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Excitons and plasmons of graphene nanoribbons in infrared frequencies
in an effective-mass approximation
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Effects of electron-electron interactions on the optical response of graphene nanoribbons are theoretically
investigated in an effective-mass approximation in a comprehensive manner. In optical absorption spectra of
armchair and zigzag nanoribbons without and with doping, excitons, which are bound states of electrons and
holes, and plasmons manifest themselves as various prominent peaks. For light polarized parallel to nanoribbons,
exciton peaks at high energies split because of interactions with dark excitons, to which optical transition is
prohibited. For light polarized perpendicular to nanoribbons, in nondoped semiconducting armchair nanoribbons,
moderate exciton peaks appear while in doped armchair and zigzag nanoribbons, only when the Fermi energy
crosses at least two energy bands, large plasmon peaks occur because of a nature of Dirac electrons. These
peaks can be assigned to specific optical transitions in energy bands. The optical absorption peaks arising from
the excitons and plasmons in a wide range of categories of nanoribbons approximately correspond to those of
carbon nanotubes by appropriate scaling of energy and the wave vector.
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I. INTRODUCTION

Graphene nanoribbons are strips of graphene, which is a
single layer of a carbon honeycomb lattice. Among various
graphene nanoribbons, representative structures are armchair
nanoribbons and zigzag nanoribbons. Electronic structure of
graphene nanoribbons has been intensively investigated in
many theoretical studies. Fujita et al. showed that armchair
nanoribbons are metal or semiconductor depending on the
width while zigzag nanoribbons are metal where edge states,
which are states localized near edges, exist at the Fermi energy
and cause spin polarization [1–4]. This is partially modified in
first-principles calculations by Son et al. to that all armchair
and zigzag nanoribbons have energy gaps [5,6]. A method to
detect electronic structure of systems is to measure their opti-
cal response. In low-dimensional systems, electron-electron
interactions can play important roles. In carbon nanotubes,
for example, prominent effects of excitons [7–15], which are
bound states of photoexcited pairs of an electron and a hole,
and plasmons can appear [16–28]. Therefore, understanding
of electron-electron interactions in graphene nanoribbons is
necessary for study of their electronic structure and also for
their applications. The purpose of this paper is to theoretically
clarify effects of electron-electron interactions on optical ab-
sorption of graphene nanoribbons in a comprehensive manner.

In optical absorption spectra of graphene nanoribbons in
one-particle models, peaks appear because of van Hove sin-
gularities of the joint density of states [29–38]. Some of these
peaks change to steep exciton peaks by including attractive in-
teractions between electrons and holes [39–45]. It was shown
in first-principles calculations by Yang et al. [39,40] and
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Prezzi et al. [41] that in narrow armchair and zigzag nanorib-
bons with widths of about one nanometer, excitons exist with
large binding energies of several hundreds of millielectron
volts to one electron volt. In wider armchair nanoribbons
with widths of up to about three nanometers, family patterns
of exciton energy as a function of the width were reported
in a theoretical study [42]. Excitons in narrow nanoribbons
were experimentally observed [46,47]. These studies mainly
focused on the lowest and second lowest excitons in energy.

Plasmons in metallic and doped graphene nanoribbons
have been reported in many theoretical studies [48–53]. It
was shown that the excitation energy of plasmons in metal-
lic and doped nanoribbons vanishes in the long-wavelength
limit as k

√− log(kW ) with k being the wave vector along
nanoribbons and W being the width, which is characteristic of
one-dimensional systems [48,52]. Because of the vanishing
energy of the plasmons in the long-wavelength limit, other
plasmons are often used in experiments for applications in
spectroscopy and sensing [54–56], which are polarized across
nanoribbons with finite excitation energies. These plasmons
have also been theoretically studied [50,57]. Most of these
studies do not fully consider the quantum-mechanical na-
ture of Dirac electrons in nanoribbons partially because wide
nanoribbons are considered, where classical electromagnetic
description works well. However, full quantum-mechanical
calculations of these plasmons would be necessary as clarified
in the case of carbon nanotubes [58–62].

Graphene nanoribbons have often been compared to car-
bon nanotubes because of their similarity in atomic structure
[31,36–38,63]. In theoretical studies, correspondence of en-
ergy bands and optical absorption spectra of armchair (zigzag)
nanoribbons with those of zigzag (armchair) nanotubes was
reported [36–38]. Although one-to-one correspondence was
shown in these studies, such correspondence is expected to
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expand in a wider range of categories of nanoribbons and nan-
otubes because energy bands of nanoribbons and nanotubes
are scaled by the width and the circumference length, respec-
tively, near the Fermi energy [64,65]. Additionally, effects
of excitons and plasmons on the correspondence need to be
investigated, which were not considered in the earlier studies.
Difference between nanoribbons and nanotubes should also
be noted. The width of nanoribbons can become much wider
than the diameter of single-wall nanotubes, where the former
ranges from a subnanometer scale to several hundreds of
nanometers [46,66–75] while the latter is typically of the order
of one nanometer [76–86]. This leads to that for nanoribbons,
energies of excitons and plasmons which are scaled by the
width can be lowered in infrared frequencies as compared to
those for nanotubes, which are typically in near infrared and
visible frequencies. In this case, phenomena associated with
high conduction and low valence bands may be important in
nanoribbons.

In this paper, we theoretically study optical absorption
of graphene nanoribbons with electron correlations in an
effective-mass approximation. In calculated optical absorp-
tion spectra, various prominent peaks are assigned to various
excitons and plasmons, where plasmons polarized across
nanoribbons show characteristic dependence on the Fermi
energy because of a nature of Dirac electrons. Most of these
peaks approximately correspond to those of carbon nanotubes.
However, some exciton peaks at high energies exhibit a char-
acter different from those of nanotubes. The correspondence
exists in a much wider range of categories of nanoribbons
and nanotubes as compared to that reported in the earlier
studies.

The paper is organized as follows: In Sec. II, our model
and method are described. An effective-mass approximation
for armchair and zigzag graphene nanoribbons is reformu-
lated and the random-phase approximation (RPA) describing
excited states with electron correlations is introduced. Optical
absorption spectra with depolarization effects are formulated
for nanoribbons and an optical selection rule is reviewed. In
Sec. III, numerical results of screened Coulomb interactions
and optical absorption spectra of armchair and zigzag nanorib-
bons without and with doping are presented. In Sec. IV,
comparison of optical absorption spectra of graphene nanorib-
bons with those of carbon nanotubes is made and methods to
calculate optical absorption spectra including depolarization
effects are discussed. A brief summary and conclusions are
given in Sec. V.

II. MODEL AND METHOD

A. Graphene in an effective-mass approximation

One-particle states of graphene nanoribbons in an
effective-mass approximation were reported in a previous
study [64]. However, we derive a similar formulation again
in Secs. II A–II C because it is necessary for formulation for
graphene nanoribbons with electron correlations and because
it makes correspondence between graphene nanoribbons and
carbon nanotubes even clearer.

