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Orbital response of single-layer antimony to external magnetic field
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Single-layer antimony or antimonene is a recently discovered two-dimensional material with high environ-
mental stability and appealing electronic properties. Antimonene is characterized by strong spin-orbit coupling,
which suggests unconventional behavior in magnetic fields. In this paper, we report on a computational study
of the magnetic response of antimonene focusing on the effect of gate voltage, playing an important role due
to the buckled structure of antimonene. We use a tight-binding model and systematically analyze the magnetic
susceptibility as well as Landau quantization of the energy spectrum. We show that the magnetic response of
undoped antimonene is diamagnetic, similar to its bulk phase. In contrast, for electron-doped antimonene we
observe a paramagnetic response, which can be further reversed if the vertical bias voltage is applied. The
mechanism of the observed switching is related to a modulation of the orbital susceptibility due to the spin
splitting occurring as a result of electric-field-induced inversion symmetry breaking. From the calculated Landau
levels, we find a significant difference between the g-factors for electrons (ge ≈ 2.33) and holes (gh ≈ 6.48),
which also exhibit a strong dependence on the bias potential.
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I. INTRODUCTION

Since the experimental discovery of graphene [1], the field
of two-dimensional (2D) materials has been growing rapidly.
These materials have attracted enormous interest from the sci-
entific community due to their unique properties. The variety
of 2D materials known today is very diverse, encompassing a
broad spectrum of physical properties. Apart from semimetal-
lic graphene and its group-IV analogs, such as silicene [2]
and germanene [3,4], a large class of 2D materials is rep-
resented by semiconductors, with the most known examples
being molybdenum disulfide [5–7] and black phosphorus [8].
Materials with intrinsic magnetic order are a recent addition
to the family of 2D materials [9,10]. Of particular interest are
2D materials based on heavy elements as they demonstrate
strong spin-orbit (SO) coupling. In magnetic 2D materials,
SO coupling is crucially important for thermal stabilization of
long-range magnetic order by inducing magnetic anisotropy
[11–13]. In nonmagnetic materials, strong SO coupling opens
up the possibility to realize topological states and uncon-
ventional transport properties [14,15]. Among the elemental
materials with strong SO coupling, 2D allotropes of bismuth
[16] and antimony [17] can be distinguished.

Single-layer antimony (SL-Sb) is an elemental 2D material
(also known as antimonene), which was recently obtained
experimentally under ambient conditions [17–22]. SL-Sb is
an indirect-gap semiconductor with an energy gap in the
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near-infrared spectral range. High environmental stability
and high carrier mobility make this material a promising
candidate for electronic, transport, and optical applications
[23–26]. In comparison to other stable 2D materials, SL-Sb
features strong SO coupling, which is of potential interest
for spintronics [27] and topological applications [28,29]. Re-
cent theoretical studies on the electronic properties of SL-Sb
also demonstrate the importance of strong SO coupling for
a proper description of this material [30–34]. Interestingly,
the combination of strong SO coupling and bias-induced
inversion symmetry breaking can lead to a controllable modi-
fication of the SL-Sb electronic and optical properties [32,33],
as a consequence of the Rashba effect [35]. In this context, the
behavior of SL-Sb in magnetic fields constitutes an interesting
yet unsolved question.

The primary objective of this work is to study the magnetic
response of SL-Sb to an external magnetic field. To this end,
we utilize two complementary approaches. The first one is
based on a modification of hopping integrals within the tight-
binding (TB) formalism according to the field-induced phase
factor (Peierls substitution), which is applied here to model
magnetic fields with moderate strength [36]. This method can
be routinely applied to 2D materials if a reliable TB model
is available. Up to now, it has been used to investigate the
spectrum of Landau levels in many 2D materials including
graphene, phosphorene, MoS2, and other systems [37–43].
The second approach is based on the calculation of magnetic
susceptibility using the perturbation theory with respect to
magnetic field and is applicable in the regime of weak fields.
Among 2D materials, this kind of method has been previously
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applied to graphene [44] and transition-metal dichalcogenides
[45]. As for antimonene, the problem of magnetic response of
this material remains unsolved. At the same time, the mag-
netic response of 2D materials with strong SO coupling is an
issue of fundamental interest.

