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Unique electronic band structure of graphene with its semimetallic features near the charge neutrality point is
sensitive to impurity effects. Using the Lifshitz and Anderson impurity models, we study in detail the disorder
induced spectral phenomena in the electronic band structure of graphene, namely, the formation of resonances,
quasigaps, bound states, impurity subbands, and their overall impact on the electronic band restructuring and
the associated Mott-like metal-insulator transitions. We perform a systematic analytical and numerical study
for realistic impurities, both substitutional and adsorbed, focusing on those effects that arise from the impurity
adatoms locations (top, bridge, and hollow positions), concentration, unequal occupations of the graphene host
sublattices, perturbation strengths, etc. Possible experimental and practical implications are discussed as well.
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I. INTRODUCTION

Graphene is the first two-dimensional crystal possessing
linear dispersion of low energy electronic states. Therefore
they can be described by an effective Dirac equation for 2D
massless fermions. However, in experiments, the long-range
Coulomb scattering [1–4] off charged adatoms, as well as
the short-range scattering off the noncharged impurities can
strongly affect graphene’s transport properties. A represen-
tative example of a short-range impurity is vacancy that is
predicted to cause zero energy resonance states in graphene
[5–8]. Due to the small density of states (DOS) at low en-
ergy, graphene is especially sensitive to such induced resonant
states [9–12]. Another source for these states are various
substitutional impurities [6,13–15] or adsorbates in graphene.
The latter have been studied for specific adatoms by explicit
tight-binding and density-functional theory calculations, see
for example [14,16–25]. It was also figured out from basic
symmetry analysis that the adsorption position of an adatom
plays an important role for the resonance scattering mecha-
nism [26–29]. For example, it was elucidated that the s orbital
of an adatom in a hollow position is effectively decoupled
from the electronic states of graphene [26] so that resonance
scattering of such an orbital is strongly suppressed. Gener-
ally, this sensitivity to impurity location can be related to the
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graphene sublattice structure with no local inversion symme-
try which defines the most notable feature of pure graphene’s
spectrum, its Dirac points.

Our work aims to provide extended, self-contained and
systematic study of spectral properties of graphene in the
presence of impurity disorder and the underlying onset of
the Mott-like metal insulator transitions considering depen-
dencies on impurity concentration, their position type (top,
bridge, hollow), sublattice occupation asymmetry, and so on,
and connect those with some previous theoretical studies
available in the literature. We consider two models; Lifshitz
isotopic model [30] and Anderson hybrid model [31]. As will
be shown, distribution of impurities with respect to the host
sublattices can create an occupational asymmetry. The spec-
tral properties of graphene (resonances, quasigaps, mobility
edges, impurity subgaps, etc.) are very sensitive, besides the
total impurity concentration, also to such partial occupation
asymmetries.

The paper is organized as follows, Sec. II presents a short
introduction into the formulation of the tight-binding model
and Green’s functions formalism. Section III considers the
simpler Lifshitz isotopic model of impurity and demonstrates
certain specific features appearing in such a model even in
the absence of impurity resonances. The resonances in their
general form are further investigated in Sec. IV within the
scope of Anderson’s hybrid model. Section V analyzes their
particular realizations for different types of impurity positions
and sublattice occupations and adjusts the Ioffe-Regel-Mott
criterion for such framework. Finally, a discussion of the ob-
tained results and an overview towards possible applications
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FIG. 1. Graphene lattice structure with t-hopping links along
the nearest-neighbor vectors δ1,2,3 connecting type-1/sublattice-A
(white) and type-2/sublattice-B (gray) carbon sites. Dashed lines
mark the unit cells formed by the elementary translation vectors a1,2.

are given in Sec. VII. Some more technical details of calcu-
lations, such as the restructured spectrum with an account of
higher order corrections in impurity concentration, are pro-
vided in Appendices A and B.

II. MODEL AND GREEN FUNCTIONS

We model the unperturbed graphene in terms of the tight-
binding Hamiltonian:

H0 = t
∑

〈n1,n2〉

(
b†

n1
bn2

+ H.c.
)
, (1)

where the carbon 2pz-atomic level is chosen as the energy
reference. Hoppings, parametrized by the amplitude t , connect
nearest-neighbor graphene sites as symbolically indicated by
〈n1, n2〉. Here and below n1 stands for a site from type 1
sublattice (A sublattice), and n2 for type 2 sublattice (B sub-
lattice), see Fig. 1, in the generic case we use n j symbol. Here
and in what follows we do not consider explicitly the elec-
tron spin degrees of freedom assuming purely spin-diagonal
hoppings so that the onsite energies and all the observable
quantities are understood per single spin projection.

The Hamiltoninan H0 is routinely diagonalized passing
from the direct-space representation, through the local atomic
Fermi operators b(†)

n j
, to the corresponding Bloch band repre-

sentation:

H0 =
∑

k

εk(β†
+,kβ+,k − β

†
−,kβ−,k ). (2)

Here the eigenenergies εk, and the band operators β
(†)
±,k are

labeled by the wave vector k that belongs to the first Brillouin
zone (BZ) spanned by the reciprocal basis vectors b1,2, i.e.,
b j · a j′ = 2πδ j, j′ , see Fig. 2. Also, the sign subscript ± refers
to the conduction and valence bands, respectively. The corre-
sponding energy dispersion laws, ±εk = ±t |γk|, follow from
the hopping factor:

γk =
∑

δ

eik·δ = 2 cos
kx

2
eiky/2

√
3 + e−iky/

√
3, (3)

FIG. 2. Brillouin zone of graphene (shadowed rhombus) with the
corresponding Dirac points K and K′, and the associated reciprocal
lattice vectors b1,2. An effective “half” of the Brillouin zone centered
at K point (dashed circle) with the cutoff momentum qmax hosting the
same number of states as half of the rhombus at K valley.

(in what follows the quasimomenta are measured in units
of the inverse graphene lattice constant a−1 = |a1,2|−1 =
|√3 δ|−1).

The band, and the lattice (local atomic) operators are re-
lated via the Fourier transformation:

bn j = 1√
2N

∑
k

eiφn j ,k (β+,k − (−1) jβ−,k ), (4)

where N represents the number of unit cells, and the hopping
phase reads:

φn j ,k = k · n j − (−1) j

2
arg γk. (5)

Near the Dirac points, K = (4π/3, 0) or K′ =
(2π/3, 2π/

√
3), shown in Fig. 2, the energy dispersion

becomes linear when expressed via relative small differences
q = k − K or q = k − K′:

±εk = ±εq+K(′) ≈ ±
√

3

2
tq ≡ ±εq, (6)

while the hopping phases in those vicinities mainly follow the
azymuthal angle of q: θq = arctan qy/qx, up to some shift and
sign inversion (K and K′ valleys revealing opposite circulari-
ties):

arg γk ≈
{
θq + π, k = q + K,

−θq + 2
3π, k = q + K′.

(7)

This permits us to label the low-energy graphene characteris-
tics by the valley index, and the reduced quasimomentum q
referred to that valley, we reserve the general symbol k for the
quasimomentum measured from the BZ center. The following
considerations are mostly restricted to the low-energy ranges
(if not the exception would be explicitly indicated) and use
the linear dispersion approximation expressed by Eqs. (6)
and (7). From the low-energy point of view, the standard
momentum sum over the whole Brillouin zone is conveniently
approximated by the integral over the equivalent circular areas
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centered at K and K′ valleys:

1

N

∑
k

fk = 1

N

∑
q

( fK+q + fK′+q)

= [setting: fK+q = Fq and fK′+q = Gq]

≈ 1

2π

1

q2
max

∫ 2π

0
dθ

∫ qmax

0
dq q(Fq + Gq), (8)

with the radius qmax = 2
√

π/
√

3 chosen in a way to preserve
the total number of states as in the original rhombic BZ dis-
played in Fig. 2. Then, the linear isotropic approximation of
the graphene energy dispersion law, Eq. (6), can be rewritten
as:

εq ≈ W
q

qmax
, (9)

where the effective graphene bandwidth

W = (
√

3/2)tqmax =
√

π
√

3 t (10)

is somewhat reduced compared to the real bandwidth value 3t .
At sufficiently low temperatures T , electronic dynamics

of a many-body system is conventionally described by the
(advanced) Green’s functions (GF’s) [32], whose Fourier-
transform in the energy domain reads:

〈〈A|B〉〉ε = i

π

∫ 0

−∞
ei(ε−i0)t 〈{A(t ), B(0)}〉dt . (11)

This involves the grand-canonical statistical average:
〈O〉 = Tr [e−(H−μ)/kBT OH (t )]/ Tr [e−(H−μ)/kBT ] of an operator
OH (t ) = eiHt Oe−iHt in the Heisenberg representation. Here
and below {., .} represents the anticommutator and [.,.] the
commutator of two operators. The GF energy argument ε

implicitly includes an infinitesimal negative imaginary part,
as shown explicitly in Eq. (11) for the Fourier exponent.

As known [32,33], GF’s satisfy the equation of motion:

ε〈〈A|B〉〉ε = 〈{A(0), B(0)}〉 + 〈〈[A, H]|B〉〉ε. (12)

For practical reasons, in what follows the energy subindex at
GF’s is either omitted, or enters directly as an argument.

