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Simple mechanism that breaks the Hall-effect linearity at low temperatures
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Hall resistance Rxy is commonly suggested to be linear-in-magnetic-field B, provided the field is small. We
argue here that at low temperatures this linearity is broken due to weak localization/antilocalization phenomena
in inhomogeneous systems, while in a uniform medium the linear-in-field dependence of Rxy(B) is preserved.
We calculate the Hall resistance for different two-component media using a mean-field approach and show that
this nonlinearity is experimentally observable.
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An ordinary Hall effect is broadly used to calculate the
charge carrier density n since it is commonly accepted that
the Hall resistance Rxy ∝ 1/n. The latter relation assumes that
Rxy depends linearly on the value of the transverse magnetic
field B and the carrier density n is sometimes estimated at a
fixed small magnetic field [1]. In other words, one assumes
that the Hall coefficient RH = Rxy/B is independent of B in
the low magnetic field range. However, there are a number
of observations that the Hall coefficient at low temperatures
and at low magnetic fields depends on B even in systems
without magnetic impurities [2–7]. This means, in particular,
that the value of the charge carrier density determined us-
ing Hall resistance may be misleading. Several microscopic
models were suggested to explain the RH(B) dependence in
the low magnetic field range. In Ref. [5], this was attributed
to the higher-order corrections to the Drude conductivity in
(kF l )−1 (here, kF is the Fermi momentum and l is a mean free
path). The memory effect in electron scattering could also be
a reason for the dependence of RH on B in low fields, as it
has been shown in Ref. [8]. A nonlinearity in Rxy(B) due to
superconducting fluctuations was proposed in Ref. [9].

In this paper we suggest a different mechanism of Rxy(B)
nonlinearity for two-dimensional (2D) systems, which also
can be valid for 3D systems close to the metal-insulator
transition. This mechanism is simple and rather general. We
argue that due to the tensor nature of the magnetoresistiv-
ity, the observed nonlinearity directly follows from weak
localization/antilocalization (WL/WAL) if the system is in-
homogeneous and the spatial scale of the inhomogeneities
exceeds all WL/WAL lengths.

*alexkun@lebedev.ru

WL and WAL phenomena, that is, quantum interference
effects, lead to a steep low-field magnetoresistance. Let us
consider a 2D homogeneous isotropic system in the limit
of low temperatures (lϕ > l , where lϕ is the phase-breaking
length) and a low transverse magnetic field (B � h̄/el2 <

1/μ, where μ is the mobility measured in inverse Tesla).
According to the Hikami-Larkin-Nagaoka formula [10], mag-
netoconductivity due the WL [that is, �σ (B) = σ (B) − σ (0)]
for such a system can be expressed as

�σ (B) = α
G0

π

[
ψ

(
1

2
+ h̄

4eBl2
ϕ

)
− ln

(
h̄

4eBl2
ϕ

)]
. (1)

Here, G0 = e2/2π h̄ is the conductivity quantum, ψ is the
digamma function, e > 0 denotes elementary charge, and α is
a constant typically from −1 to 1. Most commonly in 2D sys-
tems the electron-electron dephasing mechanism is dominant,
which leads to lϕ ∝ √

1/T [11]. In 3D systems and thin films
the dominant dephasing mechanism is the electron-phonon
interaction with lϕ ∝ T −ν , where an exponent ν depends on
disorder [12].

In Refs. [13,14] it was shown that the quantum correction
Eq. (1) does not contribute to the Hall effect, i.e., off-diagonal
terms of the resistivity tensor are independent of �σ (B). In
particular, in the 2D case the corresponding resistivity tensor
has a form

ρ̂ =
(

1/[σ (0) + �σ ] −B/ne
B/ne 1/[σ (0) + �σ ]

)
, (2)

where σ (0) = neμ. In these terms, the mobility μ = ±eτ/m∗
and the charge density n are sign dependent (negative for elec-
trons), whereas the mean free time τ and effective mass m∗ are
always positive. We may introduce a modified field-dependent
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FIG. 1. Various geometries of inhomogeneous systems discussed
in the paper. The voltmeter measures Hall voltage VH . Components
with different properties are indicated by gray and light gray colors.
The fraction of the dark gray part in (a)–(c) is equal to p.