From a computational point of view, the problem of orbital
magnetic susceptibility calculation is complicated. The theory
of diamagnetism of a free-electron gas was first proposed
by Landau in 1930 [46]. The next step was taken by Peierls
[47], who derived an expression for the magnetic suscepti-
bility of electrons with an arbitrary dispersion law. It was
suggested that the leading contribution to the susceptibility
is related to the Fermi-surface curvature. Despite a number
of important results, the applicability of this approach was
limited to the case of a single-band system. Several attempts
were made thereafter to generalize the Landau-Peierls theory
to the multiband case [48–52]. However, no exact solution
to the problem has been found, while the proposed methods
were cumbersome and often lacked a physical interpretation.
Notable progress was made by Fukuyama [53], who obtained
a relatively simple formula for the orbital susceptibility based
on the perturbation theory. In spite of the fact that this method
does not recover the Landau-Peierls formula in the case of
single-band systems, it was capable of describing a number
of interesting effects in multiband systems with strong SO
coupling, such as bismuth [54,55]. In the past decade, an al-
ternative computationally tractable approach to the problem of
orbital susceptibility was proposed, which is based on a com-
bination of the perturbation theory and the Green’s function
formalism [56–58]. This approach relies on a TB description,
and it allows one to describe the interband effects on magnetic
susceptibility in weak fields.

In this paper, we perform a systematic theoretical anal-
ysis of the magnetic response in SL-Sb. For this purpose,
we use a TB approach [36] in conjunction with a pertur-
bation theory for the susceptibility [56]. We also explicitly
consider Landau quantization of the SL-Sb energy spectrum,
and we examine the effect of external bias potential, which
turns out to be important due to the buckled structure of
antimonene. Our findings show that the net magnetic response
of undoped SL-Sb is diamagnetic. In contrast, electron-doped
SL-Sb demonstrates a paramagnetic behavior with the sus-
ceptibility controllable by the external bias potential. We
also find that a static electric field applied perpendicular
to the surface leads to a significant modification of the
Landau levels in SL-Sb, especially for electrons. Electron
and hole g-factors are found to be considerably different
from each other, and they demonstrate sensitivity to the bias
potential.

The rest of the paper is organized as follows. In Sec. II,
we present the theory and computational details of the nu-
merical calculations presented in this paper. We then describe
the electronic structure of SL-Sb in the presence of the gate
voltage (Sec. III A). In Sec. III B, we systematically analyze
the magnetic susceptibility of SL-Sb by decomposing it into
different physically distinct contributions. Bias-dependent
Landau quantization of the SL-Sb energy spectrum, as well
as our estimation of the g-factor, are presented in Sec. III C. In
Sec. IV, we summarize our results and conclude the paper.

II. MODEL AND COMPUTATIONAL DETAILS

A. Model Hamiltonian

In our calculations, we consider the TB model proposed for
SL-Sb in Ref. [31], proven to be suitable for a comprehensive
analysis of the electronic properties. The model captures the
SO coupling and allows one to take the effect of gate voltage
into account [32]. The effective Hamiltonian for SL-Sb can be
written as