A convenient description of the two-band graphene system,
Eq. (2), is given in terms of 2×2 GF matrices (in conduction
and valence bands indices): Ĝk,k′ = 〈〈ψk |ψ†

k′ 〉〉, based on the
band operators arranged in (column and row) spinors:

ψk =
(

β+,k

β−,k

)
, ψ

†
k = (β†

+,k, β
†
−,k ). (13)

Knowledge of GF’s permits to obtain, in principle, all the
observables of the system. For instance, the density of states
(DOS) is expressed as:

ρ(ε) = 1

π
Im Tr Ĝloc, (14)

via the locator GF matrix:

Ĝloc = 1

N

∑
k

Ĝk, (15)

involving the momentum-diagonal GF matrices Ĝk,k ≡ Ĝk.
Then the Fermi level εF in the electronic spectrum is defined

by the equation: ∫ εF

−∞
ρ(ε)dε = Q, (16)

where Q is the number of charge carriers per unit cell.
In absence of impurities, the exact solution for GF matrices

is: Ĝk,k′ = δk,k′Ĝ(0)
k , where the nonperturbed momentum-

diagonal GF:

Ĝ(0)
k (ε) = ε 1̂ + εk σ̂3

ε2 − ε2
k

(17)

includes the identity 1̂ and the 3rd Pauli matrix σ̂3 acting in the
band space. Then the explicit locator matrix is found with the
help of Eq. (8) and the low energy dispersion given by Eq. (9),
the result is as follows:

Ĝ(0)
loc(ε) ≈ 2

W 2

(−W + ε ln ε
ε−W 0

0 W + ε ln ε
ε+W

)
. (18)

It defines the corresponding DOS per graphene unit cell,
ρ0(ε) = 2π−1Im G(0)(ε), where we denoted

1

2
Tr Ĝ(0)

loc(ε) ≡ G(0)(ε) = − ε

W 2
ln

(
1 − W 2

ε2

)
. (19)

This results in the known linear DOS at low energies:

ρ0(ε) ≈ 2|ε|
W 2

�(W 2 − ε2), (20)

with the Heaviside step function �(x). Then, considering Q =
1 in Eq. (16), the unperturbed Fermi level locates just at the
Dirac point: εF = 0, but it would be displaced under impurity
effects modifying both ρ(ε) and Q.

III. IMPURITY EFFECTS IN LIFSHITZ MODEL

To study the impurity effects in graphene, we build the per-
turbation Hamiltonian in analogy with the well studied models
in the theory of disordered solids. In what follows we consider
two such models: the Lifshitz isotopic model (LM) [34], most
adequate for substitutional impurities, and the Anderson s-d
hybrid model (AM) [31], suitable for interstitial or adatom
impurities.

Let us begin from the simpler LM case where impurities
are supposed to substitute host carbon atoms at random sites
r j ( j stands for type/sublattice), and the impurity Hamiltonian
contains a single perturbation parameter, V , the onsite energy
difference between the impurity and host atomic levels. Such
Hamiltonian is presented in terms of local operators:

HLM = V
∑

r j

b†
r j

br j
, (21)

and a GF treatment of this LM perturbation on graphene
spectrum was recently discussed [35,36] and here we shall
consider it only to compare with the alternative AM situation.
So, rewriting Eq. (21) in terms of ψ-spinors, Eq. (13), it
permits to generalize the ordinary single-band scattering:

HLM = 1

2N

∑
r j ,k,k′

ψ
†
k V̂r j ,k,k′ ψk′ . (22)
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Here the scattering matrices:

V̂r j ,k,k′ = 2V exp[i(φr j ,k − φr j ,k′ )]m̂ j (23)

contain the matrix kernels:

m̂ j = 1
2 [1̂ − (−1) j σ̂1]. (24)

The latter include both the intra-band scattering processes
(unit matrix) and the inter-band ones (Pauli σ̂1 matrix) and
form an idempotent and normalized matrix algebra:

m̂ jm̂ j′ = δ j, j′m̂ j, m̂1 + m̂2 = 1̂, m̂1 − m̂2 = σ̂1. (25)

Under impurity scattering, the most relevant GF is the
momentum-diagonal, Ĝk,k ≡ Ĝk, which gets modified from
Eq. (17) to:

Ĝ−1
k = (

Ĝ(0)
k

)−1 − ̂k, (26)

where the self-energy ̂k is also a matrix in the band space.
It can be generally expressed through the so called group
expansion (GE) [30,37,38], a series in powers of impurity
concentration c (the latter defined as the number of impurities
per host site):

̂k = cT̂k(1 + cB̂k + · · · ). (27)

Here, the T matrix, T̂k, takes into account all multiple scatter-
ings of the kth band state on the same impurity center while
the terms in parentheses next to unity result from all such
scatterings on clusters of two, B̂k, and more impurity centers.
The detailed structure of B̂k is presented in Appendix A,
considering an onset of cluster dominated scattering.

In the simplest case when all the GE terms in Eq. (27)
besides unity can be neglected, the T-matrix approximation,
̂k ≈ cT̂k, dominates. For the system with Hamiltonian H0 +
HLM, there are two partial contributions into the total T-matrix,
each labeled by the index j that specifies the sublattice posi-
tion of an impurity site r j . Those partial T̂j’s are expressed
through the scattering matrices V̂r j ,k,k′ , Eq. (23), via the mul-
tiple scattering series:

T̂j,k ≡ T̂r j ,k = V̂r j ,k,k + 1

2N

∑
k′

V̂r j ,k,k′ Ĝ(0)
k′ V̂r j ,k′,k + · · · .

(28)

Since all the phase factors eiφr j ,k get fully compensated here,
T̂j,k result to be momentum independent, T̂j,k → T (ε)m̂ j ,
with the energy-dependent scalar factor:

T (ε) = V

1 − V G(0)(ε)
. (29)

Moreover, the idempotency of m̂’s, Eq. (25), implies
that the total self-energy is summed up to cT̂ (ε) =
T (ε)(c1m̂1 + c2m̂2), where c j is the partial impurity concen-
tration on the jth sublattice.

As usual in LM, and also in the analogous models [37,38],
the impurity resonance εres is defined by the T (ε) pole; in our
case this resonance condition reads:

V Re G(0)(εres) = 1. (30)

If applying here the explicit result of Eq. (19), it readily
follows that the condition given by Eq. (30) would be only

reached for quite a strong perturbation: |V | � 1.44W ≈ 9 eV
(we use the commonly adopted value of t = 2.6 eV). As
known, even the unitary limit when V → ∞ is commonly
used to model the vacancy in graphene that generates a zero
energy resonance [5,6]. However, the above estimated high
|V | seems unrealistic for substitutional isotopic impurities
and so the possibility they produce low energy resonances
is excluded. Actually, some resonances can appear at higher
energies, beyond the validity of Eqs. (9) and (18). Particu-
larly, near the van Hove logarithmic singularities of the exact
Re G(0)(ε), i.e., at ε = t (the saddle points of |γk|) and at
ε = 3t (maxima of |γk|), but they result in broad resonances
due to substantial Im G(0)(ε) ∼ t−1 at such elevated ener-
gies, as was found for (nonisotopic) B and N substitutes in
graphene [39,40]. Anyhow, for moderate Lifshitz impurities,
|V | � 9 eV, the T-matrix denominator in Eq. (29) at low en-
ergies can be approximated by unity (neglecting also its small
imaginary part), and consequently one recovers the Born ap-
proximation result:

̂k ≈ cT̂ ≈ 2V (c1m̂1 + c2m̂2)

= V [(c1 + c2)1̂ + (c1 − c2)σ̂1]. (31)

Notably, even in this simplest Born limit, the resulting spec-
trum yet strongly depends on the partial impurity occupations
of two graphene sublattices. Defining the total impurity con-
centration c = c1 + c2, and the sublattice impurity occupation
asymmetry �c = c1 − c2, the spectral Eq. (26) takes the ex-
plicit form:

Ĝ−1
k (ε) = (ε − cV )1̂ − εqσ̂3 − �cV σ̂1, (32)

and provides the restructured energy dispersion relations (by
the poles of Ĝk):

E±,k ≈ cV ±
√

ε2
q + (�cV )2. (33)

In the most natural case of equal sublattice occupancies,
�c = 0, the interband scattering (the σ̂1 term) cancels out
and the overall impurity effect is a simple mean-field shift of
the energy reference by cV with no other notable changes in
the observable properties. However, if there exists a certain
occupational asymmetry between the two sublattices, �c �= 0,
for instance due to lattice buckling, the spectral Eq. (32) would
retain also a finite off-diagonal term. As a consequence, apart
of the Fermi level shift cV , there appears also a splitting of the
valence and conduction bands quantified by a finite gap value
2�c|V |, see Eq. (33). This would, respectively, modify the
low energy DOS, and the corresponding gappedlike analog of
Eq. (20) reads:

ρ(ε) ≈ 2|ε − cV |
W 2

�[(ε − cV )2 − (�cV )2], (34)

recovering purely linear behavior beyond the gap, unlike
peculiar behaviors near impurity resonances in AM (see in
detail in the next sections). Validity of this simplest Born
approximation picture is also confirmed by the full T-matrix
calculation for DOS at the choice of V = W/2, c = 10−2, and
�c = 6×10−3, displayed in Fig. 3.
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FIG. 3. Linear low energy DOS of pure graphene (dash-dotted
line) and its restructured DOS (solid line) under LM impurities with
onsite disorder strength V = W/2 and concentration c = 10−2 that
presents: (1) the global energy shift by cV and (2) the spectrum
gap of 2�c|V | around the shifted Fermi level (dashed line), due
to the asymmetry of impurity occupation of host sublattices, �c =
6×10−3. The range of filled quasiparticle states is shadowed.

IV. ANDERSON’S IMPURITY MODEL,
A GENERAL DISCUSSION

Anderson model (AM) differs from the Lifshitz one by
considering impurities beyond the host sites, for instance, im-
purity adatoms over the graphene plane. The model introduces
new degrees of freedom into the system by means of impurity
Fermi operators cr. We label them by in-plane projection
vectors r that are not necessarily lattice sites and hence not
bearing the sublattice index. Another specific of AM is the
dynamics of impurity perturbation, which is described by
two independent parameters; the impurity energy level (onsite
energy) ε0, and the hopping (coupling) parameter ω of its
hybridization with carbons at nearest neighbor graphene sites
n j . In terms of local operators, this perturbation Hamiltonian
reads:

HAM =
∑

r

⎡
⎣ε0c†

rcr + ω
∑
〈r,n j 〉

(
b†

n j
cr + H.c.

