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Third-order photon cross-correlations in resonance fluorescence
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We investigated third-order correlations between photons from a single quantum dot’s resonance fluorescence
in the strong excitation regime originating from opposite sidebands of the power spectrum. The three-time
correlation measurements for photons filtered using three independent Fabry-Perot etalons resulted in correlation
maps with “antibunching” features as a consequence of correlations originating from the same sideband, and
“bunching ridges” due to opposite sideband correlated photons.
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I. INTRODUCTION

The ability to control the output of a light emitter, such as a
single-photon source, is a key component in the development
of quantum optical technologies [1]. With the discovery of
positively correlated photons—photons arriving together in
“bunches” at the detector—by Hanbury-Brown and Twiss in
1956 [2], photon correlations have become the main focus of
quantum optics in the pursuit of an ever-growing range of
quantum applications, such as quantum cryptography [3–6],
quantum metrology [7–10], ghost imaging [11–13], and quan-
tum teleportation [14–17].

For a broad range of quantum processes, including those
involving multiparticle interactions [18], photon correlations
have been a powerful investigative tool thanks to the increas-
ing performance of detection systems [19]. The correlations
between the detection time of subsequently emitted photons
serve as the primary tool for characterizing the type of radi-
ation emitted through light-matter interactions at the few or
single quantum level. For instance, the first-order correlation
function, g(1)(t1), can be readily obtained interferometrically
and its Fourier transform provides the spectral line shape of
emission of the light source. Although a g(1)(t1) measurement
provides invaluable information about the light and the mech-
anism involving its generation, alone it reveals little about the
source itself. For example, the g(1)(t1) spectral line shape from
light originating from an ensemble of noninteracting radiating
atoms is identical to that of a light source consisting of a single
radiating atom (single-photon source). To distinguish the two,
a second-order photon correlation measurement is required.

Under moderate photon flux, typical of continuous-wave
experiments, the second-order correlation function, g(2)(τ ), is
proportional to the histogram of the difference between the
photon arrival times of two detection channels, τ = t2 − t1.
For a classical coherent light source (such as a laser) photons
arrive at the detectors randomly with no mutual correlations
and exhibit Poissonian statistics with g(2)(τ ) ≈ 1. Photons
originating from an incoherent light source, e.g., a black body,
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have the tendency to arrive in bunches at the detectors and
are characterized by a peak within a short time-delay interval
such that g(2)(0) > 1. On the other hand, a typical quantum
system—two-level systems such as a single radiating atom
or quantum dot—uniquely exhibits a dip due to photon anti-
bunching, i.e., g(2)(0) < 1, meaning that photons never arrive
at the same time at the detectors. g(2)(τ ) has been used ex-
tensively in the past decades to characterize a variety of light
sources [20–25].

Correlation measurements beyond the second order have
gained increased interest since early work using a streak cam-
era revealed strong photon bunching statistics in third-order
correlation measurements of microcavity laser light [26,27].
It was shown that the third-order correlation function,
g(3)(t1, t2, t3), provides more refined information about non-
classical light sources such as multiphoton differentiation [28]
and the ability to analyze components [29]. Most recently,
the nonclassical character of light emitted by a strongly cou-
pled quantum dot–cavity system has been demonstrated up to
fourth order [30]. However, while photon correlations have
largely been scrutinized for their temporal character alone,
other aspects, such as photon “indistinguishability,” are also
tied to spectral properties of the light.

In the pursuit of quantum sources capable of emitting a
bundle of N photons [31], there have been fascinating de-
velopments in the understanding of photon statistics with
the generalization of frequency-resolved photon correlations
which introduces the frequency aspect into the theory of pho-
ton correlations [32–34]. The N-photon spectrum is built on
the notion of a time-dependent physical spectrum proposed
by Eberly and Wódkiewicz [35], and of time-dependent cor-
relation functions studied extensively by Knöll et al. [36]. The
“N-photon spectrum,” g(N )

�1,...,�N
(t1, ω1; . . . ; tN , ωN ), is pro-

portional to the joint probability of detecting a photon at
time t1 filtered at frequency ω1 with a detector resolution
(bandwidth) �1, . . . , and a photon at time tN filtered at
frequency ωN with a bandwidth �N . An interesting aspect
of g(N )