mobility,

μ̃(B) = μ + �σ (B)/ne, (3)

and write down the conductivity tensor (inverted resistivity) in
a standard Drude form,

σ̂ = neμ̃

1 + μ̃2B2

(
1 μ̃B

−μ̃B 1

)
. (4)

We consider here a 2D inhomogeneous medium. For sim-
plicity, we assume that it consists of two species (or phases)
of a 2D electron gas with different densities and mobilities,
(n1, μ̃1) and (n2, μ̃2). The mobilities μ̃1 and μ̃2 typically vary
differently with the magnetic field. Therefore, the transport
current redistributes between these species when the applied
magnetic field changes. As a result, the Hall coefficient be-
comes field dependent. A general solution of the problem of
current flow redistribution even in a two-component medium
is rather complicated. However, in some special cases an exact
or approximate analytical result can be obtained.

The simplest case of an inhomogeneous system is an array
of strips with the current flowing parallel to them, as shown in
Fig. 1(a). The electric field along the current flow is the same
in both components of the system (dark and light gray strips).
Summing up the Hall voltages for all strips and dividing the
result by the total current, we get

Rxy = B

e

pμ̃1 + (1 − p)μ̃2

pn1μ̃1 + (1 − p)n2μ̃2
. (5)

Here, p denotes the fraction of the dark gray component
(n1, μ̃1). According to this formula, the Hall coefficient RH(B)
is not a constant in the low magnetic field if μ̃1 and μ̃2 are not
proportional to each other.

Another model system that we consider here is a regular
array of circular inclusions in the conductive matrix, as shown
in Fig. 1(b). In the inclusions the carrier density is n1 and
mobility is μ̃1, while in the matrix these values are n2 and
μ̃2, respectively. To obtain an approximate solution to this

model, we apply a self-consistent mean-field theory [15,16].
In this approach each element of the array is approximated
as a circular unit consisting of an inclusion in the center and
the matrix shell. We place this unit in media with an effective
conductivity tensor, solve the corresponding electromagnetic
problem, average the calculated electric field self-consistently,
and obtain mean-field equations for the effective conductivity.
Details of such calculations are described in Appendix A. The
obtained result can be presented in the form

Rxy = B

n2e

S2 + 2p[2n1n2μ̃1(μ̃1 − μ̃2) − D2] + p2D2

(S − pD)2
, (6)

where D = n2μ̃2 − n1μ̃1, and S = n1μ̃1 + n2μ̃2.
The same mean-field approach can be applied to calculate

the effective conductivity tensor in the case of a random mix-
ture of two 2D electron phases. We approximate the regions
with different conductivities by circular inclusions with differ-
ent radii. The analytical solution of the problem is tremendous
and we present it only in Appendix B with details of the cal-
culations. In a random mixture the inclusions join in clusters,
then the characteristic size of these clusters increases with the
increase of p and becomes infinite at some p = pc, which is
called the percolation threshold. The mean-field theory usu-
ally gives a good result, when the fraction content p is not
close to pc [15,16]. For isotropic 2D systems pc = 0.5, while
for isotropic 3D structures pc ≈ 0.15.

Now let us analyze a possible amplitude of the Hall
resistance nonlinearity due to system inhomogeneity. This
nonlinearity arises due to either the difference in the carriers’
mobility in different parts of the sample or due to the dif-
ference in the corresponding timescales (phase-breaking time
and spin-orbit interaction time). The larger is this difference,
the greater would be the nonlinearity. Naively, according to
Eqs. (1) and (3) there is no limitation on relative mobility
variations with the magnetic field. Indeed, the effect would be
high, if the system contains low-n regions, since the correction
to the mobility is inversely proportional to n [see Eq. (3)].
However, in the low-n regions the conductivity itself is low,
and the higher-order corrections in (neμ)−1 come into play,
suppressing the magnetoresistance [17]. As a result, a realistic
estimate of the relative variation of μ̃ due to WL could be a
maximum of 50% or so for 2D systems and for 3D systems as
well [4,18].