)⎤⎦. (35)

Also a GF treatment of this perturbation was proposed pre-
viously [41] and here we shall develop it in a more general
context. Thus, expressing again the local atomic operators b†

n j

through the graphene band ψ
†
k spinors, Eq. (13), the above

Hamiltonian is brought to the form:

HAM =
∑

r

[
ε0c†

rcr + ω√
N

∑
k

(ψ†
k uk,r cr + H.c.)

]
, (36)

where the form-factor (column) spinor uk,r reflects the local
symmetry of an impurity at position r and is given as:

uk,r = 1√
2

∑
〈r,n j 〉

eiφn j ,k

(
1

(−1) j−1

)
, (37)

with the hopping phases φn j ,k by Eq. (5).

(i) 

 

(ii)

(iii)

FIG. 4. Different positions of AM impurities (yellow circles)
over a graphene layer: (i) t positions, atop carbon lattice sites of 1 or 2
types, (ii) b positions, over centers of bridges between 1- and 2-type
lattice sites (one of three possible bridges shown), (iii) h position,
over the center of a hexagonal cell.

Now the equation of motion for the momentum-diagonal
GF matrix reads:

Ĝk = Ĝ(0)
k + ω√

N

∑
r

Ĝ(0)
k uk,r 〈〈cr |ψ†

k〉〉, (38)

where the impurity-host GF (forming a row spinor in band
indices), 〈〈cr |ψ†

k〉〉, can be excluded using its own equation of
motion:

〈〈cr |ψ†
k〉〉 = ω

(ε − ε0)
√

N

∑
k′

u†
r,k′ Ĝk′,k, (39)

to give:

Ĝk = Ĝ(0)
k + 1

N

∑
r,k′

Ĝ(0)
k V̂r,k,k′ Ĝk′,k. (40)

Here the effective 2×2 scattering matrix (in the band indices)
for the impurity at r position reads:

V̂r,k,k′ = uk,r

ω2

ε − ε0
u†

k′,r. (41)

The detailed structure of the V̂r,k,k′ matrices follows from the
particular j types of graphene sites n j , neighbors to r, as in
Eq. (37).

Despite the AM scattering matrix, Eq. (41) differs from the
former LM one, Eq. (23), by its explicit energy dependence,
it generates formally the same GE series in powers of c as the
LM result. For a general scattering problem, the momentum
diagonal T matrix with the corresponding uk,r spinor reads:

T̂r,k(ε) = ω2uk,r u†
k,r

ε − ε0 − ω2N−1
∑

k′ u†
k′,r Ĝ(0)

k′ (ε) uk′,r

, (42)

formally the same as for the LM scenario, consult Eqs. (28)
and (29).

The most natural positions discussed in what follows are
those shown in Fig. 4 and categorized as:

(i) top position (t position), an impurity projects just on a
host lattice site n j and such position can be indexed by this j,
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TABLE I. AM tight-binding parameters ε0, ω for some repre-
sentative top impurity adatoms on graphene, including the “gauge”
value ω∗ discriminating between weak, strong, and intermediate
perturbations.

Atom Cu Cu H F
Position t b t t

ε0 (eV) 0.08 0.02 0.16 −2.2
ω (eV) 0.81 0.54 7.5 5.5
ω∗ (eV) 1.99 1.73 2.17 4.35

(ii) bridge position (b position), an impurity projects on
a midpoint r between two carbons belonging to the oppo-
site sublattices. In this case the positions of two hybridizing
carbons are: n1,i = r − δi/2, and n2,i = r + δi/2, where three
nearest-neighbor vectors δi=1,2,3 are displayed in Fig. 1. The
corresponding bridge configurations bδi are related through
±120◦ rotations.

(iii) hollow position (h position), an impurity projects
on a center of hexagonal lattice cell, in this case we have
three nearest neighbor sites n1,i = r + δi, i = 1, 2, 3 from
the sublattice 1, and three such sites n2,i = r − δi from the
sublattice 2.

So, generally, there are two possible types of t position (t j),
three types of b position (bδ), and a single type of h position.
Obviously, two t j types can be occupied either symmetrically
or asymmetrically in j, while such occupations of three bδ

types and of single h type are j independent. A special differ-
ence between them is yet in possible momentum dependence
for the self-energy and T matrix (besides their common ε

dependence). This effect is especially pronounced in the h
case, making it qualitatively different from the t and b cases. It
can be also shown that, due to their different couplings to the
graphene host, the listed three positions will contribute into
the system dynamics in different energy ranges, and therefore
they can be considered independently. Available data suggest
that adsorption in the top position seems to be favorable
for light atoms like hydrogen [20,42], fluorine [43–45], and
copper [22,46,47], the heavier gold atom [47,48], and, for
example, also the light ad-molecule methyl [21].

In the following sections we consider in more detail
each of the above mentioned impurity positions and analyze
reconstructed spectra and localization properties of the cor-
responding eigenstates. This will be illustrated for several
particular examples of impurity adatoms whose known AM
parameters are collected in Table I.

V. ANDERSON’S IMPURITIES AT TOP POSITION

For a t-position impurity located at r j , the form-factor
spinor, Eq. (37), is realized as:

ur j ,k = 1√
2

eiφr j ,k

(
1

(−1) j−1

)
, (43)

and the corresponding effective scattering matrix then reads:

V̂r j ,k,k′ = ω2

ε − ε0
exp[i(φr j ,k − φr j ,k′ )]m̂ j (44)

with the same m̂ j matrices as in the LM case, see Eq. (24).
Defining the energy dependent effective scattering potential:

V (ε) = ω2

ε − ε0
,

the corresponding T matrix in AM takes an analogous form
to the LM case, Eq. (29): T̂r j ,k = Tt (ε)m̂ j , where the scalar T
factor:

Tt (ε) = V (ε)

1 − V (ε)G(0)(ε)
= ω2

ε − ε0 − ω2G(0)(ε)
, (45)

is, like the LM case, momentum and sublattice independent.
The condition for impurity resonances—the real part of T-

matrix denominator becoming zero—leads here to the explicit
equation:

εres

(
1 + ω2

W 2
ln

W 2 − ε2
res

ε2
res

)
= ε0. (46)

Comparing to the LM case, Eq. (30), there are no special re-
strictions on AM perturbation parameters for such resonance
to appear. It is a matter of fact that the hybridization ω between
the adatom and graphene host is responsible for the shifts
of the resonance energy, εres, towards zero, when comparing
with the initial atomic level ε0 (supposing the latter satisfies
ε2

0 < W 2/2). The relative magnitude of this shift depends on
the coupling parameter ω compared to its “gauge” value:

ω∗ = W/

√
ln

(
W 2

/
ε2

0 − 1
)
. (47)

This distinguishes between the three coupling types:
(a) weak, |εres − ε0| � |ε0|, for |ω| � ω∗,
(b) strong, |εres| � |ε0|, for |ω| � ω∗, and
(c) intermediate, |εres − ε0| ∼ |ε0|, for |ω| ∼ ω∗.
Then, from the comparison of ω to ω∗ for the cases in

Table I, Cu adatoms at t- and b-positions can be classified as
weakly coupled, H adatoms at t position as strongly coupled,
and F adatoms at t position as intermediate coupled. In partic-
ular, for weakly coupled impurities, the approximate solution
of Eq. (46) is given within to logarithmic accuracy as:

εres ≈ ε0

1 + (ω/ω∗)2
. (48)

Our next studies consider the band restructuring for sym-
metric and asymmetric sublattice occupancies, and the arise
of mobility edges for t-positioned AM impurities. The starting
point for those discussions is the spectral equation for the in-
verse of momentum-diagonal GF matrix, Ĝ−1

k (ε). In analogy
with the LM, Eq. (32), the T-matrix approximation averaged
in disorder by t-position AM impurities reads here:

Ĝ−1
k (ε) = [ε − cTt (ε)]1̂ − εqσ̂3 − �cTt (ε)σ̂1. (49)

The restructured band spectrum in the presence of impurities
is usually sought as the roots of secular equation [32]:

Det Ĝ−1
k (ε) = 0. (50)

In fact, this is an essential reduction of the underlying
eigenvalue problem for the full, translationally noninvariant
Hamiltonian H0 + HAM with randomly disordered impurities
[30] that intrinsically admit alternation of the bandlike and lo-
calized ranges, the celebrated metal-insulator transitions [49].
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The above secular Eq. (50) with use of Eq. (49) provides just a
disorder averaged approximation where the quasimomentum
k is no more an exact quantum number as it was for the
unperturbed band spectrum, e.g., in Eq. (2).

The common way to solutions of the secular Eq. (50) is
to build an energy vs quasimomentum relation, and we call
it energy-projected solution (EPS). Here, for a given real k,
hybridization of each initial ±εq subband with the impurity
resonance level εres generates up to four complex energy
roots of Eq. (50): ε = Ej,k + i� j,k, j = 1, . . . , 4. Their real
parts Ej,k approximate the restructured dispersion laws (for
the bandlike energy ranges, see also discussion later), while
the imaginary parts do the lifetimes τ j,k ∼ h̄/� j,k of such
quasiparticles. However, a complicated functional form of
Tt (ε), Eq. (45), especially of the locator GF in its denominator,
makes analytical finding of EPS a formidable task. Therefore,
some simplifications are often employed. For example, one
identifies restructured energies Ej,k just with the solutions of
the real part of Eq. (50):

Re
[
Det Ĝ−1

k (ε)
] = 0, (51)

or goes even simpler and moves the real part operation deeper
into the expression. Particularly, from the determinant to the
self-energy matrix:

Re
[
Det Ĝ−1

k

] → Det
[(

Ĝ(0)
k

)−1 − Re ̂k
]

(52)

or even further just to its denominator:

Re ̂k → ω2 ∑
j c jm̂ j

ε − ε0 − ω2Re G(0)(ε)
. (53)

Then, linearizing Re G(0)(ε) in ε around the resonance allows
us to find the restructured energies Ej,k as functions of quasi-
momenta k in a relatively simple and closed form.