�1,...,�N
(t1, ω1; . . . ; tN , ωN ) is that it reveals information

about pathways underlying the generation of light in a given
source [23]. Although the computation of such a function
is challenging even at the second order [37], the pioneering
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theoretical work of Del Valle et al. has introduced a
method that allows one to compute this quantity with-
out the approximations performed before, making calcula-
tions manageable even at high orders [38]. Recently, we
provided validation of this method with experimental re-
sults of the frequency-resolved three-photon autocorrelation
function g(3)

� f
(τ1, τ2, ω f ) [39] for the delays τ1 = t2 − t1

and τ2 = t3 − t1.
Here we explore the third-order cross-correlation

function which makes up the three-photon spectrum
g(3)

�1,�2,�3
(τ1, τ2; ω1, ω2, ω3) of single quantum dot (QD)

resonance fluorescence under strong monochromatic laser
illumination. Contrary to the autocorrelation measurements,
g(3)

�1,�2,�3
(τ1, τ2; ω1, ω2, ω3) involves three filters, each with

independently tunable resonance frequencies.
In Sec. II, we provide background information on reso-

nance fluorescence along with prior results summarized in the
form of a third-order autocorrelation map. After describing
the experimental setup in Sec. III, we report measurements
of three-time cross-correlation maps in Sec. IV and provide
a simple dressed-states interpretation. Finally, in Sec. V, we
discuss notable experimental nonidealities including filter im-
perfections and spectral diffusion.

II. BACKGROUND

A monochromatic laser interacting with a solid-state two-
level system creates an electronic excitation which eventually
relaxes radiatively to a ground state at a rate κ . Resonance
fluorescence occurs when the driving laser’s frequency, ωL,
closely matches the natural frequency of the two-level system,
ω0, which results in the generation of light via spontaneous
emission at the same or very near the frequency of the laser.
Under a sufficiently intense applied field (i.e., when � � κ ,
where � is the Rabi frequency characterizing the strength of
the interaction), the line shape of the resonance fluorescence
spectrum consists of three peaks centered at the laser fre-
quency, ωL, commonly known as the “Mollow triplet” [40],
where the side peaks are approximately separated from the
central peak by �. The origin of these peaks can be under-
stood as a cascade down a ladder of dressed states, i.e., the
eigenstates of the coupled light-matter Hamiltonian [41]. This
power spectrum continues to be researched today, even in
the semiclassical treatment [42], for its fascinating properties
which may benefit emerging quantum information science ap-
plications [43]. Resonance fluorescence in the Mollow triplet
regime serves as a unique platform for testing novel quantum
optics concepts which have been extensively documented for
isolated atoms [44], molecules [45], quantum dots [46–50],
and Josephson junctions [51]. One such concept is the gener-
alization of the ordinary spectrum to the N-photon spectrum.

In our previous work in Ref. [39], we reported the results of
third-order autocorrelation measurements as shown in Fig 1.
Experimentally, g(1)

� f
(ω f ) can be measured by scanning the

filter frequency and recording the count rates of one of the
detectors. Figure 1(a) shows the filter configuration of each
detection channel used to build the three-photon autocorrela-
tion map in Fig. 1(b).

The correlation map in Fig. 1(b) was constructed by build-
ing a histogram of the time delays between the time tags of
photons detected in channels 1 (t2) and 2 (t3) with respect to

FIG. 1. (a) Filter configuration used to create the three-photon
correlation map in (b) for time delays τ1 = t2 − t1 and τ2 = t3 − t1

where (ω f − ωL )/2π = �/2π ≈ 1.88 GHz with a fixed filter band-
width � f /2π = 0.33 GHz.

those detected in channel 0 (t1), that is, τ1 = t2 − t1 and τ2 =
t3 − t1 within a 1 ns × 1 ns wide time bin. Figure 1(b) shows
the three-photon autocorrelation map, g(3)

� f
(τ1, τ2, ω f ), for

photons originating from one of the Mollow triplet sidebands,
(ω f − ωL ) = �, where photon antibunching is observed. The
third-order correlation map reveals strong nonclassical coin-
cidences at τ1 = τ2 = 0 as well as two-photon antibunching
troughs when only two out of three photons arrived at the
detectors at the same time, that is, whenever τ1 = 0 (verti-
cal), when τ2 = 0 (horizontal), and τ1 = τ2 (diagonal). The
objective of this work is to expand this investigation to include
cross-correlation measurements for photons originating from
different Mollow triplet spectral windows.

