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Electron-electron scattering and transport properties of spin-orbit coupled electron gas
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We calculate the electrical and thermal conductivity of a two-dimensional electron gas with strong spin-orbit
coupling in which the scattering is dominated by electron-electron collisions. Despite the apparent absence of
Galilean invariance in the system, the two-particle scattering does not affect the electrical conductivity above
the band-crossing point where both helicity bands are filled. Below the band-crossing point where one helicity
band is empty, switching on the electron-electron scattering leads only to a limited decrease in the electrical
conductivity so that its high-temperature value is independent of the scattering intensity. In contrast to this,
thermal conductivity is not strongly affected by the spin-orbit coupling and exhibits only a kink as the Fermi
level passes through the band-crossing point.
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I. INTRODUCTION

Two-dimensional (2D) systems with spin-orbit coupling
(SOC) are key components of spintronics devices [1]. Apart
from this, they possess a nontrivial structure of energy bands,
which makes their charge- and heat-transport properties an
interesting subject of research. So far, the main attention was
focused on 2D SOC systems with purely elastic scattering
[2–6]. In particular, it was found that the impurity-related
resistivity exhibits an unconventional dependence on the elec-
tron density [2,4]. Far less attention was given to the effects of
inelastic scattering. Meanwhile, it is of interest to find out how
the electrical and heat conductivity are affected by electron-
electron collisions. Typically, this scattering affects thermal
conductivity but does not contribute to electrical conductivity
in the absence of umklapp processes, which change the total
quasimomentum of colliding electrons by a reciprocal-lattice
vector [7,8] and take place only if the size of Fermi surface
is comparable with that of the Brillouin zone. However, due
to the absence of Galilean invariance in systems with SOC, it
may give a nonzero contribution to both of these quantities.

The Rashba spin-orbit coupling [9] splits the electron
spectrum into the upper and lower helicity bands where the
electron spin is locked to its momentum clockwise or coun-
terclockwise. These bands cross at only one point on the
momentum plane and the Fermi surface is doubly connected
both above and below the corresponding energy. The effect
of electron-electron scattering on the electric conductance in
multiband electron systems was considered in a number of
papers [10–13], and it was found to give a contribution to
the resistivity proportional to the square of temperature T .
We show that this contribution exists in 2D SOC systems
only below the band-crossing point. Moreover, it follows the
T 2 dependence only if the electron-electron scattering is ac-
companied by a much stronger impurity scattering. As the
temperature increases, the inelastic contribution saturates and
the resistivity tends to a limiting value which is determined
only by the elastic scattering, in violation of Matthiessen’s

rule. In contrast to this, the thermal conductivity limited by
electron-electron scattering follows the T −1 ln−1(EF /T ) tem-
perature dependence characteristic of 2D systems [14] both
below and above the band-crossing point, whereas its depen-
dence on the chemical potential shows a kink at this point.

The rest of paper is organized as follows. In Sec. II, we de-
scribe the model and write down the kinetic equations for the
general case. In Sec. III, we calculate the electrical conductiv-
ity in the presence of electron-electron and electron-impurity
scattering and consider the limiting cases. In Sec. IV, the
thermal conductivity is calculated in the presence of electron-
electron scattering alone, and finally Sec. V contains the
discussion of the results. The details of calculations are given
in the Appendices.

II. MODEL AND GENERAL EQUATIONS

We consider a 2D electron gas with strong Rashba
spin-orbit coupling and weak electron-electron and electron-
impurity interactions, which will be treated as perturbations.
If the gas resides on the xy plane, the unperturbed Hamiltonian
is of the form

Ĥ = p̂2
x + p̂2

y

2m
+ α(σ̂x p̂y − σ̂y p̂x ), (1)

where α is the Rashba coupling constant and σ̂x,y are the Pauli
matrices. This Hamiltonian is easily diagonalized, and this
results in two branches of the spectrum,

εν (p) = p2
x + p2

y

2m
+ να

√
p2

x + p2
y, ν = ±1, (2)

which are shown in Fig. 1(a). These branches give rise to two
bands that intersect at only one point at the origin. Although
the upper branch ε1(p) monotonically increases, the lower
branch exhibits a minimum ε−1(p0) = −ESO, where p0 = mα

and ESO = mα2/2. This suggests that the Fermi surface of the
electron gas is doubly connected at the Fermi energy EF both
below and above the band-crossing point and consists of two
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(b)(a)