H = H0 +
∑
jmn

∑
pq

T
(k j )

mp h j
pqT

(k j )
nq + Vbias

d

∑
im

zic
†
imcim, (1)

where

H0 =
∑
mn

∑
i j

tmn
i j c†

imc jn (2)

is the spin-independent part, with tmn
i j being the effective hop-

ping parameter between m and n orbitals at atoms i and j,
respectively, and c†

im (c jn) is the creation (annihilation) oper-
ator of electrons at atom i ( j) and orbital m (n). The second
term in Eq. (1) describes the SO coupling, where T (k j ) is a
sublattice-dependent matrix with k j being the sublattice in-
dex of atom j, which determines the unitary transformation
between the basis of cubic harmonics (p atomic orbitals)
and the basis of the Wannier functions in which the spinless
Hamiltonian H0 is determined [31]. h j is the intra-atomic SO
Hamiltonian for atom j defined in the basis of p orbitals as
(the orbital indices are implicit)

h j = λ
∑
σσ ′

i
(
cσ†

z σ x
σσ ′cσ ′

y + cσ†
z σ

y
σσ ′cσ ′

x + cσ†
y σ z

σσ ′cσ ′
x

)
, (3)

where λ denotes the intra-atomic SO coupling constant, σ, σ ′
run over the spin-up and spin-down projections, and σ x(y,z)

are the Pauli matrices. The last term in Eq. (1) describes the
effect of the bias potential, where zi is the z component of
the position operator for atom i, Vbias is the magnitude of the
bias voltage, and d is the vertical displacement between the
sublattices.

B. Magnetic response in weak fields

On the basis of the presented model, we first consider the
magnetic response of the system in weak magnetic fields. It
can be quantified by the static magnetic susceptibility, which
in general can be expressed as the second derivative of the
thermodynamic potential � with respect to magnetic field B:

χtot = − μ0

S

∂2�

∂B2

∣∣∣∣
B→0

, (4)

where μ0 is the magnetic permeability constant, S is the
sample area, and � = −T

∑
nk ln{1 + exp[(μ − En,k )/T ]} is

the grand potential, with μ being the chemical potential, and
En,k is the electron energy at band n and wave vector k.
In principle, � can be calculated within the TB approach
from the electronic spectrum in magnetic field En,k. However,
this is a computationally very demanding task, especially at
weak fields. To circumvent this issue, perturbative approaches
are utilized, expanding � (or its derivatives) in powers of
B-related quantities.
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For the present consideration, it is convenient to represent
the susceptibility as a sum of spin and orbital terms:

χtot = χspin + χorb. (5)

The spin part of the susceptibility can be approximated by the
susceptibility of free electrons (Pauli paramagnetism) [59]:

χspin = μ0μ
2
Bg(EF), (6)

where g(EF) = ∑
n,k δ(En,k − EF ) is the density of states

(DOS) at the Fermi energy EF , and μB is the Bohr magneton.
The orbital susceptibility can be expressed as a sum of

two distinct terms, namely the band and the core electron
contributions,

χorb = χband + χcore. (7)

In the weak fields, χband can be calculated perturbatively using
the Green’s function formalism as it is proposed, e.g., in
Refs. [56,60]:

χband = −μ0e2

12h̄2

Im

πS

∫ +∞

−∞
nF (E )Tr[Uk (E ) − 4Vk (E )]dE .

(8)

Here, e and h̄ are the elementary charge and the
Planck constant, respectively. nF = [exp( E−μ

kBT ) + 1]−1 is
the Fermi-Dirac distribution function, and Tr[A(k)] =
(Nk )−1 ∑

i,k Aii(k). Uk = GHxxGHyy − GHxyGHxy and Vk =
GHxGHxGHyGHy − GHxGHyGHxGHy are matrices, with

G(E , k) = [EI − H (k) − iδI]−1 (9)

being the Green’s function matrix, where E denotes energy, I
is the unity matrix, and δ is an infinitesimal parameter playing
the role of the Lorentzian smearing in numerical calculations.
In the equations above, Hα and Hαβ denote the first and
second derivatives of the Hamiltonian with respect to kα and
kβ , which can be calculated analytically in k space as

Hα (k) = dH (k)

dkα

=
∑

j

ir jαH (r j )e
ik·r j (10)

and

Hαβ (k) = dH (k)

dkαdkβ

= −
∑

j

r jαr jβH (r j )e
ik·r j , (11)

where H (r j ) is the Hamiltonian matrix in real space, and
r jα is the α component of the radius vector r j corresponding
to atom j. The calculations are performed with a primitive
cell containing two Sb atoms [31], resulting in a (12 × 12)
Hamiltonian matrix in k-space. To calculate the orbital sus-
ceptibility, we use a (750 × 750) k-point grid, a smearing
of δ = 0.01 eV in the Green’s function calculations, and we
performed the integration over energy with an energy step of
dE = 0.005 eV.