However, there is an alternative way to build the bandlike
solutions of Eq. (50) in the so-called inverted form, i.e., look-
ing for functional dependence of quasimomenta in terms of
energy: k(ε). Such (in principle complex) solution we call
the momentum-projected solution (MPS). In the present case,
even keeping the full T-matrix form, the resulting equation
turns to be just an algebraic equation (at most of cubic or-
der) for k(ε) or, more precisely, for q(ε, θ ), where θ stands
for the azimuthal angle of the quasimomentum q = k − K(′)
(measured relative to the Dirac point). In the isotropic case,
Eqs. (6) and (9), one gets the radial component q as a function
of ε only. It is obvious that the presence of T-matrix imaginary
part (relevant for damping effects) makes this q(ε) generally
complex valued.

Thus, for t impurities we obtain the MPS explicitly as:

q(ε) = qmax

W

√
[ε − cTt (ε)]2 − [�cTt (ε)]2, (54)

with the full complex form of Tt (ε) given by Eq. (45). An-
other notable advantage of this solution is in providing a
single-valued q(ε) function, instead of four EPS functions.
Both indicated types of spectral solutions, EPS and MPS, are
employed in the following analyses of different AM impurity
cases.

A. Weakly coupled AM t impurities with symmetric occupancy

Beginning from the symmetric case, c1 = c2 = c/2 and
�c = 0, one has the inverse GF matrix, Eq. (49), purely
diagonal in the sublattice indices, and so the secular equation,
Eq. (51), factorizes:

Re[(ε − εq − cTt (ε))(ε + εq − cTt (ε))] = 0. (55)

The above suggested linearization of Tt (ε) denominator brings
this function to the form:

Tt (ε) ≈ ω̃2

ε − εres − i�(ε)
, (56)

where the renormalized hybridization strength ω̃ and the
damping term �(ε) read:

ω̃2 = ω2εres/ε0, �(ε) = π |ε|(ω̃/W )2. (57)

For weakly coupled AM t impurities, such linearization is
well justified over the whole low-energy range (except for
extremely low values, |ε| � W e−(W/2ω̃)2

, the latter being as
small as ≈0.5 μeV for the Cu t case).

Then, in neglect of damping in Eq. (56), justified for en-
ergies not too close to the resonance, |ε − εres| � �(εres), the
factors in Eq. (55) provide two decoupled quadratic equations
for ε. The resulting EPS’s define the explicit low-energy dis-
persion laws:

E1
3,k

= E1
3,q+K(′) ≡ E1

3,q

=
εres + εq ±

√
(εres − εq)2 + 4cω̃2

2
, (58)

E2
4,k

= E2
4,q+K(′) ≡ E2

4,q

=
εres − εq ±

√
(εres + εq)2 + 4cω̃2

2
. (59)

In the above formulas the subscripts 1, 2 apply to the plus sign,
and 3, 4 do to the minus sign.

The restructured energy spectrum around the K point for
the case of Cu adatoms residing equally on graphene sub-
lattices with concentration c = 0.035 is displayed in Fig. 5.
It illustrates the above mentioned hybridization of two ini-
tial graphene subbands ±εq with the resonance level εres to
produce the energy subbands Ej,q. Those do not overlap and
fill almost completely the initial spectrum range (−W,W ).
With growing c, the restructured energy spectrum displays a
conjunction of two known scenarios that can take place when
a single-band interacts with the impurity level:

(a) Formation of a narrow quasigap [50] near the reso-
nance level εres which separates the branches E1,q and E3,q.
The quasigap exhausts the energy window (assuming ε0 > 0)
between max E3,q ≈ εres and min E1,q, given by:

ε̃res = εres
1 + √

1 + c/c∗

2
, (60)

with c∗ = ε0εres/4ω2 (for Cu t case, c∗ ≈ 2×10−3). Until
c � c∗, the quasigap width grows linearly: ≈εresc/4c∗, then
slowing down to ≈εres(

√
c/c∗ − 1)/2 at c � c∗. Generally,

this results from a strong enough mixing between the inter-
secting εq band and εres level (anticrossing).
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FIG. 5. Restructured band spectrum (in neglect of its damping)
vs reduced quasimomentum for graphene with Cu t impurities at
concentration c = 3.5×10−2 and symmetric sublattice occupation,
Eqs. (58) and (59) (blue and red lines), compared to that for pure
graphene, ±εq (dash-dotted lines). The quasigap between the res-
onance level εres ≈ 69 meV (dashed line) and the bottom of E1,q

subband, ε̃res ≈ 180 meV, gets filled by the impurity subband E2,q

states (see text).

(b) Formation of a narrow impurity subband [37] near the
localized level, the E2,q branch that fills the above indicated
quasigap, and of a detached weakly affected valence band
E4,q. The explanation of that is also very intuitive; the impurity
level lies far from the graphene valence band −εq < 0, and,
due to the weakness of their interaction, both just slightly
modify their dispersions (E2,q staying almost dispersionless
and E4,q almost aligned with the original −εq).

Noteworthy, in the symmetric case (�c = 0), the a-type
quasigap gets completely filled with the states from the b-
type impurity subband, though this filling turns incomplete
for an asymmetric occupancy (�c �= 0). Technically, when
considering the full complex T matrix (either linearized or
exact), analytic derivation of EPS from Eq. (55) may turn
complicated. On the other hand, the MPS, see Eq. (54), is
quite simple and does not require linearization of Tt (ε) or
neglect of its damping.

Within the T-matrix approximation, the momentum-
diagonal GF can be written in terms of the unperturbed GF,
Eq. (17), but with the shifted argument:

Ĝk(ε) = Ĝ(0)
k (ε − cTt (ε)). (61)

This facilitates DOS per unit cell in the presence of AM
impurities, taking also into account their additional degrees
of freedom (by the cr operators) so that the total DOS gets
composed of two parts:

ρ(ε) = ρhost(ε) + ρimp(ε), (62)

in an extension of the simpler LM case.

FIG. 6. Restructured DOS of graphene under Cu impurities as in
Fig. 5, the total value ρ (black line) and its host, ρhost (blue line), and
impurity, ρimp (red line), components, referred to the pure graphene
linear DOS, ρ0 (dashed line). The mobility gaps �mob, �̃mob, and �D

(see below) are shadowed.

The host part, ρhost(ε) = (πN )−1 ∑
k Im Tr Ĝk, is analo-

gous to Eqs. (20) and (34) but with the variable energy shift:

ρhost(ε) = 2

π
Im G(0)(ε − cTt (ε)). (63)

As shown in Fig. 6, this DOS part displays a sharp peak
at εres, and sharp drops towards zero at the quasigap
edge, ε̃res = min E1,k, and at εD = max E4,k ≈ −cω2/ε0,
in consistency with the spectrum dispersion in Fig. 5. The last
two energies can be seen as “split Dirac points:” while the
min of conduction band and the max of valence band in pure
graphene join at the Dirac points, the corresponding min and
max of reconstructed bands in the AM case run off (see also
the discussion below).

The impurity DOS part, counting the adatom degrees of
freedom, reads:

ρimp(ε) = 1

π
Im

1

N

∑
r

〈〈cr |c†
r〉〉 ≈ c

πω2
Im Tt (ε), (64)

and, with use of the approximated T matrix, Eq. (56), it takes
the conventional Lorentzian form:

ρimp(ε) ≈ cεres

πε0

�(ε)

(ε − εres)2 + �2(ε)
. (65)

Comparison of the related contributions to the total ρ(ε) in
Fig. 6 shows that ρimp(ε) (red line) generally dominates inside
the localization ranges �mob, �̃mob, and �D (see discussion
below) while ρhost(ε) dominates outside these ranges.

As already mentioned, the specifics of this band restruc-
turing is the shift of DOS: The zero (Dirac) point moves to
εD = E3,0 = E4,0 ≈ −cω2/ε0. A fully analogous effect was
already met within LM, see the mean-field shift by cV in
Fig. 3. As a word of caution, the value of εD ≈ −cω2/ε0

lies beyond validity of the linearized Eq. (56) and was ob-
tained from the exact T-matrix expression, Eq. (45), however,
for weakly coupled impurities, it only slightly differs from
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−cω2/εres resulting from Eq. (56). This plausibly justifies the
dispersion formulas, Eqs. (58) and (59), for such impurities
over the whole low-energy range.

B. Ioffe-Regel-Mott criterium and mobility gaps

The presented formal picture of the disorder averaged re-
structured spectrum at finite concentration of AM impurities
would be consistent and reliable only if the lifetime τ (Ek ) of
the bandlike states with quasimomentum k and energy Ek is
substantially longer than the intrinsic oscillation period λk/vk
of the associated Bloch-like wave (λk being its wavelength
and vk the group velocity), i.e.,

λk

vk
� τ (Ek ). (66)

This qualitative and phenomenological statement is known as
the Ioffe-Regel-Mott (IRM) criterion [49,51]. In the simplest
case of one parabolic band centered at the � point of BZ, the
IRM criterion for an extended state with quasimomentum k
and energy Ek is commonly written as:

k · ∇k Ek|Ek
� h̄ τ−1(Ek ), (67)

where one identifies λk = 1/|k| and vk = h̄−1∇kEk. If, for
given Ek, the lifetime τ (Ek ) is too short so that IRM crite-
rion breaks down, the related state is no more considered as
wavelike (or extended) but localized. Moreover, accordingly
to Mott [49], if this criterion fails at least for one k on the
isoenergetic Ek = ε surface (line), then all the states at this
energy ε become localized at impurity centers (or impurity
clusters). Such onset of localization emerges within a certain
continuous energy range called the Mott mobility gap [49],
and a threshold between the extended and localized ranges is
called the mobility edge. One can try to estimate this edge
position by passing from � to ∼ in Eq. (67) and by using
the dispersion laws, Eqs. (58) and (59), but taking into ac-
count that the used common definition of group velocity and
wave length becomes imprecise near a Dirac point, leaving
an uncertainty margin for such procedure. This analysis for t
impurities in graphene is described below.