Note here that Eq. (1) describes magnetic-field-induced
dephasing in the diffusive limit of long interference loops.
This formula is valid only in the low magnetic field limit
B � h̄/(el2) < 1/μ. In higher magnetic fields, B ∼ h̄/(el2),
the logarithmic asymptotic of Eq. (1) should be replaced by
∝1/

√
B [19,20]. In this regime, called ballistic, there is no

simple analytical expression for the magnetoconductivity. Be-
low, we use Eqs. (1) and (3) for the qualitative analysis of the
nonlinear Hall effect.

The magnetic field dependence of the mobility and the
Hall coefficient for the above outlined three inhomogeneous
systems (parallel strips, ordered and disordered circular
inclusions) are illustrated in Fig. 2. We assume that at zero
magnetic field the mobilities in both fractions are equal
(μ1 = μ2), while the carrier densities are different
(n1 = n2/5). This difference in the charge carrier densities
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FIG. 2. (a) Magnetic field dependence of the mobility μ̃(B)/μ =
1 + �σ (B)/σ (0) calculated using Eqs. (1) and (3). (b) Magnetic
field dependencies of the Hall coefficient RH(B) for inhomogeneous
systems, calculated for three model systems using the data from
(a) as an input. The fraction of the low-conductivity phase with
n1 = n2/5 is p = 0.3. The functions μ̃(B) and RH(B) are normalized
to its values at B = 0, and the field scale is normalized using the
phase-breaking length lϕ1 for the low-conductivity phase.

gives rise to differences in the phase-breaking length lϕ
approximately by a factor of 5 [11]. We also put p = 0.3 for
all calculated curves in Fig. 2(b).

The effect of the WL on the charge mobility in two dif-
ferent fractions of the considered systems is illustrated in
Fig. 2(a). The whole variation of the mobility with the mag-
netic field is equal to e2/2π h̄σ , i.e., higher for the low-n
phase. At the same time, the low-field asymptotic for Eq. (1) is
�σ (B) ≈ (α/24π )G0B2/(h̄/4el2

ϕ )2 ∝ B2(nμ)4. It means that
the low-field drop is sharper for the high-n phase. These
two features result in the intersection of normalized μ̃(B)
[Fig. 2(a)], leading to nonmonotonic RH (B) behavior, as il-
lustrated in Fig. 2(b).

As it is seen from Fig. 2(b), the high-field RH (B) increase
is higher for systems with circular inclusions than for parallel
strips. This behavior has a simple physical explanation. In a
system with parallel strips the transport current mainly passes
through the highly conductive strips since they occupy 70%
of the sample and their conductivity is five times higher. As a
result, the increase of the conductivity of the low-conductive
phase with the growth of B results in a slight redistribution of
transport flow. In a system with circular inclusions, the trans-
port current flows mainly around the low-n inclusions. This
way is long, and as the conductivity of the low-n phase regions
drops with magnetic field, the path through them becomes

more preferable, since the fraction of transport current in the
low-n islands increases, giving rise to a more pronounced
change in the Hall coefficient. The effect is the strongest in
a structure with ordered circular inclusions.

A similarity of the obtained results for three different
model systems implies that the particular type of inhomogene-
ity is not crucial for a qualitative picture of the effect.

In the special case p = 0.5, the Hall resistance in Eq. (5)
is similar to that for a two-liquid model. Within this model,
the system is supposed to consist of two different types of
charge carriers with different conductivities σ̂ (1) and σ̂ (2). The
conductivity tensor of the system is a sum σ̂ = σ̂ (1) + σ̂ (2).
The two-band model is used to describe multiband systems,
e.g., doped topological insulators [21], semimetals [22,23],
etc. A similar model can be also applicable for a bilayer shown
schematically in Fig. 1(d). A question is, why is the nonlinear-
ity of the Hall resistance not observed in all inhomogeneous
and multicomponent electron systems? We believe that a cru-
cial factor is a scattering between different types of charge
carriers. Indeed, as it was shown for multiband compounds
[24], multivalley systems [25,26], and topological insulators
[27], if we take into account the scattering between different
types of quasiparticles, a multicomponent system effectively
reduces to a single-component one from the WL/WAL point
of view.