One can additionally separate the interband χinter from
the intraband contribution χintra by using the Landau-Peierls
formula, which describes the intraband susceptibility:

χintra = −μ0e2

12h̄2

∑
n

∫
BZ

n′
F (En,k )

× (
Exx

n,kEyy
n,k − Exy

n,kExy
n,k

)
dk. (12)

Here, n is the band index, n′
F (En,k ) is the derivative of Fermi-

Dirac distribution with respect to En,k, and Exx
n,k, Eyy

n,k, Exy
n,k are

the second derivatives of the electron dispersion with respect
to components of the wave vector. To calculate the derivatives
in Eq. (12), we use the finite-difference method. The intraband
contribution given by Eq. (12) neglects all interband transi-
tions, and it is the exact solution in the case of a single-band
model. Having calculated χintra, the interband term can be
estimated as χinter = χband − χintra.

Since Sb is a heavy element, it is also instructive to take
the contribution of core electrons into account when calcu-
lating the susceptibility. This can be done in the spirit of
Langevin diamagnetism theory applied to closed-shell atoms
[59]. Specifically, we use the following expression for the
susceptibility of core electrons in SL-Sb:

χcore = −μ0e2n

6Sme

∑
i

Zi
〈
r2

i

〉
, (13)

where me is the free-electron mass, S is the unit cell area,
n = 2 denotes the number of atoms in the unit cell, 〈r2

i 〉 is
the mean-square distance of the i-shell electrons from the
nucleus, and Zi denotes the number of electrons in the i shell.
To obtain the mean-square distance, we perform an evaluation
of Wannier functions (WFs) φi(r) associated with the orbitals
of a single Sb atom in real space. The corresponding quantity
is then calculated as the expectation value of the r2 operator
in the φi(r) state:

〈
r2

i

〉 =
∫

φi(r)r2φ∗
i (r)dr. (14)

The WFs φi(r) are obtained from the density functional
theory (DFT) calculations using the projected augmented
wave method [61] as implemented in the Vienna ab initio
simulation package (VASP) [62,63], combined with the WAN-
NIER90 package. The calculations were performed within the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional [64], and they were checked to be fully converged with
respect to the numerical parameters. The following orbital
contributions to 〈r2

i 〉 and 〈x2
i 〉 were considered: 4s, 4p, 4d ,

5s, and 5p (see Table I), assuming that inner orbitals provide
a negligible contribution to the susceptibility. Since 5s and 5p
orbitals participate in the band formation captured by the TB
model, their contribution was excluded from χcore.

TABLE I. Mean-square values 〈r2
i 〉 and 〈x2

i 〉 obtained for the
relevant orbitals of a single Sb atom shown along with their con-
tribution to the susceptibility. χatom is an estimate of the single Sb
atom susceptibility given per unit area of an atom in SL-Sb.

Orbital 〈r2
i 〉 (Å2) 〈x2

i 〉 (Å2) Contribution to χ (χ0)

4s 0.177 0.059 −0.11
4p 0.331 0.110 −0.22
4d 0.602 0.201 −0.39
5s 1.626 0.542 −0.64
5p 2.824 0.941 −1.11
4spd 1.110 0.370 −0.72 (χcore/n)
4spd+5sp 5.560 1.483 −2.47 (χatom)
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For the sake of convenience, we use the following units
for 2D susceptibility throughout the paper as proposed in
Ref. [56]: χ0 = μ0e2h̄−2a2t with t = 1 eV and a = 1 Å. The
chosen units correspond to χ0 ∼ 4.65 × 10−5 Å (∼2.05 ×
10−10 m3/mol in SI units). In these units, the contribution
of core electrons to the susceptibility of SL-Sb is χcore =
−0.72χ0 per Sb atom.