At low enough impurity concentrations, the inverse life-
time is well approximated just by the imaginary part of the
T matrix, h̄τ−1(ε) = c Im Tt (ε), and the latter is given in the
vicinity of εres, for example, by the linearized Eq. (56). That
can be used as the right hand side in the IRM criterion for a
given k state. The low energy states of graphene have quasi-
momenta k located near the K points instead of the � point
and the corresponding Bloch waves are superpositions of a
standing K wave and running q waves, but only the latter de-
fine the relevant wavelength scale for the IRM criterion. Then
the product k · ∇k gets naturally substituted by q · ∇q = q ∂

∂q ,
so that Eq. (67) reduces to:∣∣∣∣q∂Eq

∂q

∣∣∣
Eq

∣∣∣∣ � c Im Tt (Eq) = h̄ τ−1(Eq). (68)

Unfortunately, taking the momentum derivatives of the EPS
dispersion Eq, Eqs. (58) and (59), is quite impractical. How-
ever, employing MPS, q(ε, θ ), and the reciprocal derivative,
∂ε/∂q = (∂q/∂ε)−1, allows us to circumvent that technical
problem and formulate IRM in the equivalent but alternative

way: ∣∣∣∣ Re q(ε, θ )

∂Re q(ε, θ )/∂ε

∣∣∣∣ � h̄ τ−1(ε). (69)

Here the relevant wave number of a Bloch-like wave along
angle θ is represented by Re q(ε, θ ), the real part of respective
MPS, which can admit anisotropy and that does not require
a linearized T matrix. For the considered isotropic t case,
this corresponds to the real part of Eq. (54) that can be used
in Eq. (69). Some more general MPS and the corresponding
mobility edge analyzes will be encountered later.

Let us estimate ranges for IRM to fail; for that we consider
the limiting form of Eq. (69):∣∣∣∣ Re q(ε)

∂Re q(ε)/∂ε

∣∣∣∣ � h̄τ−1(ε). (70)

This limit can be reached either due to decreasing l.h.s. of
Eq. (69) or due to growing its r.h.s, and those two cases have
different physical origins. The first case can take place near
the split Dirac points, ε̃res and εD, where the relevant momenta
tend to zero, q → 0; there the analysis can be simplified by
using a linearized in q MPS (LMPS). The second possibility
occurs near εres where the relevant momenta correspond to
εq � εres (see Fig. 5).

Let us estimate for the second case the critical concentra-
tion c0, where the IRM breaks down. With growing impurity
concentration c, the failure of IRM is firstly expected just at
ε = εres, where the inverse lifetime reaches its maximum:

h̄ τ−1(εres) = c Im Tt (εres) = cW 2

π |εres| . (71)

Here, using the simplest LMPS, namely, the unperturbed MPS
for pure graphene: q(ε) ≈ qmax|ε|/W , the l.h.s. of Eq. (70)
reduces just to |ε|. Then, comparing |ε| at resonance energy
εres with h̄ τ−1(εres), we find that that IRM inequality holds
at ε = εres until the impurity concentration stays below the
critical value:

c � c0 = π

(
εres

W

)2

. (72)

This just corresponds to the condition that the average dis-
tance between neighboring impurities r̄ ∼ ac−1/2 exceeds the
resonance state radius rres ∼ aW/εres, protecting the coher-
ence of quasiparticles with energies near εres (including those
near ε̃res) against random impurity scatterings.

Above this critical concentration, c > c0, the IRM condi-
tion breaks down around εres within a certain finite energy
width �mob, the Mott mobility gap, which gets filled with the
localized levels. Using the same unperturbed LMPS for the
l.h.s. of Eq. (70) and the Lorentzian form of h̄ τ−1(ε) near
εres, similar to Eq. (65), leads to the estimate:

�mob ∼ ω̃2

W

√
c − c0, (73)

though only valid until c − c0 � c0. However, even at c � c0

this development can be still traced analytically. For instance,
the result of Eq. (73) stays valid for the lower edge of �mob,
only formed by the states near εres. But for its upper edge,
the inverse lifetime h̄ τ−1(ε) gets also a growing contribution
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FIG. 7. Variation of mobility gaps (shadowed areas bordered by
dashed lines) and Fermi level εF (solid line) vs concentration c of Cu
adatoms (the same as in Figs. 5 and 6). The mobility gap near εres

onsets at c0 ≈ 4×10−4 and widens until its �mob and �̃mob compo-
nents are split at c1 ≈ 3.1×10−2 by the emerging narrow impurity
band. The Fermi level steeply grows from zero energy to enter �mob

(realizing a metal-insulator transition) just at c = c0 and then stays
close to εres.

from the vicinity of impurity band edge ε̃res and the corre-
sponding term, �̃mob, can be estimated with the proper LMPS,
q(ε) ≈ qmax|ε − ε̃res|/W , used in Eq. (70):

�̃mob ∼ h̄τ−1(ε̃res − �̃mob) ∼ c1/3ω̃4/3ε
1/3
res

W 2/3
. (74)

The latter value exceeds the impurity band width, cω̃2/εres,
formally defined by Eq. (59), making this band unphysical as
far as c � √

c0c∗, where c∗ = (εres/ω̃)2.
With further growth of c, the IRM criterion can be contin-

ued using the complete (nonlinearized) MPS given by Eq. (54)
in Eq. (70). Multiple roots of the resulting equation are readily
found numerically and the corresponding mobility edges in
function of c are shown in Fig. 7, for the same Cu t impurities
as in Figs. 5 and 6. In particular, the critical concentration
value following from Eq. (72) for this case: c0 ≈ 4×10−4, is
well reproduced here. Also this picture shows how a sublin-
ear in c growth of the composite mobility gap �mob + �̃mob

gets eventually surpassed by a faster linear expansion of the
impurity band, E2,q, permitting its central part to emerge
from the localized range at the next critical concentration
c1 ∼ (εres/ω̃)2 � c0. Physically, this means the onset of a bal-
listic conductivity range in the spectrum from the insulating
background.

Finally, a similar consideration holds for the vicin-
ity of shifted Dirac point εD, using the LMPS q(ε) ≈
qmax|ε − εD|/W in Eq. (70), shows persistence of a very
narrow mobility gap �D ≈ h̄τ−1(εD), even in the limit of
c → 0. This is due to vanishing l.h.s. of Eq. (70) here since
q(εD) = 0, unlike that near ε̃res where q(ε̃res) does not vanish
even in the limit of c → 0 and assures the IRM protection in
this limit. The related gap grows as �D ∼ (c2c0/c3

∗)εres until
c � c∗ = c0/c1, then slowing down to �D ∼ (c1/2c0/c3/2

∗ )εres

at c � c∗, again in good agreement with the numerical result.
The general picture in Fig. 7 is yet properly completed with

the plot of Fermi energy vs c [obtained by numerical integra-
tion of Eq. (62) in Eq. (16)]. This process begins from its very
fast advance as εF(c) ≈ √

cW (resulting from integration of

almost unperturbed DOS), from the initial εF(0) = 0 up to
εres vicinity, where this advance is abruptly hampered by the
weight absorption into the resonance DOS peak. After cross-
ing the resonance level just at c ≈ c0 and entering the already
formed mobility gap, the following very slow εF(c) growth
leaves it within the localized area (though it could be moved
out of this narrow area, e.g., by an electric bias). The resulting
intermittency of localized and mobile states (metal-insulator
and insulator-metal transitions) within a narrow energy range
around εres can be of interest for applications.

At high enough concentrations, c � c0, the resonance
maximum of host DOS due to localized states near εres is
estimated as:

ρhost(εres) ≈ ρ0(εres)

(
1 + 2

π
arctan

c

c0

+ c

πc0
ln

πc0

c2 + c2
0

)
� ρ0(εres), (75)

which is well pronounced against the linear graphene DOS,
Eq. (20), at this energy. This result also permits us to com-
pare the spectral weights in the resonance range that stem
from perturbed graphene host, whost, and from AM impurities
themselves, wimp. The integral weight of the resonance peak
in ρhost can be estimated as a product of the resonance width
�(εres) ≈ ω̃2εres/W 2 and its height by Eq. (75), giving whost ∼
cω̃2/W 2 ln(1/c0) � c. The complementary weight, wimp, can
be approximated as

wimp =
∫ ε̃res

εD

ρimp(ε)dε ≈
∫ ∞

−∞
ρimp(ε)dε

≈ c

(
1 − ω̃2

W 2
ln

1

c0

)
. (76)

This shows that weakly coupled adatoms retain the main part
of their total spectral weight c, having transferred only a small
rate to the delocalized bands. The dominant ρimp contribution
to the total DOS ρ just within the localized ranges is clearly
seen in Fig. 6 (red curve).

At yet higher impurity concentrations, c � c1, the
quasigap growth, though getting slower: ε̃res − εres ≈
εres(

√
1 + 4c/c1 − 1)/2, still stays faster than that for

the mobility gaps, �mob + �̃mob, keeping the same topology
of mobility ranges in the low energy spectrum. At least,
the above employed T-matrix approximation for self-energy
can be next justified by a more detailed treatment of the
nontrivial GE terms from Eq. (27) (see Appendix A) showing
this approximation to stay sufficient down to the established
mobility limits. So the same MPS approach to the IRM
criterion is extended for all the following impurity types.

C. Strongly coupled AM impurities, numerical studies

It is of eminent interest to compare the above weak cou-
pling AM results with the opposite limit of strong coupling.
First of all, this moves the impurity resonance εres much
closer to the initial Dirac point than the original adatom onsite
energy ε0. Thus, for the example of H adatoms with strong
ω = 7.5 eV coupling, their ε0 ≈ 160 meV gets reduced down
to εres ≈ 6.9 meV, see Fig. 8, compared to the Cu case with
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FIG. 8. Restructured DOS of graphene under H adatoms (see
the AM parameters in Table I) with concentration c = 0.01 and
symmetric sublattice occupation. The total value ρ (black line) and
its impurity component ρimp (red line) are compared to ρ0 of un-
perturbed graphene (dashed line). The mobility gap �mob range is
shadowed.

ω = 0.81 eV, where ε0 ≈ 80 meV is only reduced to εres ≈
69 meV, seen in Fig. 6.