In an effective-mass approximation, wave functions of
electrons in the π bands of graphene are expanded near the

Fermi energy by those at two valleys, i.e., the K and K ′ points,
which are written as [65,87]

ψA(r) = F K
A (r)eiK·r + F K ′

A (r)eiK′ ·r, (1)

ψB(r) = −ωF K
B (r)eiK·r + F K ′

B (r)eiK′ ·r, (2)

where ω = e2π i/3, A and B denote sublattices, K =
(2π/a)(1/3, 1/

√
3) and K′ = (2π/a)(2/3, 0) with a =

2.46 Å being the lattice constant are wave vectors for the K
and K ′ points, respectively, and F v

α (r) is an envelope function
for a valley v = {K, K ′} and a sublattice α = {A, B}, which
slowly varies as a function of position r = (x, y) in com-
parison with the lattice constant. An equation of motion for
Fv (r) = (F v

A (r), F v
B (r))T is given by HvFv (r) = εvFv (r) with

Hv and εv being a Hamiltonian and an eigenenergy, respec-
tively, for a valley v. For the K point, we have [65,87,88]

HK = γ (k̂xσx + k̂yσy), (3)

where γ is a band parameter, k̂μ = −i∂/∂μ with μ = {x, y} is
a wave vector operator, σμ denotes the Pauli spin matrix, and
the Fermi energy is chosen as the origin of energy. For the K ′
point, HK ′

is given by HK∗.
Eigenenergies are given by εv = seγ |k|, where se is 1 and

−1 for the conduction and valence bands, respectively, and
k = (kx, ky) is a wave vector. Envelope functions are given by
F v

α (r) = Fα,t eik·r/
√

AW with A and W being the length and
width of the system and [65,87](

FA,t

FB,t

)
= 1√

2

(
e∓iϕ

se

)
, (4)

where t denotes a set of parameters (v, se, k) and e∓iϕ = (kx ∓
iky)/|k| for the K (−) and K ′ (+) points.

For zigzag edges, edge states, which are evanescent waves
localized near edges, can be solutions. In the case of zigzag
edges along the x direction, for example, eigenenergies
and envelope functions for the K point are given by εK =
seγ

√
k2

x − k̃2
y and F K

α (r) = F̃α,t eikxx∓k̃yy (k̃y > 0), respectively,
where k̃y is the inverse of decay length and

(
F̃A,t

F̃B,t

)
=

(
kx±k̃y√

k2
x −k̃2

y

se

)
, (5)

with t = (K, se, (kx, k̃y)). Equation (5) is not normalized for
convenience. In F K

α (r) and Eq. (5), ± are chosen in such a
way that the envelope functions decay as the distance from the
edge increases. For the K ′ point, eigenenergies are the same
as those for the K point and envelope functions are given by
Eq. (5) with k̃y → −k̃y.

B. Armchair nanoribbons

Armchair nanoribbons are shown in Fig. 1(a), where arm-
chair shaped edges are along the y direction and a number N
specifies the width of the nanoribbons. When the x coordinate
of the left edge is chosen as zero, A and B sites at the left edge
are, respectively, located at

Re
A = nxa + ny(a + 2b) + τ1, Re

B = Re
A − τ1, (6)
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FIG. 1. (a) Schematic illustration of armchair graphene nanoribbons. Open and closed circles denote sites of A and B sublattices,
respectively. Positions of edges are located at R̃e

α with α = {A, B} and R̃l
α and R̃r

α denote sites where a boundary condition is imposed.
The origin of the coordinate system is set to a B site at the left edge. A number N specifies the width of the nanoribbons. (b) and (c) Energy
bands of (a) semiconducting (δ = 1) and (b) metallic (δ = 0) armchair nanoribbons. Indices vi and ci with i being integers are those for the
valence and conduction bands, respectively. On the positive side of the wave vector, Ci with i = {0, 1, 2} in Eqs. (12) and (14) and the wave
vectors across the nanoribbons in units of 2π/W are assigned to the energy bands.

with a and b being primitive lattice vectors, τ1 being a vector
connecting A and B sites neighboring in the y direction, nx =
0, and ny being integers. Positions of A and B sites at the right
edge are given by Eq. (6) with nx = (N − 1)/2 for odd N and
by Re

α + a + b with nx = (N − 2)/2 for even N .
As a boundary condition, we impose that the wave func-

tions in Eqs. (1) and (2) vanish at sites outside the edges which
are located at R̃l

α and R̃r
α in Fig. 1(a) for the left and right

edges, respectively. The y coordinates of R̃r
α for odd N are

different from those for even N . The boundary condition leads
to that for the envelope functions given by [89]

ωpβ F K
A

(
R̃β

A

) + ωp′
β F K ′

A

(
R̃β

A

) = 0, (7)

−ωpβ F K
B

(
R̃β

B

) + ωp′
β F K ′

B

(
R̃β

B

) = 0, (8)

where β = {r, l} indicates the right (r) and left (l) edges and
pβ and p′

β are defined as

pl = 2, p′
l = −1

pr = N

2
− 1

2
, p′

r = −N

2
+ 3

2
for odd N

pr = N

2
− 2, p′

r = −N

2
for even N. (9)

States at the K and K ′ points are mixed by the boundary
condition.

Because of the continuous translational symmetry in the
direction of nanoribbons, the envelope functions satisfying the
boundary condition are written as F v

α (r) = Fα,t (x)eikyy/
√

A
with t = (v, se, (kx, ky)). We assume that for an energy given
by ε = seγ |k|, Fα,t (x) is expanded for kx �= 0 by two plane
waves with ±kx (kx > 0) as

Fα,t (x) = Cv
+Fα,t+eikxx + Cv

−Fα,t−e−ikxx, (10)

with Cv
± being expansion coefficients for a valley v and t± =

(v, se, (±kx, ky )). Substituting Eq. (10) into Eqs. (7) and (8),

a condition for the existence of nontrivial solutions leads to kx

given by

kx,± = π

W

(
m ± δ

3

)
, (11)

where δ = p′
r − pr − p′

l + pl mod 3 and m denotes integers
satisfying kx,± > 0. Thus the solutions are classified into three
cases: δ = 0 and ±1. From Eq. (9), we have δ = 2 − N mod
3 for both even and odd N . Thus δ = −1 and 1 for N mod
3 = 0 and 1, respectively, and δ = 0 for N mod 3 = −1.

For δ = 1, we have C = (CK
+ ,CK

− ,CK ′
+ ,CK ′

− )T = C1 for
kx,+ and C2 for kx,−, where

C1 = 1√
2W

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠, C2 = 1√

2W

⎛
⎜⎝

0
1
1
0

⎞
⎟⎠. (12)

For δ = −1, we have C = C2 for kx,+ and C1 for kx,−. For
δ = 0, energy bands are doubly degenerate. Although eigen-
functions are not uniquely determined in this case, we may
choose two solutions as C = C1 and C2, which correspond to
those for δ = ±1.

For kx = 0, since there is a single state at each valley,
Fα,t (x) is written as

Fα,t (x) = CvFα,t , (13)

where Cv is a coefficient for a valley v and t = (v, se, (0, ky )).
A nontrivial solution (CK ,CK ′

)T = C0 exists only for δ = 0,
which is given by

C0 = 1√
2W

(1
1

)
. (14)

Since eigenenergies are given by ε = seγ |k|, armchair
nanoribbons with δ = 0 are metallic, where linear energy
bands with kx = 0 cross at ky = 0 and the Fermi energy, and
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the others with δ = ±1 are semiconducting. As shown in the
above, armchair nanoribbons have a single valley.

Figures 1(b) and 1(c) show energy bands of semiconduct-
ing armchair nanoribbons with δ = 1 and those of metallic
ones with δ = 0, respectively. Indices vi and ci with i being
positive integers are given for the valence and conduction
bands, respectively, for later use. On the positive side of the
wave vector, the expansion coefficients in Eqs. (12) and (14)
and kx,± in units of 2π/W are assigned to the energy bands. In
Fig. 1(c), the energy bands are doubly degenerate except for
the linear dispersions.