III. EXPERIMENTAL SETUP

The N-photon correlations can be measured via a straight-
forward extension of a Hanbury-Brown and Twiss type
measurement, wherein light from a source is split into N
channels each equipped with a spectral filter and photon
counting module. Here we probed molecular-beam-epitaxy-
grown InAs QDs held in a cryostat (at base temperature of
4 K and strongly interacting with a resonant wave-guided
monochromatic laser beam.

Our setup, depicted in Fig. 2, is optimized to minimize
unwanted background laser scattering by using an orthog-
onal excitation/detection geometry where QDs were grown
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FIG. 2. Experimental setup: the light near-resonantly scattered by a strongly driven QD was collected and split three ways, with each
path equipped with a spectral filter and photon counting module. Time-tagging of photon arrival times was performed on each channel
independently.

between two distributed Bragg reflectors of moderate reflec-
tivity [46]. The QD scattered light was split into three beams
using two nonpolarizing beam splitters. Each beam passed
through a thick solid Fabry-Perot etalon (reflectively coated
silica cuboid), each with a free spectral range of 10 GHz.
Each etalons’ resonance frequency, ω f , was tuned indepen-
dently by adjusting the cuboid’s temperature to change the
index of refraction of the etalon. For optimal heat distribution,
the etalons were placed between two thermoelectric Peltier
coolers [52] connected to temperature controllers (Thorlabs
TED200C) managed remotely using a LABVIEW program.
The bandwidth of each filter was fixed at �1/2π = 500MHz,
�2/2π = 750MHz, and �3/2π = 670MHz by adjusting the
incidence angle of the light entering the etalon.

After traversing the filters, the QD scattered light was de-
tected by single-photon counting modules (Excelitas SPCM-
AQRH-14). Tagging of photon arrival times was performed
for each detection channel independently using time-tagging
electronics (PicoQuant PicoHarp 300) at an overall detector-
limited resolution of about 400 ps. As a replacement for a
more expensive multichannel system, time-tagging for three
channels was performed with the help of a router (PicoQuant
PHR 800), where a 100 ns delay in electrical wiring was
introduced to avoid the router’s dead-time window. This delay
was later removed during postprocessing.

IV. CROSS-CORRELATION MEASUREMENTS

As with the autocorrelation measurements in Fig. 1, cross-
correlation maps were recorded by creating a histogram of
photon arrival times from each channel, only this time for a
set of configurations from filter frequencies (ω1, ω2, ω3). The
three-photon cross-correlation maps are shown at the bottom
of Fig. 3 where the color code is chosen so that the anti-
bunching statistics (g(3) < 1) are shown in blue, the classical
correlations (g(3) ≈ 1) in white, and the bunching statistics
(g(3) > 1) are indicated in red.

Experimentally, we obtained g(3)
�1�2�3

(τ1, τ2; ω1, ω2, ω3) by
measuring the total coincidences at τ1 and τ2 (i.e., count
of simultaneous detections) and normalizing by the total of

accidentals in the same time bin (i.e., the coincidences
between a time-delay interval within which detections are un-
correlated; for example, the average of the total coincidences
in a region in which τ1 = −τ2 away from τ1 = τ2 = 0):

g(3)
�1,�2,�3

(τ1, τ2; ω1, ω2, ω3) = Coincidences at τ1, τ2

Accidentals
.

The spectral line shapes above the correlation maps in
Fig. 3 show the filter frequency configuration used for each
correlation map relative to the power spectrum, wherein the
resonance frequency of one filter is set to match one of the
sidebands of the Mollow triplet while the other two filters are
set to match the opposite sideband.

In contrast to the autocorrelation map in Fig. 1,
only the antibunching troughs from the two autocor-
related filters remain, that is, the diagonal τ1 = τ2 in
Fig. 3(a), the horizontal at τ2 = 0 in Fig. 3(b), and
the vertical at τ1 = 0 in Fig. 3(c). Meanwhile, the re-
maining troughs have now become coincidence ridges
due to two-photon bunching from the cross-correlated pho-
tons. Furthermore it can be seen that the nonclassical character
at τ1 = τ2 = 0 in the autocorrelation map (Fig. 1), has turned
into Poissonian statistics due to the superposition of second-
order autocorrelated and second-order cross-correlated pho-
tons. Table I provides a quantitative comparison of the third
corresponding to the central feature from each correlation
map and second-order correlations between filters at zero time
delay.