C. Landau quantization

To examine the magnetic response of SL-Sb in moderate
fields, we study the Landau quantization of the energy spec-
trum. To this end, we calculate the Landau levels in terms of
the TB model, which requires a modification of the hopping
integrals according to the Peierls substitution [36]:

tmn
i j → tmn

i j eγi j , (15)

γi j = −2π i
e

h̄

∫ r j

ri

A · dl, (16)

where A is the vector potential of the electromagnetic field.
For a homogeneous perpendicular magnetic field Bz applied
along the z direction, we choose the Landau gauge A =
(0, Bzx, 0). Thus, the additional phase factor will have the
following form [42,65]:

γi j = −2π i
e

h
Bz

1

2
(xi + x j )(yi − y j ). (17)

To evaluate γi j , we introduce a coordinate grid as shown in
Fig. 1. The grid is defined as xa + n ≡ n(

√
3/2a), y + n ≡

n(1/2a), and xb + n = xa + n + a/
√

3, where xa(b) is the x
coordinate of atoms belonging to the sublattice A (B), a is
the lattice parameter, and n numerates unit cells in the con-
structed supercell. Using such a coordinate grid, one can
easily evaluate the additional phase factors to the hopping
parameters using Eq. (17). For example, for the vector R =
(−1/2

√
3, 1/2)a, we have

γi j = −π i


0

(
n − 1

6

)
, (18)

FIG. 1. Schematic representation of the coordinate cell intro-
duced to calculate the Landau levels. The unit cell is bounded by
the solid lines. The shaded area corresponds to an example of the
supercell constructed to consider variable surface area, which deter-
mines the magnetic flux. Atoms belonging to the sublattices A and
B with the lattice parameter a are shown by red and green circles,
respectively.

where  = Bza2
√

3/2 is the magnetic flux through the unit
cell and 0 = h/e is the magnetic flux quanta.

Due to the fact that magnetic flux through the unit cell is
quantized, we consider a supercell composed of q unit cells,
such that  = 0/q. This means that the dimensionality of
the TB Hamiltonian increases as B decreases. In our calcu-
lations, we have increased the size of the unit cell in the
direction depicted in Fig. 1 by an arrow. The way to construct
the Hamiltonian and impose periodic boundary conditions is
described, e.g., in Ref. [40]. The Landau levels are obtained
by diagonalizing the Hamiltonian at the center of the Brillouin
zone (�-point) for each magnetic flux (supercell size) consid-
ered.

To calculate the g-factors, we add the Zeeman term to the
Hamiltonian Eq. (1) in the following form:

Hz = −1

2
gsμBBz

∑
im

∑
σσ ′

cσ†
im σ z

σσ ′cσ ′
im, (19)

where gs = 2 is the g-factor of an electron. This term con-
tributes to the energy splitting of the Landau levels �E =
gμBBz, corresponding to up and down spin projections, from
which one can determine the effective g factor. Without SO
coupling, g = gs, whereas g becomes dependent on the con-
stant λ if SO coupling is present.