Energy bands of carbon nanotubes in an effective-mass ap-
proximation are given by εv = seγ

√
κν (n)2 + k2, where κν (n)

and k are the components of the wave vector along the cir-
cumference and nanotubes, respectively [65]. The component
κν (n) is given by

κν (n) = 2π

L

(
n ∓ ν

3

)
, (15)

where L is the circumference length, n indicates integers, −
and + correspond to the K and K ′ points, respectively, and ν is
1 or −1 for semiconducting nanotubes and 0 for metallic ones.
Comparing Eq. (11) with Eq. (15), energy bands of armchair
nanoribbons are the same as those of carbon nanotubes when
energy is scaled by πγ /W and 2πγ /L for nanoribbons and
nanotubes, respectively, the wave vector is scaled by π/W
and 2π/L for nanoribbons and nanotubes, respectively, and
|δ| = |ν|, except that nanoribbons have a single valley while
nanotubes have two valleys of the K and K ′ points. This sug-
gests that optical absorption spectra of armchair nanoribbons
are closely related to those of nanotubes with the correspond-
ing energy bands. The relation is discussed in Sec. IV.

C. Zigzag nanoribbons

Zigzag nanoribbons in the x direction are shown in Fig. 2,
where N specifies the width of the nanoribbons. Sites at the
lower and higher edges belong to different sublattices, which
are located at Re

A and Re
B, respectively. A boundary condition

is given as vanishing wave functions at sites outside the edges
at R̃B = Re

A − τ1 and R̃A = Re
B + τ1. This leads to a boundary

condition for the envelope functions given by [89]

F v
α (R̃α ) = 0. (16)

In contrast to armchair nanoribbons, states at the K and K ′
points are not mixed by the boundary condition.

The envelope functions are written as F v
α (r) =

Fα,t (y)eikxx/
√

A, where t = (v, se, (kx, ky)). In a similar
way to the case of armchair nanoribbons, Fα,t (y) for ky �= 0 is
expanded as

Fα,t (y) = Dv
+Fα,t+eikyy + Dv

−Fα,t−e−ikyy, (17)

where Dv
± are expansion coefficients for a valley v, ky > 0,

and t± = (v, se, (kx,±ky )). A condition of the existence of
nontrivial solutions to the boundary condition in Eq. (16)
leads to relations between kx and ky given by

kx sin(kyW ) − ky cos(kyW ) = 0 for the K point

kx sin(kyW ) + ky cos(kyW ) = 0 for the K ′ point, (18)
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FIG. 2. (a) Schematic illustration of zigzag nanoribbons plotted
in a similar way to Fig. 1(a). (b) and (c) Energy bands of zigzag
nanoribbons at (a) the K point and (b) the K ′ point. Band indices
are given to the energy bands in a similar way to those in Figs. 1(b)
and 1(c).

and the coefficients given by(
DK

+
DK

−

)
=

(
DK ′

+
DK ′

−

)
= Cz

(
1

−1

)
, (19)

where Cz is a normalization factor and its explicit expression is
omitted for simplicity. Zigzag nanoribbons have the two val-
leys. At each valley, eigenenergies are given by εv = seγ |k|.
Although the notation of Fα,t (y) in Eq. (17) is the same as that
of Fα,t (x) in Eqs. (10) and (13) except for the arguments, the
two functions are differently defined, which we distinguish
by the arguments for simplicity. When ky = 0, Fα,t (y) is a
constant at each valley and the boundary condition cannot be
satisfied.

For edge states, the envelope functions are given by
F̃ v

α (r) = F̃α,t (y)eikxx/
√

A, where t = (v, se, (kx, k̃y)) with k̃y >

0 and

F̃α,t (y) = D̃v
+F̃α,t+e−k̃yy + D̃v

−F̃α,t−ek̃yy, (20)

with D̃v
± being expansion coefficients for a valley v and t± =

(v, se, (kx,∓k̃y)). A similar calculation to the above leads to
relations between kx and k̃y given by

kx sinh(k̃yW ) − k̃y cosh(k̃yW ) = 0 for the K point

kx sinh(k̃yW ) + k̃y cosh(k̃yW ) = 0 for the K ′ point. (21)
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Eigenenergies are given by εv = seγ
√

k2
x − k̃2

y and D̃v
± are

given by Dv
± in Eq. (19) except for the normalization factor.

Energy bands of zigzag nanoribbons at the K and K ′ points
are shown in Figs. 2(b) and 2(c), respectively. Band indices
are given in a similar way to those of armchair nanorib-
bons. Flat parts of the energy bands v1 and c1 at εv = 0
and those close to them correspond to edge states, which
are continuously connected to the other parts of the same
energy bands for extended states. From Eq. (18), we can easily
obtain that tops and bottoms of the valence and conduction
bands, respectively, are located at kx ≈ 0 for large ky, which
is approximately given by ky ≈ nπ/W with n being integers
much larger than unity. Thus the energy bands of zigzag
nanoribbons at high and low energies are similar to those of
metallic armchair nanoribbons and metallic carbon nanotubes.

D. Coulomb interactions

In the following, we introduce a notation w for position
along the width of nanoribbons, i.e., w = x and y for arm-
chair and zigzag nanoribbons, respectively, where 0 � w �
W . Since the component of the wave vector along nanoribbons
is a good quantum number, Fourier transforms with respect to
position along nanoribbons are used. We define the Fourier
transform fk for a function f (x) with x being position along
nanoribbons as f (x) = (1/A)

∑
k fkeikx with k being the wave

vector. A Coulomb potential V (w,w′; k) screened by elec-
trons in nanoribbons is related to the bare Coulomb potential
V0(w,w′; k) through [90]

V0(w,w′; k) =
∫ W

0
dw′′ε(w,w′′; k)V (w′′,w′; k), (22)

where ε(w,w′; k) is the dielectric function and

V0(w,w′; k) = 2e2

κ
K0(k|w − w′|), (23)

with κ being a dielectric constant of the background and
K0(z) being the modified Bessel function of the second kind
of zeroth order. The dielectric function is given in the self-
consistent field method by

ε(w,w′; k) = δ(w − w′) + 4πχ (w,w′; k), (24)

with χ (w,w′; k) being the electric susceptibility given by

χ (w,w′; k) = e2gs

2πκA

∑
r

∑
t

δkt −kr ,k

× fr − ft

h̄ω̃ − εt + εr

∫ W

0
dw′′K0(k|w − w′′|)

× [F†
r (w′′)Ft (w

′′)][F†
t (w′)Fr (w′)], (25)

where gs = 2 is the spin degeneracy, ω̃ is a frequency, r and
t denote one-particle states, and for a state r, εr is an energy,
vr denotes a valley, kr is a wave vector along nanoribbons, fr

denotes the Fermi distribution function for εr , and Fr (w) =
(F̃A,r (w), F̃B,r (w))T for edge states of zigzag nanoribbons and
(FA,r (w), FB,r (w))T otherwise. The electric susceptibility is
real. In Eq. (25), since our model describes states in the π

bands, the summations run over states of which the absolute
values of energies are less than half the π band width, and for

zigzag nanoribbons, the valleys for r and t must be the same
because the long-range Coulomb interactions are considered.
In numerical calculations of the screened Coulomb potential,
we approximately use the static dielectric function with ω̃ = 0
at zero temperature, which can reasonably describe effects of
the interactions in carbon nanotubes [7,91–95].

Matrix elements of the Coulomb interactions between ini-
tial one-particle states t and u and final ones r and s are given
by

v(r;t )(s;u) = 1

A
δkr+ks,kt +ku

∫ W

0
dw′

∫ W

0
dw′′V (w′,w′′; kr − kt )

× [F†
r (w′)Ft (w

′)][F†
s (w′′)Fu(w′′)], (26)

where for zigzag nanoribbons, the valley of r (s) must be
the same as that of t (u). We also define matrix elements of
the bare Coulomb interactions v0,(r;t )(s;u) by v(r;t )(s;u) where
V (w′,w′′; kr − kt ) is replaced by V0(w′,w′′; kr − kt ).