The origin of the features in the cross-correlation maps
can be best visualized using the dressed states formalism,
wherein the cascade down the ladder of superposition states
that result from the diagonalization of the coupled QD-laser
Hamiltonian can be used to describe the resonance fluores-
cence process [41]. In the dressed-states picture shown in
Fig. 4, each two-state manifold is separated by the driving
laser frequency, ωL, while the upper |+〉 and lower |−〉 states
in the manifold are separated approximately by the Rabi fre-
quency, �. The resonance fluorescence process originating
from the “long” sideband, ωL + �, can be viewed as a transi-
tion from the upper state of a top manifold to the lower state
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FIG. 3. Experimental three-photon correlation maps as a function of time delays τ1 = t2 − t1 and τ2 = t3 − t1 with fixed Rabi frequency
of �/2π ≈ 1.88 GHz for different filtering frequency configurations with filter bandwidths of �1/2π = 0.5 GHz, �2/2π = 0.75 GHz, and
�3/2π = 0.67 GHz. Numerals in (a) show areas with different permutations of a fixed order of photon detection events (e.g., quadrant I
includes detection events for which t2 < t1 < t3).

of a bottom manifold, |+〉 −→ |−〉. Meanwhile the photons
originating from the “short” sideband, ωL − �, occur due to
the transitions from the lower state of a top manifold to the
upper state of a bottom manifold, |−〉 −→ |+〉. The two- and
three-photon emission can then be visualized as a cascade
down this ladder as illustrated in Fig. 4.

The two-photon cascade from cross-correlated transitions
accounts for the bunching that occurs due to connected
transitions between states. On the other hand, disconnected
pathways, and thus photon antibunching, are associated with
the two-photon cascade from autocorrelated transitions, i.e.,
second-order events involving photons from the same side-
band. The three-photon correlations become a superposition
of all three possible cascades composed of a combination of
disconnected and connected pathways.

V. DISCUSSION

To better understand the experimental maps presented here,
we may divide them into six regions corresponding to a fixed
order of photon detection events as illustrated in Fig. 3(a). For
example, the quadrant I (at the upper-left corner) corresponds
to a photon detection order t2 < t1 < t3, meaning that a photon
from channel 2 is detected first, followed by a photon detected
in channel 1, and the last photon detected will result from
channel 3. Meanwhile, the quadrant II (at the lower-right
corner) corresponds to a channel detection order for which
t3 < t1 < t2, meaning a photon in channel 3 is detected first,
followed by a photon in channel 1, and then by a photon
from channel 2. The remaining octants at the top-right and
bottom-left corners correspond to remaining orders of channel

TABLE I. Raw data for each correlation map showing the total recording time, the total third-order coincidences at τ1 = τ2 = 0, the total
of accidentals obtained from the average coincidences around an antidiagonal away from zero for a 1 ns × 1 ns time bin, and the normalized
third- and second-order correlations at τ1 = τ2 = 0.

Exposure Third-order Third-order
Figure time (s) coincidences accidentals g(3)(0; ω1, ω2, ω3) g(2)(0; ω1, ω2) g(2)(0; ω1, ω3) g(2)(0; ω2, ω3)

1 190 083 10 77.65 0.13±0.04 0.50 0.50 0.49
3(a) 526 193 84 73.85 1.14±0.08 1.46 1.51 0.51
3(b) 562 604 86 75.30 1.14±0.14 1.51 0.48 1.48
3(c) 354 181 58 47.50 1.22±0.13 0.48 1.47 1.60
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FIG. 4. Dressed-states picture illustrating the origin of the fea-
tures in Fig. 3. The bunching statistics due to connected emission
pathways from second-order cross-correlated photons correspond to
the vertical (τ1 = 0) and horizontal (τ2 = 0) features in Fig. 3(a),
the diagonal (τ1 = τ2) and vertical in Fig. 3(b), and the diagonal and
horizontal in Fig. 3(c). On the other hand, the antibunching statis-
tics due to disconnected emission pathways from the second-order
autocorrelated photons correspond to the diagonal in Fig. 3(a), the
horizontal in Fig. 3(b), and the vertical in Fig. 3(c). Meanwhile, the
superposition of the three-photon cascades corresponds to the central
feature of all correlation maps in Fig. 3.

detection events t1 < t2 < t3 for octant III, t1 < t3 < t2 for
octant IV, t3 < t2 < t1 for octant V, and t2 < t3 < t1 for octant
VI. This order is the same for all correlation maps shown here.