The macroscopic spatial separation of different phases
guarantees that the WL occurs in them independently, justi-
fying our approach. If a typical scale of the inhomogeneities
is comparable to or smaller than the phase-breaking length
lϕ , the WL in different parts of the inhomogeneous system
cannot be considered as independent, since the charge carrier
passes through the regions with different mobilities and elec-
tron densities during the dephasing time. This effect results in
the diminishing of the corrections to the Hall coefficient due to
the system inhomogeneity and becomes especially important
when T → 0. However, a further microscopic study of the
WL is necessary since dephasing itself depends on the system
inhomogeneity [28].

Another reason why there are not many reported manifesta-
tions of the magnetic field dependence of the Hall coefficient
is a so-called “textbook paradigm,” which unequivocally af-
firms that the low-field Hall voltage is linear in B [1]. Common
methods to study the Hall effect in low magnetic fields include
the following: measurements in a fixed field ±B with subse-
quent antisymmetrization of the results; a sample rotation in
a constant magnetic field [29]; low-amplitude AC technique
with subsequent averaging the signal over a small-field range
[30]; and a simple linear extrapolation of Rxy(B) dependence.
It is worth mentioning that the magnetic field dependence of
Rxy(B) is visually indistinguishable from a straight line even
if μ̃ changes by several tens %. As a result, the low-field
Hall-effect nonlinearity was reported in a few experiments
when this effect was looked for intentionally [2–7]. One of
the goals of this paper is to motivate experimentalists to look
for the low magnetic field nonlinearity in the Hall effect.

In Table I we present magnetic field scales and trans-
port characteristics experimentally observed for 2D electron
gas in graphene [31,32], AlGaAs/GaAs/AlGaAs [33], and
GaAs/InGaAs/GaAs [34] quantum wells. The given numbers
indicate that the values of WL-related parameters may vary
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TABLE I. Magnetic field and transport scales of WL from representative experiments [31–34] and theoretical estimates (last column):
Bϕ = h̄/4el2

ϕ is a crossover between low-field parabolic and high-field logarithmic dependencies; lϕ is taken as l
√

τϕ/2τ , where τ−1
ϕ =

(kBT/h̄)(2G0/σ ) ln(σ/2G0) [11]; transport field Btr = h̄/2el2 denotes the transition between the diffusive (B < Btr; logarithmic behavior)
and ballistic (B > Btr; 1/

√
B asymptotic) regimes; 1/μ is the transition between classically weak and strong magnetic fields. The effective

mass m∗ is 0.067m0 for GaAs, and 0.058m0 for In0.2Ga0.8As (m0 is the free-electron mass); for graphene m∗ = pF /vF = h̄
√

2πn/g/vF , where
vF = 106 m/s. g denotes valley degeneracy (g = 1 for GaAs and InGaAs and g = 2 for graphene).

Graphene [31] Graphene [32] GaAs [33] In0.2Ga0.8As [34]
n = 3 × 1012 cm−2 n = 2.5 × 1011 cm−2 n = 7.15 × 1011 cm−2 n = 1.1 × 1012 cm−2 Theoretical

Parameter μ = 0.395 m2/V s μ = 1.34 m2/V s μ = 0.49 m2/V s μ = 0.094 m2/V s estimate