The strength of the Coulomb interactions is indi-
cated by κ , for which we use a dimensionless parameter
(e2/κW )(2πγ /W )−1 = e2/2πκγ . We use a typical value of
e2/2πκγ = 0.15, which approximately corresponds to the
case of graphene on SiO2 substrate [96]. Since this value is
also reasonable for carbon nanotubes [91–95], we use it for
nanotubes. In numerical calculations, V (w,w′; k) is obtained
by solving simultaneous linear equations given by discretizing
position in the direction of the width in Eq. (22).

E. Excited states with electron correlations

In the RPA [97,98], the ground state |G〉 is assumed to
include multiple electrons and holes because of electron cor-
relations. Thus low energy excited states are assumed to be
linear combinations of states realized not only by creation
of an electron-hole (e-h) pair to the ground state but also by
annihilation of an e-h pair to the ground state. Excited states
are written as |ν〉 = Q†

ν |G〉, where creation operators of the
excited states Q†

ν are given by [97,98]

Q†
ν =

∑
m,i

Xmia
†
mb†

i −
∑
m,i

Ymibiam, (27)

with am (bi) and a†
m (b†

i ) being annihilation and creation oper-
ators, respectively, of an electron state m (a hole one i) and Xmi

and Ymi being expansion coefficients. It should be noted that
this ν is different from that in Eq. (15). The expansion coef-
ficients are determined by an RPA equation [97,98], where
excitation energies h̄�ν for states ν with h̄ = h/2π and h
being the Planck constant are also given. In the RPA equation,
matrix elements of the Coulomb interactions consist of two
terms as

v̄(r;t )(s;u) = gsv
(1)
(r;t )(s;u) + v

(2)
(r;t )(s;u), (28)

with t and u being initial one-particle states, r and s being final
ones, and

v
(1)
(r;t )(s;u) = v0,(r;t )(s;u), v

(2)
(r;t )(s;u) = −v(r;u)(s;t ). (29)

The interactions v
(1)
(r;t )(s;u) consist of the bare Coulomb interac-

tions and describe depolarization effects including plasmons
[99–101]. On the other hand, v(2)

(r;t )(s;u) is given by the screened
Coulomb interactions as shown by Sham and Rice [102] and
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shown in various systems [103–110], where the negative sign
appears because of exchange of the initial states t and u as
compared to those of v

(1)
(r;t )(s;u), leading to binding of electrons

and holes of excitons. The RPA can reasonably describe ex-
cited states in graphene [111] and carbon nanotubes [59,112].
It should be noted that the RPA in the present study is different
from that usually used in solid state physics in a sense that the
former includes effects of v

(2)
(r;t )(s;u) while the latter does not.

F. Optical absorption

Diagonal components of the dynamical conductivity for a
wave vector k in the direction of nanoribbons are given from
the Kubo formula by [113]

σμμ(w,w′; k)

= − ie2gs

h̄A

∑
ν

δkν ,k
1

�ν

[ 〈G|v̂μ(w; k)|ν〉〈ν|v̂μ(w′; k)|G〉
�ν − ω̃ − i�/h̄

−〈G|v̂μ(w′; k)|ν〉〈ν|v̂μ(w; k)|G〉
�ν + ω̃ + i�/h̄

]
, (30)

where μ = {x, y}, v̂μ(w; k) is the μ component of the velocity
operator for a position w and k, kν is a wave vector of an
excited state |ν〉, and � is phenomenological energy broaden-
ing. When excited states calculated in the RPA, which include
depolarization effects, are used in Eq. (30), the dynamical con-
ductivity describes the response not to self-consistent electric
fields, which electrons actually feel, but to external electric
fields. We denote this conductivity as σ̃μμ(w,w′; k). When ex-
cited states calculated in the RPA where v

(1)
(r;t )(s;u) is eliminated

are used in Eq. (30), the dynamical conductivity gives that
without depolarization effects, which describes the response
to self-consistent electric fields. We denote this conductivity
as σμμ(w,w′; k).

When an external electric field with a wave vector k along
nanoribbons is applied to the nanoribbons, optical absorption
power is given by [114,115]

P = 1

2W
Re

[ ∑
μ

∫ W

0
dw jμ(w; k)E∗

μ(w; k)

]
, (31)

where jμ(w; k) and Eμ(w; k) are the μ components of a cur-
rent density and a self-consistent electric field, respectively,
for w and k. Thus the self-consistent electric field is necessary
for calculations of the optical absorption power. A method
to calculate Eq. (31) is as follows: The current density is
given by the product of the conductivity without depolar-
ization effects σμμ(w,w′; k) and the self-consistent electric
field Eμ(w; k) or that of the conductivity with depolarization
effects σ̃μμ(w,w′; k) and the external electric field E0,μ(w; k).
That is, the following relation exists:

jμ(w; k) =
∫ W

0
dw′σμμ(w,w′; k)Eμ(w′; k)

=
∫ W

0
dw′σ̃μμ(w,w′; k)E0,μ(w′; k), (32)

where we assume that the conductivity tensors are di-
agonal and the external electric field is along the μ

direction. Therefore, from the second equality of (32), the

self-consistent electric field is obtained by using σμμ(w,w′; k)
and σ̃μμ(w,w′; k). As a result, for a constant external electric
field E0,μ(w; k) = E0, we have

P = |E0|2
2

Reσ̃μμ, (33)

with

σ̃μμ = 1

W

∫ W

0
dw

[ ∫ W

0
dw′σ̃μμ(w,w′; k)

]

×
[ ∫ W

0
dw′

∫ W

0
dw′′σ−1∗

μμ (w,w′; k)σ̃ ∗
μμ(w′,w′′; k)

]
,

(34)

where σ−1
μμ (w,w′; k) is the inverse function of σμμ(w,w′; k),

which is numerically calculated on the basis of discretized po-
sitions or plane waves. The optical absorption is characterized
by the real part of σ̃μμ. On the other hand, since σ̃μμ(w,w′; k)
includes depolarization effects, we expect that σ̃μμ(w,w′; k)
itself characterizes optical absorption with depolarization ef-
fects. Thus we define an averaged conductivity as

〈σ̃μμ〉 = 1

W

∫ W

0
dw

∫ W

0
dw′σ̃μμ(w,w′; k). (35)

Difference between σ̃μμ and 〈σ̃μμ〉 is discussed in Sec. IV.
The conductivities σ̃μμ and 〈σ̃μμ〉 are functions of k and ω̃.

Since the wave vectors of electromagnetic waves are usually
much smaller than those of electrons, optical absorption spec-
tra are given by σ̃μμ with k ≈ 0. To measure σ̃μμ with finite
k, light with finite k, which can be caused by near fields, for
example, is needed [116]. Although phenomenological energy
broadening in Eq. (30) depends on situations, we use values
of the order of 0.01 × (2πγ /W ) as typical ones, which are
several millielectron volts for widths of several nanometers
and typical for carbon nanotubes [117–121].

G. Selection rule

A selection rule for optical transitions is not simple in
graphene nanoribbons with electron correlations and depo-
larization effects because of mixing of states in different
energy bands and the complex expression of the conductiv-
ity in Eq. (34). To understand numerical results in the next
section, we review a selection rule for nanoribbons without
electron correlations and depolarization effects, which is still
useful and has been reported in many studies [31,33,35,36].
In this case, optical absorption spectra are characterized by
〈σ̃μμ〉 in Eq. (35), where the velocity matrix elements in
Eq. (30), which determine a selection rule, are replaced by
those between electron states and hole ones in the one-particle
model. Derivation of the following selection rule based on the
effective-mass approximation is given in Appendix A.