FIG. 1. (a) Three-dimensional (3D) plot of the lower and upper
helicity bands touching each other at the Dirac point. (b) The doubly
connected Fermi surface above and below the Dirac point. The ar-
rows show the directions of spin at the corresponding Fermi contours,
and the filled states are hatched with the colors of the corresponding
band. Black arrows denote the directions of velocity.

concentric circumferences. However, at EF < 0, the occupied
electron states form a ring between these contours, and the
directions of velocity at them are opposite. On the contrary,
the velocities at both Fermi contours at EF > 0 are aligned
in the same direction, see Fig. 1(b). The corresponding wave
functions are spinors whose components correspond to the
spin projection on the z axis σ = ±1/2,

ψpν (r) = 1√
2

eipr/h̄

(
eiχp/2

νe−iχp/2

)
, (3)

with χp = arctan(px/py), so the spin is locked to the momen-
tum and its component perpendicular to p is ±1/2. The sign of
this component determines the helicity of the corresponding
band.

A response of a fermionic system with weak scattering to
slow-varying external fields is conveniently described by the
standard kinetic equation of the form [15]

∂ fν
∂t

+ ∂εν

∂ p
∂ fν
∂r

+ eE
∂ fν
∂ p

= I imp
ν + Iee

ν , (4)

where I imp
ν and Iee

ν describe collisions of electrons with impu-
rities and with each other. Note that the electron distribution
function fν (p, r) is the probability of finding an electron in
state |ν, p〉 at point r as in Ref. [5] and not the probability of
finding there an electron with z projection of spin Sz = ±1/2
as in many papers on spin transport [16]. This allows us to
write the collision integrals in the standard form

I imp
ν (p) =

∑
ν ′

∫
d2 p′

(2π h̄)2
W νν ′

pp′ δ(εν − εν ′ )

× [ fν ′ (p′) − fν (p), ] (5)

and

Iee
ν (p) =

∑
ν1

∑
ν2

∑
ν3

∫
d2 p1

(2π h̄)2

∫
d2 p2

(2π h̄)2

∫
d2 p3

× δ(p + p1 − p2 − p3)δ(εν + εν1 − εν2 − εν3 )

×W νν1,ν2ν3
pp1,p2 p3

[(1 − f )(1 − f1) f2 f3

− f f1(1 − f2)(1 − f3)]. (6)

We assume that pointlike impurities with concentration ni are
described by the potential U (r) = U0δ(r), so the electron-
impurity scattering rate in the Born approximation calculated
using ψν from Eq. (3) equals

W νν ′
pp′ = π

h̄
niU

2
0 [1 + νν ′ cos( p̂, p′)]. (7)

We also assume that, due to the screening by a nearby gate,
the interaction potential is short ranged and may be written
in the form V (r − r′) = V0δ(r − r′). In the Born approxima-
tion, the scattering rate is proportional to the square of the
difference between the matrix element of the direct and the
exchange interaction

|〈pν, p1ν1|V |p2ν2, p3ν3〉 − 〈pν, p1ν1|V |p3ν3, p2ν2〉|2,
where

〈pν, p1ν1|V |p2ν2, p3ν3〉

=
∑

σ

∑
σ ′

∫
dr

∫
dr′ψ (σ )∗

pν (r)

×ψ (σ ′ )∗
p1ν1

(r′)V (r − r′)ψ (σ )
p2ν2

(r)ψ (σ ′ )
p3ν3

(r′). (8)

Making use of the explicit form of ψ (σ )
pν (r) Eq. (3), one easily

obtains that

W νν1,ν2ν3
pp1,p2 p3

= π

2

V 2
0

h̄
[1 − νν1 cos( p̂, p1)]

× [1 − ν2ν3 cos( p̂2, p3)]. (9)

As the spectrum of the system is rotationally symmetric, it
is convenient to seek the linear response to the electric-field E
or the temperature gradient ∇T in the form

fν (p) = f̄ (εν ) + Cν (p) f̄ (εν )[1 − f̄ (εν )] cos ϕ, (10)

where f̄ is the equilibrium Fermi distribution, p is the abso-
lute value of p, and ϕ is the angle among E or ∇T and p.
The temperature is assumed to be low, so the nonequilibrium
correction to f̄ is nonzero only near the Fermi energy. With
this substitution, the linearization of Eq. (6) results in the
replacement of the distribution-dependent factor in it by the
expression [17],(

Cν2 cos ϕ2 + Cν3 cos ϕ3 − Cν cos ϕ − Cν1 cos ϕ1
)

× (1 − f̄ )(1 − f̄1) f̄2 f̄3. (11)