Another striking difference between weakly and strongly
coupled AM t impurities is in the part of their total spectral
weight transferred to the electronic states of the host system.
Comparing the red curves displaying ρimp, Eq. (64), in Figs. 6
and 8, we see that weakly coupled Cu impurities retain larger
spectral weight around εres, while the strongly coupled H ones
hold just a very tiny fraction (in a slim peak centered at εres).

Also a strong host-impurity coupling modifies the above
estimates for the mobility gap near that resonance, making it
much broader. Correspondingly, the Fermi level enters it at
as low critical concentration as c0 ≈ 4×10−6, for the H case,
and then stays close to the resonance, as shown in Fig. 9.
This makes the metallic state extremely unstable against such
impurities (within the adopted graphene model with no in-
trinsic band splitting, e.g., by spin-orbit effects). At last, the
strong impurity-host coupling favors the merging of different
mobility gaps observed in the weak coupling case, as seen in

FIG. 9. Mobility gaps (shadowed areas bordered by dashed lines)
and Fermi level (solid line) vs concentration c of strongly coupled H
adatoms, compare with the related DOS in Fig. 8. After the upper
�mob gap onsets and absorbs εF at extremely low c0 ≈ 4×10−6, it
rapidly merges with the lower �D already at c1 ≈ 2×10−3.

FIG. 10. Restructured DOS of graphene under F adatoms with
concentration c = 0.03 and symmetric sublattice occupation (see
the model parameters in Table I). The total value ρ (solid line) is
compared to the unperturbed graphene linear DOS, ρ0 (dashed line),
and two shaded areas present mobility gaps �mob and �D.

a rapid absorption of the narrow �D by much broader �mob in
Fig. 9 and no traces for decoupling of �̃mob.

Depending on the sign of the onsite energy ε0, the res-
onance εres develops below or above the graphene charge
neutrality (Dirac) point. For two considered AM cases, Cu
and H, they lie above, and those situations resemble donor-
like dopants in common semiconductors—the total carrier
weight determining the Fermi level, see Eq. (16), is Q =
1 + c > 1. For the case of F, negative ε0 = −2.2 eV leads to
εres ≈ −0.4 eV, and the whole situation resembles acceptor-
like dopants, where the carrier weight turns Q = 1 − c < 1.
This produces the DOS picture as displayed in Fig. 10, seen
qualitatively as a mirror to the cases of donor impurities
(ε0 > 0), and so the restructured spectrum is of inverted type.

Here, with growing impurity concentration c, the Fermi
level goes monotonously down from zero and enters the mo-
bility gap near the impurity resonance at some c1 > c0, which
results in a robust metal-insulator transition for the hole-type
charge carriers, see Fig. 11. Those results are in agreement

FIG. 11. Mobility gaps, bottom �mob and top �D (shadowed
areas bordered by dashed lines), and the Fermi level (solid line)
vs concentration c of F adatoms in graphene. The localized range
�mob onsets near the resonance energy εres ≈ −0.4 eV at the criti-
cal concentration c0 ≈ 1.06×10−2 to absorb the Fermi level at the
next critical value c1 ≈ 1.3×10−2, realizing a robust metal-insulator
transition for hole-type charge carriers.
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FIG. 12. Density of states for graphene with Cu t impurities
at their concentration c = 0.01 and asymmetric occupation of host
sublattices (the same notations used for its elements as in Fig. 6).

with the experimental findings of Hong et al. [52] that report
metal-insulator transition in the fluorinated graphene at cer-
tain charge doping levels.

D. Asymmetric t occupancy

Alike that for nonresonant LM impurities, the above
discussed effects for AM t impurities get altered when con-
sidering asymmetric sublattice occupations. In this section
we only focus on the extreme case corresponding to c1 = c,
c2 = 0.

Having the related T matrix: T̂ (ε) = Tt (ε)m̂1, the direct
evaluation of Re[Det Ĝ−1

k (ε)] with Ĝ−1
k (ε) given by Eq. (49)

results in the following secular equation:

ε2 − ε2
q − 2c ε Re Tt (ε) = 0, (77)

that gives the restructured energy spectrum. Linearizing Tt (ε)
in the above expression turns it into the qubic equation
with respect to ε, unlike the symmetric t case governed by
Eq. (55). The EPS roots Eα,q (α = 1, 2, 3) of Eq. (77) can
be straightforwardly obtained by the Cardano formulas, but
their following analyzes turn to be awkward and unpractical.
However, the above secular equation also admits an easy and
“user-friendly” MPS:

q(ε) = qmax

W

√
ε2 − 2c ε Tt (ε), (78)

which leads to the corresponding DOS:

ρas(ε) = 2

πW 2
Im

{
[ε − cεTt (ε)] ln

[
1 − W 2

ε2 − 2c ε Tt (ε)

]}
,

(79)

presented in Fig. 12. Its main difference from the symmetric
counterpart, Fig. 6, consists in the opening of an effective gap
�D from the initial zero Dirac point to its shifted position,
εD ≈ −2cω̃2/εres, alike the case of asymmetric occupancy in
LM, displayed in Fig. 3. Next, using the MPS by Eq. (78) in
the IRM criterion by Eq. (70), one can estimate the underlying
mobility gaps, as well near the subband edges as around the
resonance peak. The corresponding subbands and mobility
gaps are displayed in the function of impurity concentration in

FIG. 13. Mobility gaps (shadowed areas bordered by dashed
lines) and Fermi level (solid line) vs concentration c for Cu adatoms
at asymmetric occupation. Note the difference of mobility gaps de-
velopment from the case of symmetric occupation in Fig. 7.

Fig. 13. From the point of view of metal-insulator transitions,
the asymmetric AM scenario offers a richer intermittency
between the extended and localized ranges and, along with
presence of a wide and almost pure �D gap in its spectrum, it
is expected to provide a more promising application-oriented
playground than the symmetric case.

VI. ANDERSON’S IMPURITIES AT BRIDGE
AND HOLLOW POSITIONS

A. Bridge position

Practically the same scenario as for symmetric AM t im-
purities is found for AM impurities at b positions, though this
conclusion requires some additional analysis and clarification.
Assume an AM impurity to occupy a b position projected at
r, then its two neighboring carbon atoms reside at host sites
n1,i = r − δi/2 (A sublattice) and n2,i = r + δi/2 (B sublat-
tice), where δi is one of three nearest neighbor vectors defining
the given bridge, see Figs. 1 and 4. The corresponding scatter-
ing spinor in the conduction-valence band space, Eq. (37), is
explicitly given as:

ur,k =
√

2 eik·r
(

cos 1
2 (k · δi − arg γk )

−i sin 1
2 (k · δi − arg γk )

)
. (80)

Here k is referred to the � point and the hopping factor
argument, arg γk, is given by Eq. (7). This spinor defines the
scattering matrix V̂r,k,k′ , Eq. (41), and then the momentum
diagonal T matrix, Eq. (42), as:

T̂δi,k(ε) = Tt (ε)[1̂ + σ̂3 cos (k · δi − arg γk )

− σ̂2 sin (k · δi − arg γk )], (81)

with the same scalar prefactor Tt (ε) as in the t case, Eq. (45).
Assuming also equal average occupancy of three nonequiva-
lent bridge configurations, cδi = c/3, the partial T matrices T̂δi

combine into the total T matrix:

T̂ (ε, k) = 1

3

3∑
i=1

T̂δi,k(ε) =
(

1̂ + |γk|
3

σ̂3

)
Tt (ε). (82)

For momenta k close to the graphene valleys centers, k = q +
K(′), one can employ the low-energy expansion to present the
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T matrix for b impurities as:

T̂ (ε, q) =
(

1̂ + εq

3t
σ̂3

)
Tt (ε), (83)

thus dependent on the radial component q of reduced mo-
mentum. But in the long-wave limit, εq � W ∼ 3t , the
momentum dependent term in Eq. (83) can be practically
neglected. Therefore in the considered low-energy limit, the
b-case T matrix gets effectively reduced just to Tt (ε)1̂. As a
consequence, the restructured energy spectrum in the presence
of b impurities should mostly reproduce the same spectral
features as for the symmetric t case.

To what types of adatoms on graphene can one apply the
above findings? First-principle calculations predict oxygen
and nitrogen to bond in the bridge position [43]. However,
also for some top positioned impurities, like copper [22,46,47]
and gold [47,48], the energy difference between the top and
bridge configurations is relatively small, and therefore their
bridge realization can become probable. Similarly, the light
ad-molecules like CO, NO, and NO2 prefer to adsorb [53]
equally likely to the hollow and bridge positions.

B. Hollow position

Hollow-type AM impurities represent a special case; an
adatom in the h-position displays local C6v symmetry, which
strongly reduces the coupling of impurity degrees of freedom
with host graphene states [see Eq. (85) below]. That was
earlier interpreted as their full decoupling [26] from graphene
states. However, it will be shown below that, when treated
consistently within the AM, the h impurities are sufficient to
produce essential restructuralization of graphene low-energy
spectrum. The resulting h-type resonances and the related
spectral features in terms of AM parameters are compared in
what follows with the previously discussed t and b cases.

For an h impurity projected to r, the sum in the scattering
spinor ur,k, Eq. (37), counts its six carbon neighbors. Those
are residing at host sites: n1,i = r + δi (A sublattice) and
n2,i = r − δi (B sublattice, see Figs. 1 and 4). This summation
results in:

ur,k =
√

2 |γk| eik·r
(

cos
(

3
2 arg γk

)
i sin

(
3
2 arg γk

)
)

. (84)

Implementing this into Eq. (42) leads to the corresponding
momentum diagonal T matrix:

T̂r,k(ε) = Th(ε) |γk|2 [1̂ + σ̂3 cos (3 arg γk )

+ σ̂2 sin (3 arg γk )], (85)

where the scalar prefactor Th(ε) = ω2/D(ε) differs from
Tt (ε), Eq. (45), by more complex denominator:

D(ε) = ε − ε0 + 2εω2

t2
[1 − εG(0)(ε)]. (86)

Similarly to the b case, Eq. (83), the h-impurity T matrix,
Eq. (85), depends on the radial momentum q, also on its
azymuthal component encoded in arg γk. This makes the re-
structured dispersion relation based on Eq. (85) anisotropic.
Another important difference of the h-case T matrix from the t
and b cases is in the small prefactor, |γq+K(′) |2 ≈ (εq/t )2 � 1,
in its numerator, which is responsible for the above mentioned

decoupling of the graphene low-energy states with h-type AM
impurities. The complete low-energy T matrix for momenta
near the K(′) point reads:

T̂ (ε, q) = Th(ε)
ε2

q

t2
[1̂ ∓ σ̂3 cos (3θq) − σ̂2 sin (3θq)], (87)

where the plus (minus) sign applies to K(′) valley, and the form
of angle θq is given by Eq. (7).