For armchair nanoribbons, we consider optical transitions
between band edges at ky = 0, which play an important role
because of the divergence of the density of states. A selec-
tion rule for parallel polarization, where the direction of light
polarization is along nanoribbons, is as follows: In semicon-
ducting nanoribbons, transitions from a valence band vi to a
conduction band ci with the same i are allowed. The other
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transitions between the valence and conduction bands and all
transitions between valence bands and between conduction
bands are prohibited. In metallic nanoribbons, only transitions
between valence and conduction bands with vi and ci, respec-
tively, except for the linear dispersions are allowed.

For perpendicular polarization, where the direction of light
polarization is perpendicular to nanoribbons, a selection rule
is as follows: In semiconducting nanoribbons, transitions are
allowed between valence and conduction bands vi and c j,
respectively, with even i and odd j and with odd i and even
j while intravalence (intraconduction) band transitions are
allowed between vi and v j (ci and c j) with even i and even
j and with odd i and odd j, except for the case of kx − k′

x =
2nπ/W , where kx and k′

x are wave vector components along
the width for initial and final states, respectively, and n de-
notes integers. In metallic nanoribbons, except for the linear
dispersions, transitions between any energy bands are allowed
although final states are limited to either of doubly degenerate
states. For the linear dispersions, transitions from the Dirac
point to the other energy bands with k′

x �= 2nπ/W can be
allowed by taking either of the limits of ky → ±0.

For zigzag nanoribbons, we have the following selecting
rule: For parallel polarization, transitions between the valence
and conduction bands with vi and c j, respectively, are allowed
for odd i and even j and for even i and odd j while intrava-
lence (intraconduction) band transitions between vi and v j
(ci and c j) are allowed for odd i and odd j and for even i
and even j. For perpendicular polarization, a selection rule is
that for parallel polarization where the rule for indices i and
j for transitions between the valence and conduction bands
is exchanged with that for intravalence band transitions and
intraconduction band ones.

III. NUMERICAL RESULTS

A. Screening of the Coulomb interactions

In numerical calculations in Secs. III and IV, we choose
semiconducting armchair nanoribbons with N = 46 (δ = 1),
metallic armchair ones with N = 47 (δ = 0), and zigzag ones
with N = 27 as typical nanoribbons, where excitons and plas-
mons manifest themselves mainly in infrared frequencies.
These three nanoribbons have similar widths as W = 5.5 nm
and 5.7 nm for the armchair nanoribbons with N = 46 and
47, respectively, and W = 5.6 nm for the zigzag nanoribbons.
For metallic armchair and zigzag nanoribbons, energy gaps
open at the Fermi energy by effects originating from edges
[5,6], which are not included in the preset model. However,
the energy gaps are small for the above nanoribbons, about
40 meV for the N = 47 armchair nanoribbons [6], for exam-
ple, and are considered to be safely neglected in doped cases.
Thus we only study those cases for the metallic armchair and
zigzag nanoribbons. Since the energy bands of nanoribbons
are symmetric with respect to the origin of energy, electron
doping is only considered.

Figure 3 shows the static electric susceptibility
normalized by the Coulomb interaction parameter
χ (w,w′; k)(e2/2πκγ )−1 as a function of w′ for various
values of w and k. Results of the semiconducting (N = 46)
and metallic (N = 47) armchair nanoribbons are shown
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FIG. 3. Static electric susceptibility χ (w,w′; k) normalized by
e2/2πκγ as a function of w′ for various w and k for (a) the semi-
conducting armchair nanoribbon with N = 46, (b) the doped metallic
armchair nanoribbon with N = 47, and (c) the doped zigzag nanorib-
bon with N = 27. In (a), (b), and (c), results for k(2π/W )−1 = 0.06,
8.3, and 16.6 are shown as indicated by arrows in (a). The Fermi
energy is εF (2πγ /W )−1 = 0 in (a), 0.25 in (b), and 0.5 in (c). Solid
lines denote results for w/W = 0.5 and dotted and dashed lines are
those for w/W = 0 and 1, respectively.

in Figs. 3(a) and 3(b), respectively, and that of the zigzag
nanoribbon with N = 27 is shown in Fig. 3(c). The Fermi
energy is chosen as εF (2πγ /W )−1 = 0 in Fig. 3(a) and
εF (2πγ /W )−1 = 0.25 and 0.5 in Figs. 3(b) and 3(c),
respectively, where in Figs. 3(b) and 3(c), the Fermi energy
only crosses the lowest conduction band. In Fig. 3(a) for the
semiconducting armchair nanoribbon, when w is located at
the center of the nanoribbon (w/W = 0.5), the susceptibility
denoted by solid lines takes maximum values at w′ = w

and rapidly decreases as w′ deviates from w, where the
peak value decreases with the increase of k. For small k
[k(2π/W )−1 = 0.06], the susceptibility is negative for w′
away from w, suggesting that the Coulomb potential can be
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enhanced by surrounding electrons, i.e., antiscreened. This
behavior is rapidly suppressed as k increases.

The result of the susceptibility can be explained by
Eq. (25). Since Fr (w) and Ft (w) are linear combinations of
plane waves, the right-hand side of Eq. (25) is a form similar
to the Fourier transform, where the integral part indicates
coefficients for plane waves given by F†

t (w′)Fr (w′), whose
wave vectors are differences and sums of those in the width
direction for states r and t and small for small differences be-
tween the energy band indices for r and t . For k � 1/W , since
K0(z) ≈ − log(z/2) for z � 1, various w′′ in 0 � w′′ � W
can contribute to the integral. However, since F†

r (w′′)Ft (w′′)
is an oscillating function, in the relatively long-range region
of |w − w′|∼W , F†

r (w′′)Ft (w′′) with wave vectors larger than
∼1/W cancel out and those with small wave vectors of the
order of 1/W only give finite values, leading to gradually
oscillating components as a function of w − w′ with nega-
tive values. On the other hand, for k  1/W , since K0(z) ≈√

π/2ze−z for z  1, w′′ close to w only contributes to the
integral, where various F†

r (w′′)Ft (w′′) with wave vectors in
a wide range exist in the integral. Thus the value of the sus-
ceptibility is localized around w′ ∼ w and reduced with the
increase of k because of exponentially small K0(z). Results for
w located at edges with w/W = 0 and 1, which are denoted
by dotted and dashed lines, respectively, are similar to the case
of w/W = 0.5.

In Fig. 3(b) for the metallic armchair nanoribbon, results
are similar to those of Fig. 3(a) except that negative values
do not appear. This is because for free electrons in the con-
duction band, intraband transitions between states r and t in
Eq. (25) largely contribute to the susceptibility as the Fourier
components with zero wave vector, i.e., constants, leading to
upward shift of the susceptibility and the disappearance of
negative values. In Fig. 3(c) for the zigzag nanoribbon, results
are similar to those in Fig. 3(b). In this case, the susceptibility
for small k [k(2π/W )−1 = 0.06] takes negative values for w′
near edges. This is probably because of edge states.