To proceed further, it is convenient to replace the integration
variables pi in Eq. (6) by εi and ϕi. This replacement is
straightforward at ε > 0 because p is a single-valued function
of energy for both spectrum branches, but, at ε < 0, there is
only one branch ν = −1, and any value of ε corresponds to
two values of p (see Fig. 1). To overcome this difficulty, we
replace the branch indices ν in Eq. (4) by indices μ = ±1
that correspond to the smaller and larger momenta for a given
ε, hence, pμ(ε) are single-valued functions. A substitution
of Eq. (10) into the collision integral with impurities Eq. (5)
gives

I imp
μ (ε, ϕ) = −�0 cos ϕ f̄ (1 − f̄ )

× (pμ + 2 p−μ)Cμ + sgn εp−μC−μ

pμ + p−μ

, (12)
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where �0 = niU 2
0 (pμ + p−μ)/4h̄3|vμ| and v−1

μ = ∂ pμ/∂ε.
Defined in this way, �0 exhibits a peculiarity at the bottom
of the lower helicity band due to the singularity in the density
of states but is constant at high energies.

The calculation of the electron-electron collision integral is
much more involved. Assuming that all the quantities except
the distribution functions are energy independent near the
Fermi level and calculating the phase volume available for the
scattering of electrons with given energies as in Ref. [18] (see
Appendix A for the details), one finally obtains

Iee
μ (ε, ϕ) = 2 cos ϕ

�2

T 2

∫
dε′K (ε, ε′)

{
Qμ[Cμ(ε′) − Cμ(ε)]

+μ

pμ C−μ(ε′) − p−μCμ(ε′)
pμ + p−μ

+
∑
μ1

Rμμ1 [Cμ1 (ε′) − Cμ1 (−ε′)]

}
, (13)

where �2(T ) = V 2
0 T 2(pμ + p−μ)/32π3h̄5|vμ|3 is the effec-

tive rate of electron-electron collisions,

K (ε, ε′) = [1 − f̄ (ε)]
ε − ε′

e(ε−ε′ )/T − 1
f̄ (ε′), (14)

and all the energies are measured from EF .
The first term in Eq. (13) is similar to the expression

that arises in 2D conductors with a singly connected Fermi
surface. The coefficient Qμ diverges at T → 0 and its most
singular part is of the form

Qμ = 4
pμ + 3p−μ

pμ + p−μ

ln
EF

T
, (15)

but this term vanishes for Cμ(ε) = const and does not affect
the electric resistivity if taken alone. The logarithmic singular-
ity in the scattering rate of 2D electrons with singly connected
Fermi surfaces is known to result from their head-on or small-
angle collisions [19,20]. In the case of the doubly connected
Fermi surface, the singularity in Eq. (15) arises not only from
the scattering processes within the same Fermi contour, but
also from the processes in which two pairs of the involved
states, initial or final, belong to the same Fermi contours (see
Fig. 2). In this figure, available for the scattering states are lo-
cated at the intersections of two Fermi contours, one of which
is shifted by the total momentum of colliding electrons. It is
clearly seen that when their momenta are aligned or oppositely
directed so that ϕ − ϕ1 = 0 or ϕ − ϕ1 = π , these contours
become tangent rather than intersecting, hence, the phase
space available for scattering sharply increases. Depending
on the specific indices ν . . . ν3, one of these singularities is
suppressed by the angle-dependent factors in Eq. (9).

The third term in Eq. (13) also presents an extension of a
similar contribution for a singly connected Fermi surface and
contains low-temperature logarithmic singularities of the form

Rμμ1 = 8
[
sgn EF − 2 δμμ1�(EF )

] pμ1

pμ + pμ1

ln
EF

T
, (16)

but is zero for any even Cμ(ε). This term does not contribute
to the electric conductivity but is essential when dealing with
thermal transport.

(b)(a)

FIG. 2. The origin of the logarithmic singularity in Eq. (15). If
an electron with momentum p from the outer Fermi contour collides
with an electron with momentum p1 from the inner contour, and they
are scattered again to different contours, the states p1 must lie at the
intersections of two Fermi contours, one of which is shifted by p +
p1. If p and p1 are parallel or antiparallel, these contours become
externally or internally tangent rather than intersecting, and, hence,
the number of states participating in the scattering sharply increases.

The second term in Eq. (13) has no analog for a singly
connected Fermi surface and is of special interest because
it does not vanish for arbitrary energy-independent Cμ. The
specific form of this term is best understood by comparing the
first factor in Eq. (11) with the argument of the momentum
δ function in Eq. (6). As this argument must be zero for all
collisions that satisfy momentum conservation, its projection
on the direction of E or ∇T immediately gives

pμ2 cos ϕ2 + pμ3 cos ϕ3 − pμ cos ϕ − pμ1 cos ϕ1 = 0.