σ (e2/2π h̄) 49.1 13.9 14.6 4.3
2π h̄

e
nμ

Bϕ (T) at T = 2 K ≈8 × 10−5 ≈2.1 × 10−4 ≈8.1 × 10−4 ≈3.4 × 10−3 ∼ ge

4π 2 h̄3

m∗

n2μ2
ln (

π h̄nμ

e
)kBT

lϕ (μm) at T = 2 K ≈1.41 ≈0.89 ≈0.45 ≈0.22 ∼π h̄2

e
nμ

√
1

gm∗ ln π h̄nμ

e

1√
kBT

Btr (T) 0.05 0.05 0.07 1.3
h̄

2el2
= ge

4π h̄

1

nμ2

l (nm) 80 78 69 16
h̄

e
μ

√
2πn

g

1/μ (T) 2.5 0.7 2 10.6 1/μ

lϕ/l at T = 2 K ≈17.7 ≈11.4 ≈6.6 ≈13.4 ∼h̄

√
πn

2m∗ ln π h̄nμ

e

1√
kBT

in a wide range. Table I also contains the theoretical formu-
las for the experimentally observed quantities. As seen from
these estimates, these observables may be tuned strongly by
disorder, charge carrier density, and temperature.

Note that the above considerations are not applicable to the
Nernst effect—a “thermoelectric brother” of the Hall effect—
since the correction due to WL to the Nernst coefficient is
significant even in homogeneous systems [35].

The above discussed mechanism of the Hall-effect nonlin-
earity is simple and robust against the system-specific details.
We believe that it should be widely observed. The main idea
is equally applicable to WL and WAL in 2D and 3D systems.
In general, carrier density fluctuations exist in any system. In
order to observe the Hall resistance nonlinearity due to intrin-
sic disorder, two conditions should be fulfilled: (i) The spatial
scale of the inhomogeneity should be larger than the phase-
breaking length, and (ii) the phase-breaking length should be
larger than the electron mean free path.

It is worth mentioning that the Hall-effect nonlinearity in
inhomogeneous systems is not limited by WL/WAL and may
arise due to any magnetoresistance mechanism that never-
theless preserves linear Rxy(B) dependence in homogeneous
systems.

The discussed effects could be observed in systems with
a tendency to form a spatially inhomogeneous state [36–38],
or structurally nonuniform systems, e.g., such as a mixture
of single-layer and bilayer graphene, which is naturally ob-
tained in the chemical vapor deposition growth process [39].
A promising idea is to prepare a tunable 2D inhomogeneous
system using independent gate electrodes controlling differ-
ent parts of the 2D electron gas [40,41]. Tunability of the
system components may strongly enhance the effects under

discussion. In particular, one can prepare the components with
the carriers having different signs of charge (electron-hole
mixture). In so doing, according Eqs. (3) and (4), one can turn
to a sign-alternating Hall effect, and in particular to the case
in which a global current redistribution occurs [42].

We believe that the proposed mechanism might be relevant
to explain some observations of low-field Hall-effect nonlin-
earity. Indeed, in Ref. [3], this nonlinearity was observed in
disordered amorphous films of indium oxide, where domains
with different properties may form. References [2,4] are de-
voted to diluted semiconductors close to the metal-insulator
transition, where the manifestation of the WL is especially
strong and fluctuations of the dopant concentrations are pos-
sible. The sign of the effect in Refs. [2–4] agrees with what
we expect from Fig. 2. At a LaAlO3/SrTiO3 interface [see
Fig. 2(b) of Ref. [6]], a low-field Hall-effect nonlinearity is
also observed. The sign of this nonlinearity is opposite to
that plotted in Fig. 2. However, our explanation may remain
reasonable since in this material WAL was observed instead
of WL [see Fig. 2(c) of Ref. [6]].

In this paper we argue that in inhomogeneous systems,
weak localization or antilocalization leads to low-field non-
linear magnetic field corrections to Hall resistance. This effect
arises due to a transport current redistribution between com-
ponents of an inhomogeneous system with the change of the
magnetic field. The effect is measurable and can be observed
in two- and three-dimensional systems.

The authors are thankful to V. Yu. Kachorovskii and L. E.
Golub for discussions. The work is supported by RFBR Grant
No. 18-32-20202. A.Yu.K. was supported by Basic research
program of HSE.
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FIG. 3. Schematic image of the transition of theoretical model
according to mean-field theory.