III. RESULTS AND DISCUSSION

A. Electronic structure

Single-layer Sb adopts a buckled honeycomb structure
(point group D3d ) with the lattice parameter a = 4.12 Å and
two sublattices vertically displaced by d = 1.65 Å. The corre-
sponding crystal structure is schematically shown in Fig. 2(a),
with the Brillouin zone in Fig. 2(b). The band structure of
SL-Sb calculated for the bias potentials Vbias = 0.0 and Vbias =
1.5 eV is presented in Fig. 2(c). In the absence of external
fields, the electronic structure features an indirect band gap
of ∼0.9 eV with the valence-band maximum located at the

FIG. 2. (a) Schematic atomic structure of SL-Sb with top and
side views. (b) Band structure and DOS calculated for two different
values of the bias potential. Zero energy corresponds to the center
of a band gap. (c) and (d) show the Fermi contour around the band
edges for holes and electrons, respectively. The red and blue color
correspond to Vbias = 0.0 and 1.5 eV, respectively.
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�-point and the conduction-band minimum located at the �-
point along the �-M direction of the Brillouin zone. Due to
the presence of inversion symmetry in SL-Sb, the electronic
bands are doubly degenerate with respect to the spin degrees
of freedom. This degeneracy is lifted when the inversion sym-
metry is broken, i.e., in the presence of an external electric
field normal to the SL-Sb surface. The degree of the resulting
band splitting is dependent on the gate voltage, which opens
up the possibility for a controllable modification of the trans-
port and optical properties of SL-Sb [32,33]. In the context of
the magnetic response, we expect that the transitions emerging
due to the band splitting will contribute to the orbital suscep-
tibility, as well as affect the Landau levels. It is also worth
noting that the effect of a vertical electric field induces a slight
enhancement of the band gap.

Figures 2(c) and 2(d) show the Fermi surfaces of hole-
and electron-doped SL-Sb with the carrier concentration of
n = 1 × 1014 cm−2. From Fig. 2(c), one can see that the
hole Fermi surface forms a circle around the �-point. When
the bias voltage is applied, the Fermi surface splits into two
concentric circles as a result of the spin splitting. The situation
with the electron states is different. In this case [Fig. 2(d)], the
conduction-band minimum is located at the �-point, forming
six valleys around the zone center. Each pocket of the Fermi
surface is slightly anisotropic and has an elliptical shape.
Similar to the hole case, each pocket splits into two ellipses if
the bias potential is applied. Considering a pronounced mod-
ification of the band structure and the Fermi surface, one can
expect a variation of the orbital part of the magnetic response
in SL-Sb with respect to the bias voltage.

B. Magnetic susceptibility

In Fig. 3, we show three distinct contributions to the orbital
susceptibility: χinter, χintra, and χcore calculated as a function
of the chemical potential for different bias voltages. One can
see that the interband contribution is paramagnetic (χ > 0)
for most of the chemical potentials considered. In contrast, the

FIG. 3. Individual interband (χinter), intraband (χintra), and core
electron (χcore) contributions to the orbital part of magnetic sus-
ceptibility (χorb) of SL-Sb calculated as a function of the chemical
potential μ for different values of the bias voltage Vbias.

intraband contribution is mostly diamagnetic (χ < 0). This is
consistent with the Landau-Peierls theory, predicting diamag-
netism for systems with effective masses of carriers such that
m < 1/

√
3m0, which is fulfilled in SL-Sb [31]. In doped SL-

Sb, the interband contribution is always larger, resulting in the
net paramagnetic response, and emphasizing the importance
of the interband effects in the susceptibility. On the other hand,
core electrons provide a significant diamagnetic response that
is approximately five times larger than the band susceptibility
in the gap region. When the bias voltage is applied, the shape
of the orbital susceptibility changes as a result of the spin
splitting. This leads to a reduction of the intra and interband
contributions.

From Fig. 3, one can see that the application of a sizable
bias voltage changes χinter near the valence-band edge from
paramagnetic to strongly diamagnetic. In this case, χintra and
χinter terms are summed up rather than compensate each other,
leading to a pronounced diamagnetic peak. On the other hand,
as far as the conduction band is concerned, neither χintra

nor χinter changes its behavior, and they remain diamagnetic
and paramagnetic, respectively. Within the energy gap, the
interband susceptibility is decreased when the bias voltage
is applied, even demonstrating a transition from paramag-
netic to diamagnetic response at Vbias = 1.5 eV. Nevertheless,
the susceptibility of undoped SL-Sb is almost exclusively
determined by the diamagnetic core contribution, which is
bias-independent.