Therefore, the first factor in Eq. (11) turns into zero if
Cμ/pμ = Cμ1/pμ1 = Cμ2/pμ2 = Cμ3/pμ3 , and, hence, the re-
sulting expression is proportional to pμC−μ(ε′) − p−μCμ(ε′).
The factors μ are given by integrals that can be calculated
only numerically (see Appendix A). The μ(EF ) curves are
shown in Fig. 3. Both of them exhibit a logarithmic singu-
larity at the bottom of the lower helicity band EF = −SSO

and tend to the same value ±1 = 16 at EF 	 ESO. However,
1 monotonically decreases with increasing EF , whereas −1

first decreases to zero at EF = 0 and, then, increases again.
The kinks in μ at EF < 0 are due to the closure of scattering
channels with three electron states at the inner Fermi contour
and one at the outer contour at p1 = 3p−1. Note that unlike
Qμ and Rμμ1 , μ do not have a low-temperature logarithmic

FIG. 3. The dependences of μ on EF /ESO.

155411-3



K. E. NAGAEV AND A. A. MANOSHIN PHYSICAL REVIEW B 102, 155411 (2020)

singularity. This is because at ϕ − ϕ1 = 0 and ϕ − ϕ1 = π ,
the quadrangles in Fig. 2 collapse into segments, and the first
factor in Eq. (11) turns into zero regardless of the ratio of
C1 to C−1. This term appears to be of crucial importance in
calculating the electrical conductivity of a 2D electron gas.

III. ELECTRICAL CONDUCTIVITY

In the linear approximation in the electric field, the Boltz-
mann equation Eq. (4) assumes the form

eEvμ cos ϕ
∂ f̄

∂ε
= I imp

μ (ε, ϕ) + Iee
μ (ε, ϕ), (17)

where I imp
μ and Iee

μ are given by Eqs. (12) and (13). As the
perturbation on the left-hand side is an even function of ε

and both collision integrals conserve parity, the solutions for
Cμ are also even in ε, and the last term in Eq. (13) may be
discarded. To solve the system of resulting integral equations,
we use the method pioneered in Ref. [21] and introduce new
variables,

ρμ(ε) = [ f̄ (1 − f̄ )]1/2Cμ(ε). (18)

As a result, the kernel K (ε, ε′) of the integral in Eq. (13) is
replaced by a function of ε′ − ε, and the integral equations
(17) may be brought to the differential form by the Fourier
transform,

ρ̃μ(u) =
∫

dε e−iεuρμ(ε). (19)

Furthermore, an introduction of the new independent variable
ξ = tanh(πTu) brings these equations to the form

�2

[
Qμ(L̂ + 2)ρ̃μ − 2μ

p−μρ̃μ − pμρ̃−μ

pμ + p−μ

]
− 1

π2

�0

1 − ξ 2

(pμ + 2p−μ)ρ̃μ + sgn EF p−μρ̃−μ

pμ + p−μ

= −π−1eEvμ(1 − ξ 2)−1/2, (20)

where L̂ stands for the differential operator,

L̂φ = ∂

∂ξ

[
(1 − ξ 2)

∂φ

∂ξ

]
− φ

1 − ξ 2
. (21)

The eigenfunctions of this operator involve Jacobi polyno-
mials and are proportional [22] to (1 − ξ 2)1/2P(1,1)

m (ξ ) with
the corresponding eigenvalues −(m + 1)(m + 2). As ρ̃μ are
even functions of ξ , it is convenient to present them as series
expansions over the normalized even-number eigenfunctions
φm of operator L̂,

ρ̃μ(ξ ) =
∞∑

m=0

γμmφ2m(ξ ). (22)

A substitution of these expansions into Eqs. (20) and their
projection on the same set of functions results in an infinite
system of equations,

2�2

[
m(2m + 3) Qμγμm + μ

p−μγμm − pμγ−μm

pμ + p−μ

]

+ �0

π2

∞∑
n=0

Ymn
(pμ + 2p−μ)γμn + sgnEF p−μγ−μn

pμ + p−μ

= π−1eEvμXm, (23)

where Xm and Ymn depend only on m and n with explicit
expressions given in Appendix B. Once the quantities γμm are
known, the distribution functions fμ may be restored using
Eqs. (22), (19), (18), and (10), which results in the density of
electric current of the form

j = e

8π2h̄2

∑
μ

pμsgn vμ

∑
m

Xmγμm. (24)