Figure 4 shows the screened Coulomb potential
V (w,w′; k) for (a) the N = 46 semiconducting armchair
nanoribbon and (b) the N = 27 zigzag nanoribbon as a
function of w′ for various w and k. The bare Coulomb
potential V0(w,w′; k) is also plotted in the figure, where the
divergence of the potential is properly suppressed because
of discretization of position [7]. In Fig. 4(a) corresponding
to the case of Fig. 3(a), the potential for a small wave
vector [k(2π/W )−1 = 0.06] and w located at the center
(w/W = 0.5), which is denoted by a solid line, is reduced
near w′ = w as compared to the bare Coulomb potential
but changes to be increased for w′ away from w, i.e.,
antiscreened, as suggested in Fig. 3(a). When the wave vector
increases [k(2π/W )−1 = 8.3], the potential rapidly decreases
and the antiscreening effect vanishes. Results for w located
at edges (w/W = 0 and 1) are similar. Antiscreening effects
were reported for low dimensional systems [90,122–124]. For
the doped zigzag nanoribbon in Fig. 4(b), which corresponds
to the case of Fig. 3(c), the potential for k(2π/W )−1 = 0.06 is
strongly suppressed as compared to that in Fig. 4(a) because
of strong screening arising from free electrons. Similar results
are obtained for doped semiconducting and metallic armchair
nanoribbons (not shown). A screening effect characteristic
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FIG. 4. Screened Coulomb potential V (w,w′; k) as a function
of w′ for various w and k for (a) the semiconducting armchair
nanoribbon with N = 46 and (b) the doped zigzag nanoribbon with
N = 27. Solid, dotted, and dashed lines are used in a similar manner
to those in Fig. 3. Results for k(2π/W )−1 = 0.06 and 8.3 are shown
and εF (2πγ /W )−1 = 0 in (a) and 0.5 in (b). In (a) and (b), the bare
Coulomb potential V0(w,w′; k) is also plotted as indicated by arrows
in (a), for comparison.

to zigzag nanoribbons is that the Coulomb potential for w

located at edges is relatively strongly suppressed for w′ ≈ w

as compared to that for armchair nanoribbons because of edge
states.
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FIG. 5. (a) Energy dependence of the real part of the conductivity
Reσ̃yy with k = 0 for the semiconducting armchair nanoribbon with
N = 46, where �(2πγ /W )−1 = 0.07. A solid line shows a result
with full interactions and dotted and dashed lines are those with
only self-energy and no interactions, respectively. An upper hori-
zontal axis is in units of eV for γ = √

3aγ0/2 with γ0 = 3.03 eV
being a resonance integral for nearest-neighboring π orbitals [96].
(b) Schematic illustration of energy bands of the armchair nanorib-
bon in (a). A horizontal dashed line indicates the Fermi energy.
Arrows denote optical transitions associated with peaks in (a).

B. Optical absorption of armchair nanoribbons

Figure 5(a) shows the real part of the conductivity
Reσ̃yy with k = 0 for the nondoped semiconducting armchair
nanoribbon with N = 46 for parallel polarization. A solid line
is a result with full interactions in the RPA, a dotted line is that
only including self-energy as electron-electron interactions,
and a dashed line is that with no interactions. Comparing

energy band gaps without and with interactions, which are
approximately given by energies of the lowest peaks for the
dashed and dotted lines, respectively, the self-energy consid-
erably enhances the band gap by a factor of about two. This
seems to be consistent with band gap enhancement with large
self-energy corrections in first-principles calculations [125].

For the solid line, the lowest two peaks in energy arise
from excitons mainly associated with transitions from v1 to
c1 and from v2 to c2, which are schematically shown in
Fig. 5(b). The third lowest peak mainly comes from an exciton
for transitions between v3 and c3 [see Fig. 5(b)]. This peak
splits because of the following: Transition energy between the
band edges of the energy bands v3 and c3 is the same as those
between v5 and c1 and between v1 and c5 [see Fig. 5(b)].
Thus, the exciton for the transitions between v3 and c3 can in-
teract with an exciton associated with the transitions between
v1 and c5 and between v5 and c1, leading to the splitting of
the peak. It should be noted that optical transition to the latter
exciton is prohibited, i.e., the latter exciton is dark. Similar
splitting occurs for the fourth lowest peak, where an exciton
for transitions from v4 to c4 interacts with a dark exciton for
transitions from v2 to c6 and from v6 to c2 [see Fig. 5(b)].
The splitting of the peaks cannot be explained within one-
particle pictures as shown in the results with the dotted and
dashed lines and is never seen in carbon nanotubes. Since the
splitting is associated with the high and low energy bands,
its observation may need nanoribbons with widths larger than
several nanometers, where the effective-mass approximation
is valid around the tops or bottoms of the energy bands v5,
v6, c5, and c6.

Effects of carrier doping are shown for the same arm-
chair nanoribbon in Fig. 6. Figures 6(a) and 6(b) show Reσ̃yy

with zero and finite k for parallel polarization. The Fermi
energy is εF (2πγ /W )−1 = 0.25 and 0.5 in Figs. 6(a) and
6(b), respectively, which crosses the lowest and the lowest two
conduction bands for the former and the latter, respectively
[see Figs. 6(d) and 6(e)]. In Fig. 6(a), for a small finite wave
vector k(2π/W )−1 = 0.11, a large peak arising from a plas-
mon appears at an energy of h̄ω̃(2πγ /W )−1 ≈ 0.17, which is
associated with intraband transitions in the conduction band
c1 and decreases as k increases. The exciton peak for the
transitions from v1 to c1 disappears near k = 0 because of the
reduced number of the associated transitions by doping while
the other exciton peaks remain. The splitting of the second
lowest peak [the third lowest peak in Fig. 5(a)] for k = 0 is
smeared because of reduction of the transitions from v5 to
c1, where the transitions from v1 to c5 still remain, leading
to slight broadening of the peak. In Fig. 6(b), peaks arising
from the plasmons for small k are more prominent than those
in Fig. 6(a) because the electron density at the Fermi energy
increases. The disappearance of the splitting of the second
lowest exciton peak [the fourth lowest peak in Fig. 5(a)] arises
for a similar reason to the reason for that of the second lowest
peak in Fig. 6(a).

Figure 6(c) shows the Fermi-energy dependence of Reσ̃xx

with k = 0 for perpendicular polarization. For no doping with
εF = 0, a solid line for �(2πγ /W )−1 = 0.07 shows a small
peak at h̄ω̃(2πγ /W )−1 ≈ 0.76, which is due to an exciton
associated with transitions from v1 to c2 and from v2 to c1.
To show the exciton more clearly, a result for smaller energy
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where εF (2πγ /W )−1 = 0.25 in (a) and 0.5 in (b). Results for various k are plotted by shifting the origin of the vertical axes for clarity.
(c) Energy dependence of Reσ̃xx for the semiconducting armchair nanoribbons with N = 46 for perpendicular polarization in the case of k = 0.
Results for εF (2πγ /W )−1 = 0, 0.25, and 0.5 are shown by shifting the origin of the vertical axis for clarity. In (a)–(c), �(2πγ /W )−1 = 0.07
for solid lines and 0.04 for a dotted line in (c) and upper horizontal axes are plotted in the same way as that in Fig. 5(a). (d)–(f) Schematic
illustrations of optical transitions associated with peaks in (a)–(c), where (d) corresponds to (a), (e) to (b), and (f) to (c). Horizontal dashed
lines indicate the Fermi energy, arrows with solid lines denote allowed transitions, and those with dashed lines and crosses describe prohibited
transitions.

broadening of �(2πγ /W )−1 = 0.04 is also shown by a dotted
line. Although the joint density of states for these transitions
gives a large peak, depolarization effects considerably sup-
press optical absorption for these transitions. However, strong
exciton effects cause the peak structure. This mechanism is
the same as cross-polarized excitons in carbon nanotubes
[9,11,99,126,127]. For the doped case of εF (2πγ /W )−1 =
0.25, the exciton peak vanishes because energy for the transi-
tions associated with the exciton is in a one-particle excitation
continuum for transitions between c1 and c3.