The total magnetic susceptibility of SL-Sb, along with
the orbital and spin contributions, is shown in Fig. 4. In the
gapped region the spin susceptibility vanishes, making the
orbital response the only factor determining the total magnetic
susceptibility in undoped SL-Sb. In this case, the resulting
susceptibility is diamagnetic with χ ≈ −1.0χ0. If the bias
voltage is applied, this value changes slightly, reaching χ ≈
−1.4χ0 at Vbias = 1.5 eV. By magnitude, such a response is
comparable with the diamagnetic response of water [66]. In
absolute values, the orbital response is an order of magnitude
larger than the paramagnetic plateau in graphene [44,45,56].

FIG. 4. Total magnetic susceptibility of SL-Sb calculated as a
function of the chemical potential μ for different values of the bias
voltage Vbias.

155412-5



G. V. PUSHKAREV et al. PHYSICAL REVIEW B 102, 155412 (2020)

It is worth noting that for bulk Sb crystal the magnetic re-
sponse is also diamagnetic with the experimental value χexp ≈
−1 × 10−4 cm3/mol [67,68], which can be translated into
∼ − 6.0χ0, meaning that the magnetic response in SL-Sb is
an order of magnitude smaller. This can be attributed to the
metallic behavior of bulk Sb, giving rise to a nonzero intra-
band contribution to the susceptibility.

Interestingly, electron-doped SL-Sb demonstrates a param-
agnetic behavior as can be seen from Fig. 4. Spin contribution
in the conduction-band region is comparably large and gives a
strong paramagnetic contribution for every Vbias considered.
Nevertheless, the total susceptibility for the case of light
electron doping can be effectively reduced by increasing the
bias voltage. Moreover, the application of a large enough bias
voltage leads to a sign change in the total susceptibility for the
above-mentioned case, making the net response diamagnetic.
In contrast, the total susceptibility of hole-doped SL-Sb is
diamagnetic. The bias voltage does not change the diamag-
netic behavior, yet at Vbias � 1.0 eV one can see the formation
of a diamagnetic divergence at the valence-band edge. It is
worth noting that strong electric fields may be required to
realize such bias voltage in SL-Sb, which is quite challenging
experimentally. Possible ways to overcome this issue include,
for example, interface engineering with polar semiconductors
[69], or heavy doping by alkali metals [70].

C. Bias-dependent Landau levels

To study the influence of moderate magnetic fields on the
electronic spectrum of SL-Sb, we consider the first Landau
levels for electrons and holes in the presence of the bias po-
tential. We perform calculation with the SO coupling constant
λ = 0.34 eV, which is consistent with the intra-atomic SO
strength of neutral Sb atoms [71] and was used in previous
TB studies of SL-Sb [31,32]. As can be seen from Fig. 5(a),
for electron-doped SL-Sb the gating leads to the formation of
a gap between upper and lower bands even at zero magnetic
field, in agreement with the band structure shown in Fig. 2(c).
One can also see that the position of the Landau levels on the
energy scale depends on Vbias, which is again related to the
corresponding position of the conduction-band minimum. All
the electronic levels accurately follow a linear dependence as
a function of the magnetic field. In contrast, the hole levels
exhibit a deviation from the linear dependence at Bz > 20 T,
suggesting the presence of high-order terms in Bz [Fig. 5(b)].
Also, in the case of holes, there is no energy gap at zero

FIG. 5. First Landau levels calculated for (a) electrons and
(b) holes in SL-Sb using different values of Vbias. Lines are obtained
from the linear regression.