First consider the case where only the impurity scattering
is present. The solution of Eq. (23) is

ρ̃ imp
μ (ξ ) = 2

√
3π

3

eEvμ

�0

pμ

pμ + p−μ

φ0(ξ ), (25)

which results in the current density,

jimp = 1

4π
E

e2

h̄2

v1

�0

p2
1 + p2

−1

p1 + p−1
(26)

equivalent to the one obtained in Refs. [2,4].
As vμ are equal and positive for both Fermi contours at

EF > 0, the solution Eq. (25) also turns into zero the term
resulting from electron-electron collisions, so they do not
affect the resistivity. This is due to the specific form of the
electron distribution Eq. (25), which results from the particu-
lar probability of impurity scattering Eq. (7) and, hence, from
the assumption of short-ranged impurity potential. Therefore,
this is not a universal property of 2D SOC electron systems
(see Appendix C).

Below the band-crossing point, vμ are equal in magni-
tude but are of opposite signs at both Fermi contours, hence,
the distribution Eq. (25) does not turn Iee

μ into zero and
the electron-electron scattering is essential. First, we cal-
culate the correction to the current from electron-electron
collisions treating them as a perturbation in the case of a
strong impurity scattering. This is conveniently performed by
means of Eq. (20) as the zero-approximation distribution (25)
eliminates in it the term proportional to Qμ that contains a
differential operator. Therefore, the solution for the first-order
correction is straightforward, and one obtains the corrections
to ρ̃

imp
μ (ξ ) proportional to (1 − ξ 2)3/2. The correction to the

current,

δ jee = −2πe2E

3h̄2

�2

�2
0

v1
p1 p−1

[
p2

−1−1 + p2
11

]
(p1 + p−1)3

(27)

is proportional to T 2 in agreement with Ref. [13] and does not
contain a logarithm of T as one might expect for a 2D system.
Quite predictably, it tends to zero at the band-crossing point
where the inner Fermi contour shrinks to a point and p−1 = 0.
It diverges as the Fermi level approaches the bottom of the
lower helicity band due to the singularity in the density of
states, but it only means that the perturbative approach fails
there.

Consider now the opposite case of strong electron-electron
scattering. It is easily seen that if one simply sets �0 = 0,
the system of Eqs. (23) for m = 0 becomes degenerate be-
cause its left-hand side is made zero by any distribution with
γ10/γ−10 = p1/p−1. To avoid this, one has to introduce in
Eqs. (23) a very weak impurity scattering. It results only in
corrections of the order 1/�2 for γμm with m �= 0, but the
leading terms in γμ0 appear to be proportional to 1/�0. The
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FIG. 4. The dependences of conductivity σ on EF in the case of
strong (solid line) and weak (dashed line) electron-electron scattering
for the same impurity-scattering rate given by Eqs. (28) and (26). The
conductivity is normalized to its value σ0 = e2 h̄α2/πniU 2

0 at EF = 0.
At EF > 0, the electron-electron scattering has no effect on σ .

leading contribution to the current density equals

jee = E
e2

4π h̄

v1(p1 + p−1)

h̄�0

×
(
p2

1 − p2
−1

)
(−1 − 1)(

p2
1 − p2

−1

)
(−1 − 1) + 2p1 p−1(1 + −1)

. (28)

Although this current density is inversely proportional to the
impurity-scattering rate, such as Eq. (26), it is somewhat
smaller and has a different dependence on EF (see Fig. 4).
The ratio jimp/ jee reaches its minimum value of ∼0.66 at
EF /ESO ≈ −0.85. The two curves merge at EF = −ESO and
EF = 0. The temperature dependence of conductivity may be
obtained by truncating the infinite series Eq. (22) to a finite
number of terms and numerically solving the system (23). The
resulting curve is shown in Fig. 5 for EF = −0.85ESO and
exhibits a saturation of conductivity with increasing tempera-
ture.

IV. THERMAL CONDUCTIVITY

As electron-electron collisions do not conserve heat flux,
they generally limit thermal conductivity even in the absence
of additional scattering mechanisms, so there is no need to
include an additional impurity scattering. If the perturbation
is caused by a gradient of temperature, the equation for the
linear response is of the form

vμ|∇T | ε

T 2
f̄ (1 − f̄ ) cos ϕ = Iee

μ . (29)

We seek again the distribution function of electrons in the
form (10), but now Cμ’s are odd functions of ε according to
the symmetry of perturbation. For this reason, the last term in

FIG. 5. The temperature dependence of normalized conductivity
for EF = −0.85ESO obtained by a numerical solution of Eqs. (23).