APPENDIX A: MEAN-FIELD CALCULATIONS
FOR A REGULAR TWO-COMPONENT MEDIA

An approximate analytical expression for the conductivity
of a regular array of equivalent circular islands embedded into
a conductive matrix can be obtained analytically by means of
the effective media approach [16]. We consider an infinite 2D
array of conductive circular islands with radius R and period d
(see Fig. 3). The input parameters are magnetic field directed
perpendicular to the plane of the sample and the conductivity
tensors of the islands σ̂1 and the residual 2D electron gas with
σ̂2. The conductivity tensors have a structure given by Eq. (4).
We set a boundary condition that a DC transport current with
a given average density j0 flows through the sample. Our
goal is to calculate an effective conductivity tensor of the
inhomogeneous system σ̂ e. From the symmetry consideration
this tensor must have the following form,

σ̂ e =
(

σ e
xx σ e

xy
−σ e

xy σ e
xx

)
. (A1)

We have two independent quantities σ e
xx and σ e

xy. These val-
ues have to be expressed through σ (n)

xx , σ (n)
xy of islands (n = 1)

and the remaining 2D gas (n = 2), and geometrical factor
p = πR2/d2 that denotes the fraction of the system that is
occupied by the islands.

We treat the periodical system within the Wigner-Sietz
approach, that is, we replace the square unit cell by a circular
one (see the left panel in Fig. 3). This circular unit cell consists
of island with radius R and conductivity σ̂1 in the center and
the 2D electron gas shell with radius R1 = R/

√
p and conduc-

tivity σ̂2. Following the mean-field approach [15,16], we put
the system unit cell to the effective media with conductivity
tensor σ̂ e. Then, we solve the corresponding electromagnetic
problem, setting the condition that the current density j far
from the center of the circular cell is equal to j0. Finally, we
use the self-consistency condition that the average transport
current density in the unit cell is equal to j0.

In each part of our inhomogeneous system the current
conservation condition div j = 0 and Ohm’s law j = σ̂E are
fulfilled. We introduce the electrical potential φ, where E =
−∇φ. The potential φ evidently obeys the Laplace’s equation

�φ = 0, (A2)

where the operator � is taken in 2D with the coordinates
x and y. The solutions φ in different media are matched on
the borders using the conditions of continuity of the electrical

potential and radial component of the current jr . The solutions
must satisfy the boundary conditions jx = j0 and jy = 0 at
x, y → ∞ or in terms of the electrical potential

σ e
xx

∂φ

∂x
+ σ e

xy

∂φ

∂y
=− j0, σ e

xx

∂φ

∂y
− σ e

xy

∂φ

∂x
=0, x, y → ∞.

(A3)

In the polar coordinates (r, θ ) the solution to Eqs. (A2) and
(A3) reads

φ = r(a cos θ + b sin θ ), 0 < r < R,

φ =
(

d1r + d2

r

)
cos θ +

(
c1r + c2

r

)
sin θ, R < r < R1,

φ = f cos θ + g sin θ

r
− j0r(σ e

xx cos θ + σ e
xy sin θ )

σ e2
xx + σ e2

xy

, r > R1,

(A4)

where the eight constants a, b, di, ci, f , and g are determined
from eight continuity conditions of φ and jr = jx cos θ +
jy sin θ at the boundaries r = R and r = R1. To express σ̂ e

through σ̂ 1,2 and p, we should add the self-consistency condi-
tions

σ̂ e · E =
(

j0
0

)
, (A5)

where E is averaged over a unit cell electric field,

πR2
1E =

∫ R

0
rdr

∫ 2π

0
dθE(r) +

∫ R/
√

p

R
rdr

∫ 2π

0
dθE(r).