The general formulas, Eqs. (85)–(87), allow us to study,
at least numerically, the spectral effects of h-type AM im-
purities in a broad energy range. However, in what follows
we stay rather on the analytical side, using proper approx-
imations near the Dirac points. For example, to find the
resonance pole of the T matrix and the restructured dis-
persion laws over the low-energy range, (ε/t )2 � 1, it is
well justified to ignore the strongly suppressed G(0)(ε) term
in the denominator D(ε), which can then be approximated
by D(ε) ≈ ε − ε0 + 2εω2/t2. The correspondingly approxi-
mated Th(ε) ≈ ω̃2/(ε − εres) involves the resonance level:

εres ≈ ε0

1 + 2(ω/t )2
, (88)

and the effective coupling constant ω̃2 = ω2t2/(t2 + 2ω2).
Then the secular equation, Eq. (51), takes the form of an
ordinary cubic equation:

ε2 − ε2
q

(
1 + c̃

ε − εq cos 3θq

ε − εres

)
= 0, (89)

with c̃ = 2c(ω̃/t )2. As noted above, the resulting dispersion is
anisotropic, and the angular cos 3θq dependence imprints the
spectrum near εres the C3 symmetry. In sequel we characterize
that general spectrum by its behavior along the basic direc-
tions in the momentum plane: the nodal with cos 3θq = 0, and
the antinodal with cos 3θq = ±1. The main features for each
considered case are shown in Fig. 14 and can be summarized
as follows.

(i) Along the antinodal directions: θq = π,±π/3 around
the K point and θq = 0,±2π/3 around the K′ point
[red arrows in Fig. 14(a)], the restructured spectra:

E1
2,q

=
εres + εq ±

√
(εres − εq)2 + 4c̃ε2

q

2
,

E3,q = −εq, (90)

include the purely unperturbed valence graphene band −εq

and the restructured E1
2,q

bands. They emerge from the spec-
tral repulsion between the graphene conduction band εq and
the resonance level εres (supposing for definiteness εres > 0).
The most notable features here are the formation of a wider
quasigap (anticrossing) between εres and ε̃res = εres/(1 + 4c̃)
and the inverted group velocity of E2,q at εq > 2ε̃res. This is
due to the q2 growth of the effective impurity-host coupling.
Inverted group velocity generates also lower impurity side-
band Wimp ≈ c̃W , see Figs. 15 and 16, which is still broad
enough compared to the related mobility gap �mob.

(ii) Along the nodal directions: θq = ±π/6, ±π/2, ±5π/6
[shown by blue arrows around each K point in Fig. 14(b)],
the cubic equation, Eq. (89), promotes couplings of the res-
onance level εres to both graphene ±εq bands. On one side
the strong interaction of εres with the conduction band εq
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FIG. 14. Restructured electronic dispersion of graphene in the presence of h-positioned impurities with εres ≈ 226 meV, ω = t/
√

2, and
concentration c = 0.02, along the nodal (blue arrows) and antinodal (red arrows) directions in the BZ with respect to K and K′ points, see
insets.

produces two restructured bands, E1
2,q

, with a very narrow
anticrossing between their asymptotic limits E1,0 = εres and
E2,qmax = εres/(1 + c̃). Contrary, a weak nonresonant coupling
of εres with the valence band −εq results only in slight modi-
fication of the latter, band E3,q.

(iii) Along the inverted antinodal directions: θq =
0,±2π/3 around the K point and θq = π,±π/3 around the
K′ point [red arrows in Fig. 14(c)], these spectra:

E1,q = εq,

E2
3,q

=
εres − εq ±

√
(εres + εq)2 + 4c̃ε2

q

2
, (91)

include the purely unperturbed graphene conduction band εq,
and subbands E2,q and E3,q that originate from a nonresonant

FIG. 15. DOS due to h-position impurities with AM parameters
as in Fig. 14. The resonance peak at εres is bordered from both sides
by much wider impurity side bands Wimp and W ′

imp. The localized
states within the mobility gap �mob are shadowed; the unperturbed
DOS ρ0(ε) is shown by the dashed line.

repulsion between −εq and εres. Subband E2,q has the width
W ′

imp, see Figs. 15 and 16, and the valence E3,q only slightly
deviates from the original valence band −εq.

Another peculiarity here is the absence of the shift of the
energy level for the Dirac point that was present as εD �= 0
in the previous cases. Also peculiar DOS features appear near
the impurity resonance, as shown in Fig. 15, with their notable
differences from the t and b cases. First, in practical vanishing
of quasigap [due to the same small prefactor in the impurity-
host coupling as indicated before Eq. (87)] and second, in the
appearance of new side bands around εres with widths ≈c̃W ,
that can be seen as the “impurity induced heavy fermions”
with an emergent f -wave symmetry. The details of analytic
calculation of this DOS function are given in Appendix B.

The resulting sum of the DOS components, ρhost(ε) =
π−1Im g(ε) and ρimp = Im Th(ε) presented in Fig. 15 reveals

FIG. 16. Development of the mobility gap �mob, impurity side
bands Wimp and W ′

imp and Fermi level εF vs concentration c for h-
position impurities with AM parameters as in Figs. 14 and 15.
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its contributions from the spectrum branches E1
2,q

with a spike
at εres and a break at ε̃res. The obtained dispersions and DOS
can be further used for the IRM criterion, Eq. (70), and for
comparing the Fermi level and mobility edge positions. In this
approach, the dispersion equation in its complete form:

ε2 − ε2
q

[
1 + 2cω2

t2

ε − εq cos 3θq

D(ε)

]
= 0 (92)

[instead of simplified Eq. (89)], can provide an MPS q(ε, θ )
along a given azimuthal direction θ = θq. Then the related
mobility edges can be estimated numerically from an exten-
sion of Eq. (70):

minθ

∣∣∣∣ Re q(ε, θ )

∂Re q(ε, θ )/∂ε

∣∣∣∣ = h̄τ−1(ε), (93)

where, from symmetry considerations, the minimum is sought
along the above defined nodal and antinodal directions. Their
comparison readily indicates such minimum to be along the
antinodal directions displayed in Fig. 14(a) (with cos 3θq =
−1 and the widest quasigap). The corresponding explicit so-
lution of Eq. (92) reads:

q0(ε) = qmax

√
D(ε)(D(ε) + 4cε) − D(ε)

2cW
, (94)

and using it in Eq. (93) gives finally the mobility edges as
shown in Fig. 16. In similarity to the before considered t cases
displayed in Figs. 7, 9, 11, 13, here a localized range emerges
near εres at the critical concentration c0 ≈ 1.5×10−3, and then
extends further sublinearly in c, see the shadowed area in
Fig. 16. Its limits are exceeded from below and above by the
linearly growing outer side bands Wimp and W ′

imp (dashed lines)
that contain extended “heavy fermionic” states, see also the
DOS displayed in Fig. 15. In this course, the Fermi level εF

rises from zero through the initial conduction band εq and then
enters into the mobility gap at c ≈ c0. Further, with grown c
the Fermi level leaves that localized region at another critical
concentration c1 ≈ 0.013, and penetrates into the W ′

imp side
band with the “heavy fermionic” character. Thus h-type AM
impurities realize both metal/insulator and insulator/metal
transitions, but the two metallic phases are different, the initial
is s-like and the latter is f -like. Thus, the h-type adatoms can
be considered, together with the asymmetric t ones, as the
most prospective candidates for possible applications.

Ab-initio studies are unveiling that light metallic adatoms
[48] from groups I-III and also heavy transition metals
[28,48,54] are favored for adsorption above the centers of
graphene hexagons, i.e., at hollow positions. The same is true
for light ad molecules like NH3, H2O, NO2 [53].

VII. DISCUSSION

The presented results demonstrate several characteristic
features that can accompany spectral transformation of the
electronic band structure of graphene in the presence of disor-
der produced by impurities. The first decisive factor in that
process is to understand whether a single impurity center
can produce a resonance energy level in the spectrum. The
affirmative answer is imposing some additional restrictions on
the strengths of hybridization parameter and onsite energy. As
demonstrated in Section V, this is practically always granted

within the Anderson hybrid model, reasonably justified for
most of common adatoms (ad-molecules) chemisorbed at
graphene, and less granted for the isotopic Lifshitz model.

Once a resonance level exists for a given impurity type, the
graphene spectrum would restructure along a particular sce-
nario when increasing their concentration along a particular
scenario. This is determined by the impurity locations [top,
bridge, or hollow], and by their sublattice occupations [sym-
metric or asymmetric]. The most important spectral changes
count the emergent localized states and (quasi)gaps that de-
velop inside the initial continuum of band states. Typically
they form near the original resonance level, and also near
the restructured Dirac points. Their further development with
an increased concentration is conveyed by spectral splittings
or mergings controlled by the mobility edges that can be
estimated from the phenomenological IRM criterion. It should
be emphasized that such localized ranges and related mobility
gaps in the spectrum can also arise from the asymmetric im-
purity occupation of graphene sublattices, even in the absence
of single impurity resonance. The latter mechanism, due to
its relative simplicity, can be especially helpful in practical
realizations of properly restructured spectra. The above list of
spectral features was not, to our best knowledge, addressed
in the literature in so compact and self-contained form. Also
several technical tools and concepts introduced here, as the
sublattice algebras, Eq. (25), or EPS, MPS (LMPS) projec-
tions, Section V, etc., can become helpful in the future studies
of disorder induced phenomena in layered 2D systems.