Eq. (13) does not vanish, but, instead, the second term may
be omitted because it does not contain the ln(EF /T ) factor.
Hence,

Iee
μ = −8 cos ϕ

�2

T 2
ln

EF

T

∫
dε′ K (ε, ε′)

× [(pμ + 3p−μ)Cμ(ε) + (pμ − p−μ)Cμ(ε′)

− 4 sgn EF p−μC−μ(ε′)](pμ + p−μ)−1. (30)

By repeating the steps described by Eqs. (18) and (19) in the
previous section, one arrives at the equation,

[(pμ + 3p−μ)L̂ − 2(pμ − p−μ) + 8 sgn EF p−μ]ρ̃μ

= − i

4

|∇T |vμ(pμ + p−μ)

�2 ln(EF /T )

ξ√
1 − ξ 2

. (31)

As the right-hand side of this equation is an odd function of ξ ,
this equation can be solved by expanding ρ̃μ over odd-number
eigenfunctions φ2m+1 of operator L̂. In the absence of impurity
scattering, this system becomes uncoupled for different m’s
and is easily solved. The heat flux q is obtained as an infinite
series over m, and the thermal conductivity κ = q/|∇T | is of
the form

κ = − T v1(p1 + p−1)

64π h̄2�2 ln(EF /T )

∞∑
m=0

4m + 5

Sm(Sm + 1)

× (3Sm − 1)(p1 + p−1)2 − 4(Sm − 3)p1 p−1

(3Sm − 1)(p1 + p−1)2 + 4(Sm − 3)p1 p−1
, (32)

where Sm = (m + 1)(2m + 3). The temperature dependence
of thermal conductivity follows the same [T ln(EF /T )]−1 law
as for a 2D electron gas without SOC [14]. Its dependence on
the Fermi level is shown in Fig. 6. Although the expression for
κ (32) does not explicitly depend on the sign of EF , it exhibits
a kink at EF = 0 because the derivative of the smaller Fermi
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FIG. 6. The dependence of the thermal conductivity κ on the
Fermi energy given by Eq. (32). The dashed line shows the con-
tribution from the inner Fermi contour. The thermal conductivity is
normalized to its value κ0 ≈ 2.77h̄3α4/V 2

0 T at EF = 0.

momentum d p−1/dEF changes its sign at this point.The rela-
tive change in the slope is

dκ/dEF |+0

dκ/dEF |−0
≈ 0.83. (33)

This relation is free from any unknown parameters and can
serve as an experimental test of the considered model. The
negative jump of the derivative dκ/dEF results from the
peculiarity in the scattering of electrons on the outer Fermi
contour by the electrons on the inner Fermi contour at the
band-crossing point. On the contrary, the heat flux carried by
the electrons on the inner contour turns into zero at this point
and, therefore, exhibits a positive jump of derivative.

V. DISCUSSION

The effects considered in previous sections are best ob-
served in 2D electron systems with strong SOC, such
as InAS, which exhibits Rashba parameter h̄α = 1.2 eVÅ
[23]. The temperature should be sufficiently low to sup-
press the electron-phonon scattering, which is proportional
to T 4.5 in 2D systems [24]. Furthermore, the parameter of
electron-electron scattering �2 has to be larger than the
impurity-scattering parameter �0. At T = 2 K, the electron
concentration 1010 cm−2, and the gas-gate distance of 20 nm,
one obtains the transport scattering length lee = |vμ|/�2 ∼
250 nm. This is well below the elastic mean free path of
800 nm reported very recently in InAs 2D electron gas in
Ref. [25], so the regime of dominant electron-electron scat-
tering may be achieved for realistic parameters of the system.

Whereas the thermal transport in 2D electron systems with
strong electron-electron scattering is only slightly affected by

SOC, its effects on charge transport in these systems are much
less trivial. In the absence of SOC, this type of scattering
does not affect charge transport at all because of momentum
conservation. One may think that the emergence of a double
Fermi contour will lift this constraint and the electron-electron
collisions will become the dominant mechanism of current
relaxation but this is not the case. The reason is that a certain
type of perturbation involving the electron distributions on
both contours is not affected by them. As a result, increas-
ing the intensity of electron-electron scattering does not fully
suppress the current induced by the applied electric field [26].
Instead, this current decreases only to a finite value, which is
determined by other mechanisms of scattering and depends on
their details as well as those of electron-electron interaction.
Although we performed explicit calculations for a pointlike
interaction potential, these conclusions are qualitatively valid
for its arbitrary shape.

