π2 + 2Dπ†π ). (A8)

By comparing the above off-diagonal terms to the off-
diagonal terms for the low-energy effective Hamiltonian
computed in Eq. (11) where only the O(ω−1) correction from
the driving had been included, we see that the modifica-
tions coming from the tpD and tpE kind of terms here, as
higher-order driving effects, are responsible for the observed
asymmetry of the Fermi velocities of the chiral Luttinger
edge modes in this system. Thus higher-order terms in the
van Vleck expansion are significant in the regime where edge
modes are observed under the application of driving and are a
manifestation of the long range hoppings induced by the drive.

APPENDIX B

The spread of the wave function of the edge or domain-wall
mode depends on the amplitude and the frequency of the drive.
In Fig. 7, we show explicitly the spread of the wave function
using a larger system size for numerical simulation as well as
how the spread changes with increasing amplitude of drive A0.

APPENDIX C

In this Appendix, we discuss uniformly irradiated armchair
nanoribbons. We have shown the Luttinger liquid analysis for
uniformly irradiated BLG sample in Eqs. (38)–(42) and have
presented the results for zigzag edge SLG sample in Fig. 2, 3,
and 5. We are not showing the same analysis in the context of
a BLG nanoribbon with armchair edge. Here, we only show
the numerical results as presented in Fig. 8.

FIG. 8. Bilayer graphene nanoribbon with armchair edges.
(a) The spectrum, highlighting the edge modes; (b) the Fourier
components of the Floquet states; [(c) and (d)] the spread of the
wave function of the edge modes; and (e) renormalized velocities
�I and �II of the edge modes for the driven system. All other pa-
rameters are the same as in the Fig. 3.
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