(A6)

After rather cumbersome but straightforward algebra we de-
rive

σ e
xx

σ
(2)
xx

=
{

(1 − p)(1 + α2) + βp(1 − αγ )

(1 − p)2(1 + α2) + βp[2(1 − p) + βp]

−γ σ (2)
xy

2σ
(2)
xx

− 1

2

}
2

1 + γ 2
,

σ e
xy = − γ σ e

xx,

γ = −
{

σ (2)
xy

2σ
(2)
xx

+ βpα

(1 − p)2(1 + α2) + βp[2(1 − p) + βp]

}

×
{

(1 − p)(1 + α2) + βp

(1 − p)2(1 + α2) + βp[2(1 − p) + βp]
− 1

2

}−1

(A7)

where

σ (i)
xx = niμ̃ie

1 + (μ̃iB)2
, σ (i)

xy = niμ̃
2
i Be

1 + (μ̃iB)2
,

α = σ (1)
xy − σ (2)

xy

σ
(1)
xx + σ

(2)
xx

, β = 2σ (2)
xx

σ
(1)
xx + σ

(2)
xx

. (A8)

In the low-field limit, μ̃1B, μ̃2B � 1, we can neglect the
quadratic in B terms, and obtain the Hall resistance in the
low-temperature and low-field limit Rxy = −γ /σ e

xx, where Rxy

obeys Eq. (6).
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APPENDIX B: MEAN-FIELD CALCULATIONS FOR A RANDOM TWO-COMPONENT MEDIA

We consider an isotropic random two-component mixture of phases with different conductivity tensors σ̂ (1) and σ̂ (2). We
approximate the inclusions of different phases by rings with different radii R. Following the mean-field approach [15,16], we
consider the inclusion with a radius R with σ̂ (i) (where i = 1, 2) placed in the matrix with the effective conductivity σ̂ e. We solve
the corresponding electric problem, and then we average the electric field over the sample volume and obtain the self-consistency
conditions, similar to that performed in Appendix A. Note that the present calculations can be easily generalized on the case of
several components with different conductivities.

The solution for the electric potential φ for each phase is obtained similar to Appendix A. This solution corresponds to a
simple case R = R1. In so doing, we get

ϕ = r(ai cos θ + bi sin θ ), r < R,

ϕ = fi cos θ + gi sin θ

r
− j0r

[
σ e

xx cos θ + σ e
xy sin θ

]
σ e2

xx + σ e2
xy

, r > R. (B1)

The constants ai, bi, fi, and gi are obtained from the matching ϕ and jr at r = R. The self-consistency condition remains the
same, Eq. (A5), while for the average electric field now we have

πR2Ē = p
∫ R

0
rdr

∫ 2π

0
dθE1(r) + (1 − p)

∫ R

0
rdr

∫ 2π

0
dθE2(r), (B2)

where Ei is the electric field in the phase with conductivity tensor σ̂i.
After rather cumbersome but straightforward algebra, we derive the equation system for the components of the effective

conductivity,

p
(
σ (1)

xx + σ e
xx

)
(
σ

(1)
xx + σ e

xx

)2 + (
σ

(1)
xy − σ e

xy

)2 + (1 − p)
(
σ (2)

xx + σ e
xx

)
(
σ

(2)
xx + σ e

xx

)2 + (
σ

(2)
xy − σ e

xy

)2 = 1

2σ e
xx

, (B3)

p
(
σ (1)

xy − σ e
xy

)
(
σ

(1)
xx + σ e

xx

)2 + (
σ

(1)
xy − σ e

xy

)2 + (1 − p)
(
σ (2)

xy − σ e
xy

)
(
σ

(2)
xx + σ e

xx

)2 + (
σ

(2)
xy − σ e

xy

)2 = 0. (B4)

In the limit of low magnetic field, we can neglect the terms with (σ (i)
xy )

2
, which are quadratic in B. In this case we have

Rxy = σ e
xy/(σ e

xx )
2
. The first of Eq. (B3) reduces to a quadratic one. We solve it and obtain

σ e
xx = (0.5 − p)

(
σ (2)

xx − σ (1)
xx

) +
√

(0.5 − p)2
(
σ

(2)
xx − σ

(1)
xx

)2 + σ
(1)
xx σ

(2)
xx ,

σ e
xy = pσ (1)

xy

(
σ (2)

xx + σ e
xx

)2 + (1 − p)σ (2)
xy

(
σ (1)

xx + σ e
xx

)2

p
(
σ

(2)
xx + σ e

xx

)2 + (1 − p)
(
σ

(1)
xx + σ e

xx

)2 .
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