The locations of interest, however, are at the boundaries
between each region, at which two out of three photons are
detected simultaneously, or right at the center of the map at
τ1 = τ2 = 0, at which all three photons are detected at the
same time. At these boundaries, the presence of bunching or
antibunching depends on whether it corresponds to emission
from alternating sidebands, or if the emission process involves
consecutive emission from the same sideband. The central
features at τ1 = τ2 = 0 of the experimental maps constitute
a small subset of the data required to reconstruct the complete
three-photon spectrum of single QD resonance fluorescence.
Specifically, by repeating such measurements for a matrix of
frequency triplets (ω1, ω2, ω3) and logging the normalized
coincidence rate, an entire g(3)

�1,�2,�3
(0, 0; ω1, ω2, ω3) coinci-

dence “cube” would be obtained. It is worth mentioning these
measurements are not specific to quantum dots, but rather are
a characteristic of the resonance fluorescence of a two-level
system.

In practice, however, many hurdles remain before such a
quantity can be measured. An obvious obstacle is the imprac-
tically long recording times that would be required (Table I).
This limitation could at least in part be remedied by im-
proving the collection and propagation efficiency, as well as
the detector quantum efficiency in our experiments, or by
using more complex approaches, for instance those which
employ photonic nanowires [53], microlenses [54], broadband

enhancement solutions using bullseye structures [55], or in
general make use of the Purcell effect of cavity quantum
electrodynamics [56].

Another complication that may introduce nonidealities is
the stabilization and uniformity of the properties of the spec-
tral filters. For instance, the filter resonance frequencies will
inevitably fluctuate during the measurement as will the filter
bandwidth. In addition, the precise width of each spectral filter
may be difficult to set to an arbitrary independent value, and
to maintain over time. In the measurements presented here,
the filters had slightly different bandwidths, which explains in
part the variations between the three panels. Were it not for
slightly different properties of individual filters the three con-
figurations would be equivalent to those obtained by simply
switching electric cables between detectors and time-tagging
electronics.

Small variations in filter bandwidths are particularly conse-
quential when the filter bandwidth is near the natural linewidth
of the emitter. In fact it was recently shown that, even in
the weak excitation regime, the photon statistics of a filtered
single QD’s resonance fluorescence depend dramatically on
the filter bandwidth [57].

Lastly, the transition frequency of the QD being probed
will fluctuate to some extent. This “spectral diffusion” results
in inhomogeneous broadening, i.e., an averaging over differ-
ent QD resonance frequencies. To examine the consequences
of spectral diffusion under various filter bandwidths, we turn
to theoretical simulations of the power spectrum (the “one-
photon spectrum”) given explicitly by [40,58]

g(1)
� f

(ω f ) = 2Re

{[(
i(ωL − ω f ) + � f

2

)
1 − M

]−1

(2,2)
n∞

+
[(

i(ωL − ω f ) + � f

2

)
1 − M

]−1

(2,4)
α∗

∞

}
, (1)

where 1 is the 4 × 4 identity matrix, and [· · · ](i, j) denotes the
element (i, j) of the resulting matrix. The expression for the
steady-state probability of finding the two-level system in its
excited state n∞, the quantum-mechanical expectation value
of the two-level coherence α∞, and the matrix M capturing the
inputs of the equation of motion for the system’s observables
are given by

n∞ = �2

κ

(
κ + 2γ

4
2 + (κ + 2γ )(κ + 2γ + 2�2/κ )

)
,

α∞ = i�

(
κ + 2γ + 2i


4
2 + (κ + 2γ )(κ + 2γ + 2�2/κ )