For further doping of εF (2πγ /W )−1 = 0.5, a prominent
peak appears, which is caused by a plasmon associated with
interband transitions between c1 and c3 and between c2 and
c4 [see Fig. 6(f)], meaning that the plasmon is polarized in the
width direction. On the other hand, plasmons do not appear
for εF (2πγ /W )−1 = 0.25 in spite of that transitions from

c1 to higher conduction bands are possible. This is due to
the following: Plasmons consist of e-h pairs associated with
continuum states below the plasmons in energy. For formation
of plasmons, v

(1)
(r;t )(s;u) in Eq. (29) is essential, which includes

factors like F†
r (w)Ft (w) in Eq. (26). For an e-h pair with

an electron state m and a hole one i, the factor appears as
F†

m(w)Fi(w) or its complex conjugate. This is negligible for
k(2π/W )−1 � 1 because of a nature of Dirac electrons when
the parity of the band index for the electron is different from
that for the hole for intravalence band and intraconduction
band transitions as can be seen from Eqs. (4), (10), and (12).
For εF (2πγ /W )−1 = 0.25, the factors are non-negligible for
transitions from c1 to c3, c5, . . .. However, there is no energy
gap above one-particle excitation continuums for the transi-
tions, whose upper boundaries are in continuum states for
transitions between the valence and conduction bands. For
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FIG. 7. (a) and (b) Energy dependence of Reσ̃yy for the doped metallic armchair nanoribbons with N = 47 for parallel polarization, where
εF (2πγ /W )−1 = 0.25 in (a) and 0.75 in (b). (c) Energy dependence of Reσ̃xx for the doped metallic armchair nanoribbons with N = 47 for
perpendicular polarization in the case of k = 0. Results for εF (2πγ /W )−1 = 0.25 and 0.75 are shown. In (a)–(c), �(2πγ /W )−1 = 0.07. (d)–(f)
Schematic illustrations of optical transitions. All the panels are plotted in a similar way to those in Fig. 6.

εF (2πγ /W )−1 = 0.5, an energy gap opens above the one-
particle excitation continuum for the transitions from c1 to
c3 and from c2 to c4, leading to the plasmon. The situation
is similar to plasmons for perpendicular polarization in doped
semiconducting carbon nanotubes [59–62].

Figure 7 is a similar plot for the metallic armchair nanorib-
bon with N = 47 to Fig. 6. The Fermi energy crosses the
conduction band c1 for εF (2πγ /W )−1 = 0.25 and c1 and c2
for εF (2πγ /W )−1 = 0.75 [see Figs. 7(d) and 7(e)]. Results in
Figs. 7(a) and 7(b) are similar to those in Figs. 6(a) and 6(b),
respectively. For parallel polarization in Fig. 7(a), the lowest
and the second lowest peaks for k = 0 arise from excitons
associated with transitions from v2 to c2 and from v3 to c3,
respectively, where the latter peak splits because of interaction
with a dark exciton associated with transitions from v2 to c4
and from v4 to c2 [see Fig. 7(d)]. The splitting disappears
in Fig. 7(b) because of suppression of the transitions from
v4 to c2 [see Fig. 7(e)]. The manifestation of the excitons in
metallic nanoribbons is similar to that in metallic carbon nan-
otubes [7,128–130]. Peaks arising from plasmons in Fig. 7(a)

for finite k are enhanced with the increase of the Fermi energy
as shown in Fig. 7(b).

For perpendicular polarization in Fig. 7(c), there is no peak
for εF (2πγ /W )−1 = 0.25 while a prominent plasmon peak
appears for εF (2πγ /W )−1 = 0.75. The nonexistence of plas-
mons for εF (2πγ /W )−1 = 0.25 is because there is no energy
gap above the upper boundary of the one-particle excitation
continuum for transitions from c1 to c2, which is continuously
connected to continuum states for transitions from v1 to c2.
For εF (2πγ /W )−1 = 0.75, an energy gap appears above a
one-particle excitation continuum for transitions from c2 to c3
[see Fig. 7(f)]. For these transitions, v

(1)
(r;t )(s;u) is finite, leading

to the plasmon. The situation is similar to plasmons for per-
pendicular polarization in doped metallic carbon nanotubes
[59–62].

C. Optical absorption of zigzag nanoribbons

Figure 8 shows calculated results for the doped zigzag
nanoribbons with N = 27, which is presented in a similar way
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FIG. 8. (a) and (b) Energy dependence of Reσ̃xx for the doped zigzag nanoribbons with N = 27 for parallel polarization, where
εF (2πγ /W )−1 = 0.5 in (a) and 1.0 in (b). In (a), arrows indicate splitting of a peak associated with edge states. (c) Energy dependence
of Reσ̃yy for the doped zigzag nanoribbons with N = 27 for perpendicular polarization in the case of k = 0. Results for εF (2πγ /W )−1 = 0.5
and 1.0 are shown. In (a)–(c), �(2πγ /W )−1 = 0.07. (d)–(f) Schematic illustrations of optical transitions at the K point. All the panels are
plotted in a similar way to those in Fig. 6.

to Fig. 6. For parallel polarization in Figs. 8(a) and 8(b) with
εF (2πγ /W )−1 = 0.5 and 1.0, respectively, the Fermi energy
crosses the conduction band c1 for the former and c1 and
c2 for the latter at each valley [see Figs. 8(d) and 8(e)]. The
optical absorption spectra in Figs. 8(a) and 8(b) are similar
to those in Figs. 7(a) and 7(b), respectively, for the metallic
armchair nanoribbons. There are also differences from the
results of the metallic armchair nanoribbons. In Fig. 8(a),
the first and second lowest exciton peaks at k = 0 arise from
transitions between v1 and c2 and those between v1 and c4,
respectively, while in Fig. 7(a), the lowest two peaks at k = 0
come from the transitions between vi and ci with i = {2, 3}.
The lowest exciton peak near k = 0 is almost independent of
k and splits into two peaks with arrows as k increases. Since
the energy bands v1 and c1 are asymmetric about the axis
of kx = 0, excitation energies for the transitions from v1 to c2
with finite k at the K and K ′ points separate from each other as
k increases, leading to splitting of the peak. Since the lowest

energy of the transitions associated with the flat parts of the
energy bands is almost independent of k, the lower peak is
insensitive to k. Another different point from Fig. 7(a) is that
the second lowest exciton peak at k = 0 in Fig. 8(a) is not
split. This is because there are no other transitions for which
energy is the same as that for the transitions from v1 to c4
near the band edges of c4.

Figure 8(c) shows results for perpendicular polarization at
k = 0. For εF (2πγ /W )−1 = 0.5, no plasmon peak appears
because the flat parts of the energy bands c1 lead to no
energy gaps opening above one-particle excitation continu-
ums for transitions from c1 to higher conduction bands. For
εF (2πγ /W )−1 = 1.0, a prominent plasmon peak occurs be-
cause an energy gap opens above a one-particle excitation
continuum for transitions from c2 to c3 [see Fig. 8(f)] and
because v

(1)
(r;t )(s;u) is finite for these transitions. This Fermi-

energy dependence of the plasmon is similar to those of the
armchair nanoribbons in Figs. 7(c) and 8(c).
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IV. DISCUSSION

The energy bands of graphene nanoribbons are similar
to those of carbon nanotubes as described in Secs. II B
and II C. Electronic structure of nanotubes has been mainly
revealed by optical methods [7–28,58–62,131–135]. Thus, it
is expected that correspondence between the optical properties
of nanoribbons and nanotubes gives useful information for
study of nanoribbons. In the former part of this section, we
compare optical absorption spectra between nanoribbons and
nanotubes. To find correspondence between the two materials
in a wide range, we describe them in scaling methods. For
the results in Sec. III, since all the excitons and the plasmons
for perpendicular polarization in the panels (c) of Figs. 6–8
originate from transitions between different energy bands,
their energies are approximately scaled by separation between
energy bands. On the other hand, this scaling is inapplicable
for the plasmons for parallel polarization in the panels (a) and
(b) of Figs. 6–8 because they arise from transitions in the same
energy bands. Another scaling is necessary for them.