The partial nature of current relaxation via electron-
electron collisions is not unique to 2D systems with SOC.
The existence of the perturbation immune to electron-electron
collisions is a general property of systems with a multiply con-
nected Fermi surface, which results from the momentum and
energy conservation and the structure of the electron-electron
collision integral. This perturbation is unaffected even by
triple electronic collisions [27] because they obey the same
conservation laws. Therefore, a similar partial relaxation of
the current by these collisions may be observed in a broad
class of 2D and 3D systems. Possible candidates are graphene
with Zeeman-shifted Dirac points or 2D systems without SOC
but with two filled transverse subbands.
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APPENDIX A: ANGULAR INTEGRATION IN THE
COLLISION INTEGRAL

Here, we present a derivation of the collision integral
Eq. (13) for the case where EF > 0. The extension to negative
EF is straightforward. We start with Eqs. (6) and (11) and step
by step eliminate the integrations over momentum angles in
them. When integrating over p2 and p3, it is convenient to
measure them with respect to the sum p� ≡ p + p1. It is easily
seen from the cosine theorem that

cos(ϕ2 − ϕ3) = p2
� − p2

2 − p2
3

2p2 p3
, (A1)

where

p2
� = p2 + p2

1 + 2p p1 cos(ϕ1 − ϕ). (A2)

For brevity, we use, here, the notation pi ≡ pμi (εi ). The
cosines of ϕ2 and ϕ3 are conveniently presented in the form

cos ϕ2,3 = cos(ϕ2,3 − ϕ� ) cos ϕ�

− sin(ϕ2,3 − ϕ� ) sin ϕ�. (A3)

It should be noted that the terms with sin(ϕ2,3 − ϕ� ) vanish
upon the integration over p2,3 because of the symmetry and
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the corresponding cosine may be expressed through the cosine
theorem as

cos(ϕ2,3 − ϕ� ) = p2
2,3 + p2

� − p2
3,2

2 p2,3 p�

, (A4)

whereas

cos ϕ� = p cos ϕ + p1 cos ϕ1

p�

. (A5)

Therefore, the two last cosine-dependent factors may be put
before the integrals over p2 and p3. The remaining integral
has been calculated in Ref. [18] and equals∫

d2 p2

(2π h̄)2

∫
d2 p3

(2π h̄)2
δ(εμ2 p2

− ε2)δ(εμ3 p3
− ε3)

× δ(p + p1 − p2 − p3) = 1

4π4h̄4

p2 p3

|v2v3|
�(�)√

�
, (A6)

where

� = [
p2

� − (p2 − p3)2
][

(p2 + p3)2 − p2
�

]
. (A7)

Hence, the integral Eq. (6) may be brought to the form

Iee
μ (ε, ϕ) = cos ϕ

V 2
0

16π3h̄5

∑
μ1

∑
μ2

∑
μ3

∫
dε1

∫
dε2

×
∫

dε3δ(ε + ε1 − ε2 − ε3)(1 − f̄ )(1 − f̄1) f̄2 f̄3

× p1

∫ π

−π

dχ (1 − μμ1 cos χ )

∣∣∣∣Re
Dμ2μ3/2

μ..μ3
(χ )

v1v2v3

∣∣∣∣
× [λμ..μ3Cμ2 +λ̄μ..μ3Cμ3 −cos χCμ1 −Cμ], (A8)

where μ..μ3 stands for μμ1μ2μ3,

Dμ..μ3 = (p2 + p3)2 − p2 − p2
1 − 2pp1 cos χ

p2 + p2
1 + 2pp1 cos χ − (p2 − p3)2

, (A9)

λμ..μ3 = 1

2

p2
2 − p2

3 + p2 + p2
1 + 2pp1 cos χ

p2 + p2
1 + 2pp1 cos χ

× (p + p1 cos χ )/p2, (A10)

and

λ̄μμ1μ2μ3 ≡ λμμ1μ3μ2 . (A11)

If Iee
μ is calculated in the leading approximation to the order

T 2, all the quantities except the distribution functions may be
considered as energy independent near the Fermi level. There-
fore, the integration over ε1 ε2, and ε3 is easily performed, and
the collision integral (6) is brought to the form

Iee
μ (ε, ϕ) = cos ϕ

V 2
0

16π3h̄5

∑
μ1

∑
μ2

∑
μ3

× p1

∫ π

−π

dχ (1 − μμ1 cos χ )

∣∣∣∣Re
Dμ2μ3/2

μ..μ3
(χ )

v1v2v3

∣∣∣∣
×

∫
dε′{K (ε, ε′)[λμ..μ3Cμ2 (ε′) + λ̄μ..μ3Cμ3 (ε′)