FIG. 6. Dependence of the calculated g-factor on the bias poten-
tial Vbias for (a) electrons and (b) holes in SL-Sb using various values
of the SO coupling constant λ. Curves are obtained using Akima
splines.

field, which can be attributed to a high-symmetry position of
the valence-band minimum. The obtained dependencies can
be used to estimate the bias-dependent g-factors for electrons
and holes in SL-Sb. We note that the presence of nonlinear
terms in the Landau fan diagram for holes means that the
corresponding g-factor is field-dependent. However, since the
deviation at moderate fields below 35 T is not significant, we
neglect the mentioned nonlinearity and fit the energy levels by
linear functions, i.e., as E±(Bz ) = e0 ± gμBBz/2.

We find that the g-factors of electrons and holes are signif-
icantly different from each other. Even without external bias
field, we obtain ge ≈ 2.33 and gh ≈ 6.48. When we increase
the bias voltage slightly, ge decreases rapidly and tends to
≈0.1 at Vbias = 1.5 eV, as is shown in Fig. 6(a). In the case
of holes [Fig. 6(b)], gh remains almost unaffected by small
bias voltages, and it decreases linearly after Vbias ≈ 0.75 eV,
approaching gh ≈ 3.0 at Vbias = 1.5 eV. Therefore, strong
SO coupling in SL-Sb significantly affects its hole g-factor,
whereas both electron and hole g-factors can be effectively
tuned by an external electric field. Overall, both ge and gh

decrease with Vbias, which is consistent with the behavior of
orbital susceptibility (Sec. III B), tending to be diamagnetic at
increasing Vbias.

To gain more insight into the behavior of g factors, we
consider two additional values of the SO coupling constants
λ = 0.2 and 0.05 eV, which correspond to the intra-atomic
SO coupling in arsenic (As) and phosphorus (P) [71], whose
2D phases have electronic and crystal structures similar to
antimony [72]. As expected, for decreasing λ the factors ge

and gh tend to the value of 2 irrespective of the applied
bias. Importantly, even for small λ one can see a notable
deviation of the g-factor from 2 at large Vbias, meaning that
similar effects could be observed in SL-As and SL-P. As for
the dependence g versus Vbias, the overall behavior does not
change significantly either for electrons or for holes, as can be
seen from Fig. 6. However, the SO coupling leads to a smaller
splitting of the Landau levels for electrons at increasing bias,
thus ge becomes less sensitive to Vbias at small λ.

IV. CONCLUSION

In this paper, we have systematically studied the mag-
netic response of SL-Sb in weak and in moderate fields
using the TB formalism including the SO coupling and ex-
ternal bias potential. Our results show that undoped SL-Sb
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demonstrates a diamagnetic response, which is about one
order of magnitude smaller than in its bulk counterpart. In
contrast, electron-doped SL-Sb is found to be paramagnetic
with the susceptibility controllable by the external electric
field. At large enough fields and light dopings, the suscep-
tibility can even be switched to the diamagnetic one. The
paramagnetic behavior is attributed to the relatively large spin
susceptibility at the conduction-band edge, which is com-
pensated by the orbital susceptibility if the bias voltage is
applied. In turn, the switching mechanism is mainly related
to the suppression of interband susceptibility as a result of the
bias-induced spin splitting of energy bands.

Additionally, we examined the Landau levels for electrons
and holes in SL-Sb, which allowed us to estimate the bias-
dependent g-factors. We find that the g-factors for electrons

and holes are significantly different from each other, yield-
ing ge ≈ 2.33 and gh ≈ 6.48, respectively, without external
bias. If the bias voltage is applied, the g-factors are reduced
significantly in both cases, but they remain positive for any
meaningful bias potentials. Despite significantly weaker SO
coupling, we expect qualitatively similar results in isostruc-
tural phases of SL-As and SL-P. Thus, our results can motivate
further experimental studies of group-V 2D hexagonal semi-
conductors aimed at the verification of unusual magnetic
response in these materials.
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