The underlying electronic phase [metallic or insulating] of
the impurity functionalized graphene is uniquely determined
by the position of the Fermi level relative to the localized
spectral ranges. Those can be tuned by the impurity type and
concentration, but also by the external means, namely, electric
or magnetic fields, temperature, etc. This opens a wide field
for possible applications. Compared to the common situation
in doped semiconductors, impurity functionalized graphene
provides much more versatile possibilities for exploring dif-
ferent types of metallic and insulating states and mutual
transitions between them. In this course, there are possibilities
to combine simultaneously several spectral effects originating
from different impurity species, and hence target different en-
ergy ranges. However, the presented analysis did not consider
the situation when randomly distributed impurities at low
concentration nucleate in nearest neighbor positions form-
ing impurity clusters. Those exist in reality (as known for
some dopants in common semiconductors), and such direct
impurity-impurity interactions are expected to produce split
resonances and, correspondingly, more complicated pattern of
localized energy ranges. Furthermore, important many-body
effects, including the spin-dependent Kondo physics can re-
sult from impurities in graphene [55,56], though being already
beyond the scope of the present study.

Finally, besides the purely electronic properties, the va-
riety of spectral regimes permits also other notable effects
that employ additional degrees of freedom as, for instance,
collective plasmonic spectra by narrow conduction bands,
optical susceptibility by narrow insulating gaps, Hall effect,
and magnetotransport on anisotropic Fermi surface, etc. From
the above analysis, the promising impurity types are weakly
coupled adatoms in t position (including their donor-acceptor
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combinations) and h-position adatoms (admitting a wider
range of their atomic levels and coupling parameters).

The approach as presented, and the list of spectral effects
can be further substantially extended and developed in several
different directions, for example, to the multilayered graphene
and its various hexagonal analogs based on TMDC materials,
topological edge states, and quantum Hall effect regimes,
Moiré patterns from plane rotations, etc. Such systems can
present new playground for probing the interplay between
the impurity disorder/localization effects, and the symmetry/
topology order protection.
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APPENDIX A: GROUP EXPANSION ANALYSIS

The above analysis was based on the impurity averaged
GF’s within the simplest T-matrix approximation. In principle,
one needs yet to check the next terms of GE for the self-
energy, Eq. (27), and their potential impact on the formerly
obtained results. Generally, this issue is complicated enough
(see more detailed discussions in Refs. [30,37,38]), involving
different GE types and their convergence limits. But a rea-
sonable qualitative estimate follows already from the account
for the first nontrivial pair term of GE, giving a self-energy
correction to the second order in c. Then, from the simple
comparison between first two GE terms, we approximate the
convergence criterion as:

c|Bq| < 1. (A1)

Next, restricting the analysis to the t-impurity case, it should
be noted that, due to j-orthogonality of the scattering matrices
m̂ j , Eq. (25), such pair scatterings contribute to the momen-
tum diagonal GF only for t impurities belonging to the same
jth sublattice. Therefore, the total self-energy matrix for the
momentum-diagonal GF is additive in the sublattice j indices:

Ĝ−1
q = (

Ĝ(0)
q

)−1 −
∑

j

c jm̂ j j,q.

Each jth sublattice self-energy  j,q has its own GE, analo-
gous to general Eq. (27), with the corresponding pair term,
c jBq, whose scalar B factor is explicitly given as follows [30]:

Bq(ε) =
∑
n �=0

e−iq·nAn(ε) + An(ε)A−n(ε)

1 − An(ε)A−n(ε)
. (A2)

FIG. 17. Distribution of σn values 1, z = e2iπ/3, and z∗ over lat-
tice sites (from the same j sublattice) with examples of their products
in opposite pairs (with respect to an initial zero site) to satisfy
σnσ−n = 1.

This sum describes all multiple scatterings on impurity pairs
from the same sublattice separated by lattice vectors n �= 0
(measured in units of graphene lattice constant a), returning
a quasiparticle to its initial q state, through the dimensionless
correlator:

An(ε) = Tt (ε)

N

∑
k

eik·n Tr Ĝ(0)
k (ε). (A3)

The latter can be presented as a product:

An(ε) = Tt (ε)σn fn(ε),

where the factor σn = (eiK·n + eiK′ ·n)/2 takes the values 1,
z = e2iπ/3, and z∗ with the host lattice periodicity, resulting in
σnσ−n = 1 (see Fig. 17). The remaining sum over the reduced
momentum reads:

fn(ε) = 1

N

∑
q

eiq·n Tr Ĝ(0)
q (ε), (A4)

which can be routinely approximated by the following integral
[see also Eq. (8)]:

fn(ε) ≈ 4ε

q2
max

∫ qmax

0

J0(qn)qdq

ε2 − ε2
q

≈ 4ε

q2
max

∫ ∞

0

J0(qn)qdq

ε2 − ε2
q

= − 4ε

W 2
K0

(
i

n

nε

)
. (A5)

Here the length scale is set by nε = q−1
maxW/ε, so for n � nε

we have qmaxn � 1 and it is justified to extend the integra-
tion limit to infinity, transforming the Bessel function J0 into
the Macdonald function K0 we can employ its asymptotics:
K0(ix) ≈ √

iπ/(2x) e−ix for x � 1, see Ref. [57].
Using the above results, and summing over n, Eq. (A2), we

can take into account that fn in An varies very slowly at the
lattice scales, n ∼ a ∼ q−1

max (as well as eiq·n at q � qmax), so
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that averaging of σn follows the rules: 〈σn〉 = 0, 〈σnσ−n〉 = 1.
This makes the contribution of the first term in the numerator
negligible compared to the second one. The resulting expres-
sion of Bq turns to be already q independent, i.e., Bq ≈ B,
where

B ≈ −4πn2
εzε√

3a2

∫ ∞

0

xdx

zε − ixe2ix
, (A6)

with zε = 32
3 (πεTh(ε)/W 2)2. The numerical estimate for the

integral in Eq. (A6) in assumption of |zε| � 1 shows its abso-
lute value to be ∼1, then the corresponding criterion for GE
convergence follows as:

c
4πn2

εzε√
3a2

� 1. (A7)

This gives an estimate for the GE convergence range:

|ε − εres| � c1/2 ω̃2

W
. (A8)

This is deep within the mobility gap estimated in the T-matrix
approximation, Eq. (74), assuring safety of the formerly es-
tablished T-matrix results. Also the above assumed condition
of |zε| � 1 is well confirmed in the range by Eq. (A8). The
above analysis can be yet compared to the known and broadly
used coherent-potential approximation (CPA) [58], this com-
parison done for the present system (but not shown here) finds
a qualitative agreement, within ∼30% precision, with the GE
result by Eq. (A8).

APPENDIX B: DOS CALCULATION FOR HOLLOW
POSITION IMPURITIES

In the presence of h-type AM impurities, the DOS, more
precisely the part dominated by the host bands, is conven-
tionally obtained from Eq. (14). For that one would need the
perturbed GF, Eqs. (26) and (27), that can be in the lowest
order in c obtained with the help of the T matrix, for its
explicit form see Eq. (87). Taking all that on gets for the
trace of the locator of the perturbed GF, Tr Ĝloc(ε) ≡ g(ε), the
following expression

g(ε) = 2

πq2
max

∫ 2π

0
dθ

∫ qmax

0
qdq

× εD − c̃ε2
q(

ε2 − ε2
q

)
D − c̃ε2

q (ε − εq cos θ )
, (B1)

where D = D(ε) is given by Eq. (86). The integral over the
azimuthal variable 3θq was substituted by θ and when taking
into account also the shift of the upper limit it gives what is
stated above. The angular integration over θ can be carried out
with the help of the standard formula:∫ 2π

0

dθ

a − b cos θ
= 2π√

a2 − b2
.

The radial integration over q can be processed in terms of the
new variable x = ε2

q :

g(ε) = 2

W 2

∫ W 2

0

(εD − c̃x)dx√
(ε2 − x)(x − x1)(x − x2)

, (B2)

where the energy dependent roots in the denominator count:

x1,2 = D + 2c̃ε ± √
D(D + 4c̃ε)

2c̃2
.

The above integral, Eq. (B2), can be calculated analytically,
after passing from x to the trigonometric variable u:

u = arcsin
2x − x1 − x2

x1 − x2
,

and results in:

g(ε) =
√

x1 − x2

W 2

∫ u2

u1

(sin u + α1)du√
sin u + α2

= 2
√

x1 − x2

W 2

{
α2 − α1√

1 + α2

[
F

(
u2

2
| 2

1 + α2

)

− F

(
u1

2
| 2

1 + α2

)]
−

√
1 + α2

[
E

(
u2

2
| 2

1 + α2

)

− E

(
u2

2
| 2

1 + α2

)]}
. (B3)

Here F (x|y) and E (x|y) are, respectively, the elliptic integrals
of the first and second kind [57] and their arguments include
the energy dependent terms:

α1 =
√

2D

D + 4c̃ε
, u1 = arccos

2W 2 − x1 − x2

x1 − x2
,

α2 = x1 + x2 − 2ε2

x1 − x2
, u2 = arccos

x1 + x2

x2 − x1
.

The result of Eq. (B3) permits analytic approximations for the
host part of DOS,

ρh(ε) = 1

π
Im g(ε),

and, then, similarly for the impurity part of DOS:

ρimp(ε) = 1

π
Im

c

ε − ε0 − (ωε/t )2g(ε)
.

The resulting total DOS, ρtot (ε) = ρh(ε) + ρimp(ε), is pre-
sented in Fig. 15. It clearly displays the contributions from
the spectrum branches E1

2,q
with van Hove singularities at

their special energies εres and ε̃res and practically restores the
unperturbed ρ0(ε) beyond the impurity bands of widths Wimp

and W ′
imp.
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