−Cμ(ε)] − K (ε,−ε′) cos χCμ1 (ε′)}, (A12)

where K (ε, ε′) is given by Eq. (14). Upon regrouping the
terms in Eq. (A12), one obtains Eq. (13), where

Qμ =
∑
μ1

∑
μ2

∑
μ3

pμ1

pμ + p−μ

∫ π

−π

dχ (1 − μμ1 cos χ )

×�(Dμ..μ3 )Dμ2μ3/2
μ..μ3

, (A13)

μ =
∑
μ1

∑
μ2

∑
μ3

pμ1

p−μ

∫ π

−π

dχ
(
1 − μμ1 cos χ )�(Dμ..μ3 )

×Dμ2μ3/2
μ..μ3

1 − δμμ1 cos χ − 2 δμμ2λμ..μ3

)
, (A14)

and

Rμμ1 =
∑
μ2

∑
μ3

pμ1

pμ + p−μ

∫ π

−π

dχ (1 − μμ1 cos χ )

×�(Dμ..μ3 )Dμ2μ3/2
μ..μ3

cos χ. (A15)

For negative EF , these quantities are given by similar expres-
sions except that the prefactors μμ1 to cos χ and the products
μ2μ3 in the exponents in Eqs. (A13)–(A15) are replaced by 1.

APPENDIX B: EXPRESSIONS FOR EIGENFUNCTIONS
AND EXPANSION COEFFICIENTS

The normalized eigenfunctions of differential operator L̂
defined in Eq. (21) are given by the equation,

φm(ξ ) =
√

(2m + 3)(m + 2)

8(m + 1)

√
1 − ξ 2P(1,1)

m (ξ ), (B1)

where P(1,1)
m (ξ ) are Jacobi polynomials. The quantity (1 −

ξ 2)−1/2 on the right-hand side of Eq. (20) may be presented
as a series,

1√
1 − ξ 2

=
∞∑

m=0

Xmφ2m(ξ ), (B2)

where

Xm =
∫ 1

−1
dξ

φ2m(ξ )√
1 − ξ 2

=
√

4m + 3

(2m + 1)(m + 1)
. (B3)

The matrix elements of 1/(1 − ξ 2) between the eigenfunc-
tions of L̂ are given by the equation

Ymn =
∫ 1

−1
dξ

φ2m(ξ )φ2n(ξ )

1 − ξ 2

= min(m, n) + 1/2

max(m, n) + 1

√
(4m + 3)(m + 1)(4n + 3)(n + 1)

(2m + 1)(2n + 1)
.

(B4)

APPENDIX C: MOMENTUM-DEPENDENT IMPURITY
SCATTERING

If the impurities are rotationally symmetric but of finite
size, the matrix element of electron-impurity interaction de-
pends on the change in electron momentum p − p′ and, hence,
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Eq. (7) assumes the form

W νν ′
pp′ = π

h̄
ni|U (p, p′, ϕ − ϕ′)|2[1 + νν ′ cos(ϕ − ϕ′)], (C1)

where

U (p, p′, ϕ − ϕ′) =
∫

d2rei(p′−p)r/h̄U (r). (C2)

To be definite, we consider the case of positive EF . Using
the ansatz (10) for the distribution function, one obtains the
electron-impurity collision integral in the form

I imp
μ (ε, ϕ) = − cos ϕ f̄ (1 − f̄ )

× (pμ�0μ + p−μ�′
0)Cμ − p−μ�′′

0C−μ

pμ + p−μ

,

(C3)

where

�0μ = π

h̄

ni (pμ + p−μ)

(2π h̄)2v

∫ π

−π

dχ (1 − cos2 χ )

×|U (pμ, pμ, χ )|2, (C4)

�′
0 = π

h̄

ni(pμ + p−μ)

(2π h̄)2v

∫ π

−π

dχ (1 − cos χ )

× |U (pμ, p−μ, χ )|2, (C5)

and

�′′
0 = π

h̄

ni(pμ + p−μ)

(2π h̄)2v

∫ π

−π

dχ cos χ (1 − cos χ )

× |U (pμ, p−μ, χ )|2. (C6)

By solving Eq. (17) with Iee
μ = 0, one immediately obtains the

ratio,

Cimp
μ

Cimp
−μ

= pμ�′
0 + p−μ(�0,−μ + �′′)

p−μ�′
0 + pμ(�0μ + �′′)

. (C7)

This suggests that, in general, Cimp
μ /Cimp

−μ �= pμ/p−μ, and the
corresponding distribution function does not turn the electron-
electron collision integral into zero.
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