)
,

and

M =

⎛
⎜⎜⎜⎜⎝

−κ −i �
2 i �

2 0

−i �
2 − κ

2 − γ + i
 0 i �
2

i �
2 0 − κ

2 − γ

2 − i
 −i �
2

κ i �
2 −i �

2 0

⎞
⎟⎟⎟⎟⎠,

where 
 = ω0 − ωL is the detuning between the QD reso-
nance frequency and the laser frequency. At the temperature of
4 K at which measurements were performed pure dephasing
is known to not play a major role in the spectral broadening of
InAs QD excitonic transitions [58], thus, for simplicity, here
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FIG. 5. Experimental and theoretical Mollow triplet line shape
with Rabi frequency �/2π = 1.88 GHz for filter bandwidths
� f /2π = 0.33 GHz (black) and � f /2π = 0.75 GHz (red). Theoret-
ical traces with (solid) and without (dashed) spectral diffusion (SD)
are based on Eqs. (2) and (1), respectively, with a radiative decay rate
κ/2π = 0.2 GHz, and a pure dephasing rate γ = 0.

we assume no pure dephasing, i.e., γ = 0. Furthermore, we
assume a radiative decay rate κ/2π = 0.2 GHz, consistent
with a typical radiative lifetime of τr = 1/(2πκ ) = 1ns for
InAs QDs [59]. Phonon scattering has been ignored even
though its effect is measurable albeit over a significantly
broader spectral range than the one of interest here [58].
To capture the effects of individual dephasing processes on
the correlation functions would actually require reducing the
detection resolution which in our measurements is dominated
by the 1 ns time bin width.

To account for the fluctuations of the QD resonance fre-
quency, ω0, due to spectral diffusion [60,61], as in Ref. [58],
we assume a Gaussian distribution of the detuning between
the QD resonance frequency and the laser frequency, 
 (cen-
tered at 
μ = 0 with a standard deviation 
σ = 2 GHz), and
integrating Eq. (1) over all possible random detunings:

g̃(1)
� f

(ω f ) ∝
∫

g(1)
� f

(ω f ,
)e−(
−
μ )2/2
2
σ d
. (2)

Figure 5 shows the normalized power spectrum obtained
experimentally by scanning a filter with bandwidth � f /2π =
0.33 GHz, and the theoretical simulations for g̃(1)

� f
(ω f ) us-

ing the same bandwidth as the experimental trace, and for
� f /2π = 0.75 GHz which matches the largest bandwidth

involved in the cross-correlation maps in Fig. 3. The
theoretical power spectrum in the absence of spectral diffu-
sion, obtained directly using Eq. (1), is also included.

From Fig. 5 it is clear that spectral diffusion substantially
impacts the measured correlations. In particular, it leads to a
greater central peak magnitude relative to the sideband mag-
nitude compared to the case of a purely radiatively broadened
two-level system. In that sense spectral diffusion causes an
effectively reduced interaction strength since, during part of
the measurement, the laser is off-resonance with the QD.

In addition, Fig. 5 reveals how a larger filter bandwidth
increases the spectral overlap between the central peak tails
and the sidebands, even more so in the presence of spectral
diffusion. This source of “contamination” may be in principle
avoided by increasing the Rabi frequency, which was not pos-
sible in our current experimental configuration. Altogether,
variations over time in the QD resonance frequency and in
the filter properties reduce the degree of bunching and the
degree of antibunching in the maps of Fig. 3. In principle, such
effects could all be captured by an extension of the theory of
Ref. [38], and a quantitative theory/experiment comparison
could be made, even at third order with independent filter
frequencies.

VI. CONCLUSION

In summary, spectrally filtered third-order photon cross-
correlations were recorded for resonance fluorescence from
an individual semiconductor quantum dot under strong laser
illumination. Previous results reported in Ref. [39] correspond
to only a single point in the third-order spectral correla-
tion space. In this work, we presented considerably more
challenging measurements involving three separate filter con-
figurations, namely, those for which the resonance frequency
of two of the filters matches the lower frequency sideband
of the Mollow triplet, while the remaining filter is set at the
opposite sideband. The resulting correlation maps provide a
stepping-stone towards constructing a complete three-photon
spectrum. Furthermore, the revelation of a rich landscape of
bunching and antibunching features opens the way for poten-
tial new quantum devices capable of producing two-photon
bunching or antibunching on demand. Additionally, our mea-
surements highlight how, in practice, these measurements are
sensitive to filter bandwidths and spectral fluctuations of the
QD resonance frequency over time. Future progress will likely
hinge upon technical filter improvements and operation at
higher Rabi frequency. A complete three-photon spectrum
may be mapped for quantum dot resonance fluorescence, but
also any other light source, so long as photon emission rates
are large enough.
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