Figure 9 compares optical absorption spectra for the semi-
conducting nanoribbons and semiconducting nanotubes in
Figs. 9(a)–(c) and those for the metallic nanoribbons and
metallic nanotubes in Figs. 9(d)–(f). Details of calcula-
tions for nanotubes are described in earlier studies [59,112].
Figure 9(a) shows results with no doping and k = 0 for the
semiconducting armchair nanoribbon in Fig. 5(a) (solid line)
and carbon nanotubes (dashed lines) for parallel polarization,
where results for nanotubes with two circumference lengths
of L ≈ W/2 and W are shown. A horizontal axis is plotted in
units of an energy scale εu = πγ /W for the nanoribbon and
2πγ /L for the nanotubes. In this case, the energy bands of the
nanoribbons and nanotubes become the same when the wave
vector is properly scaled, as mentioned in Sec. II B. The ener-
gies of the two exciton peaks of the nanoribbon approximately
agree with those of the nanotubes, where slight deviations
come from electron-electron interactions. Since energy broad-
ening is the same in units of usual kinetic energies of 2πγ /W
and 2πγ /L for the nanoribbon and nanotubes, respectively,
the peak intensities in these units can be compared by the peak
heights. The peak intensities for the nanoribbon are about
half of those for the nanotubes. The factor of two comes
from the difference in the number of the valleys. Figure 9(b),
which is plotted in a similar way to Fig. 9(a), shows results
in doped cases with k = 0 for perpendicular polarization,
where the result for the nanoribbon is the same as that for
εF (2πγ /L)−1 = 0.5 in Fig. 6(c). The energy of the plasmon
peak for the nanoribbon approximately agrees with those of
the nanotubes while the peak intensity for the nanoribbon is
about half or less of those for the nanotubes mainly because
of the difference in the number of the valleys.

Figures 9(d) and 9(e) are similar plots to Figs. 9(a) and
9(b), respectively. In Figs. 9(d) and 9(e), the results of the
armchair nanoribbon in Figs. 7(a) and 7(c), respectively, and
those of the zigzag nanoribbon in Figs. 8(a) and 8(c), re-
spectively, are shown. The results are similar to those of the
semiconducting nanoribbon and nanotubes. In the case of
metals, exact agreement of the energy bands between nanorib-
bons and nanotubes only exists for armchair nanoribbons.
For zigzag nanoribbons, the energy bands v1 and c1 are

considerably different from the linear dispersions of metallic
armchair nanoribbons and metallic nanotubes. In spite of this
fact, the energy of the exciton peak of the zigzag nanoribbon
in Fig. 9(d), which is associated with the energy bands v1 and
c2, approximately agrees with those of the armchair nanorib-
bon and the carbon nanotubes. This is because in zigzag
nanoribbons, separation between the energy bands v1 and c2
for the wave vector at the bottom of the energy band c2 is
similar to that between the energy bands v2 and c2 of metallic
armchair nanoribbons in units of 2πγ /W .

Next we consider the plasmons caused by optical transi-
tions within the same energy bands. Analytical expressions of
energy dispersion relations of these plasmons can be obtained
in the long-wavelength limit in the case of a single channel.
We have for nanoribbons

h̄�ν = γ |k|
(

−2gs

π

e2

κγ

h̄vF

γ
log

|k|W
2

)1/2

, (36)

and for nanotubes

h̄�ν = γ |k|
(

−4gs

π

e2

κγ

h̄vF

γ
log

|k|L
4π

)1/2

, (37)

where vF is the Fermi velocity. Equations (36) and (37) are
derived in Appendix B. In the cases of metallic nanoribbons
and metallic nanotubes, where vF = γ /h̄, Eqs. (36) and (37)
become those obtained in earlier studies [27,52]. Thus, when
the wave vector is scaled by 1/W and 2π/L for nanorib-
bons and nanotubes, respectively, and energy is scaled by
(1/

√
2)(γ /W ) and 2πγ /L for nanoribbons and nanotubes,

respectively, the plasmon energy is the same between nanorib-
bons and nanotubes. The difference of 2π in the scaling
factors for the wave vector and energy comes from that in the
geometry of the systems and the difference of 1/

√
2 in the

scaling factor for energy arises from that in the number of the
valleys. It should be noted that although zigzag nanoribbons
have the two valleys, the lowest conduction or the highest
valence bands at the K and K ′ points only contribute to a
single channel as a whole because of their shapes.

In Figs. 9(c) and 9(f), peaks arising from these plasmons
in optical absorption spectra for semiconductor and metal,
respectively, are plotted in the above-mentioned units. Ver-
tical solid and dashed lines denote the analytical plasmon
energies for the armchair nanoribbons and nanotubes and for
the zigzag nanoribbon, respectively. In each figure, vF is the
same between the armchair nanoribbon and nanotubes while
in Fig. 9(f), vF for the zigzag nanoribbon is slightly smaller
than that for the others. Small deviations of the peak positions
from the vertical solid and dashed lines come from effects
of higher-order terms of the wave vector and those of the
interactions v

(2)
(r;t )(s;u) neglected in Eqs. (36) and (37). The

peak positions for the nanoribbons and nanotubes are approx-
imately in agreement with each other while the intensities
of the peaks for the nanoribbons are about half of those for
the nanotubes because of the difference in the number of the
valleys.

Dependences of the optical absorption spectra on the sizes
of W and L for nanoribbons and nanotubes, respectively,
originate from a cutoff energy of half the π band width in
calculations of the electric susceptibility and the self-energy
[7]. These dependences are gradual as shown in all the results
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FIG. 9. Energy dependence of Reσ̃μμ (solid lines) and Re〈σ̃μμ〉 (dotted lines) for graphene nanoribbons and that of the real part of the
dynamical conductivity for carbon nanotubes (dashed lines) for parallel polarization in (a), (c), (d), and (f) and for perpendicular polarization
in (b) and (e). Units of the horizontal axes are πγ /W in (a), (b), (d), and (e) and (1/

√
2)(γ /W ) in (c) and (f) for the nanoribbons and 2πγ /L

for the nanotubes. In (a), (b), (d), and (e), � is 0.07 and in (c) and (f), 0.02 in units of 2πγ /W and 2πγ /L for the nanoribbons and nanotubes,
respectively. For the nanotubes, results for L ≈ W/2 and W are shown. (a) Results for the N = 46 armchair nanoribbon and semiconducting
nanotubes for εF = 0 and k = 0. (b) Results for the N = 46 armchair nanoribbon with εF (2πγ /W )−1 = 0.5 and semiconducting nanotubes
with εF (2πγ /L)−1 = 1.0 for k = 0. (c) Results for the N = 46 armchair nanoribbon with εF (2πγ /W )−1 = 0.25 and k(1/W )−1 = 0.232
and semiconducting nanotubes with εF (2πγ /L)−1 = 0.5 and k(2π/L)−1 = 0.232, where vF (γ /h̄)−1 = 0.745. A vertical solid line indicates
an analytical plasmon energy. (d) Results for the N = 47 armchair nanoribbon with εF (2πγ /W )−1 = 0.25, the N = 27 zigzag nanoribbon
with εF (2πγ /W )−1 = 0.5, and metallic nanotubes with εF (2πγ /L)−1 = 0.5 for k = 0. (e) Results for the N = 47 armchair nanoribbon with
εF (2πγ /W )−1 = 0.75, the N = 27 zigzag nanoribbon with εF (2πγ /W )−1 = 1.0, and metallic nanotubes with εF (2πγ /L)−1 = 1.0 for k = 0.
(f) Results for the N = 47 armchair nanoribbon with εF (2πγ /W )−1 = 0.25 and k(1/W )−1 = 0.237, the N = 27 zigzag nanoribbon with
εF (2πγ /W )−1 = 0.5 and k(1/W )−1 = 0.235, and metallic nanotubes with εF (2πγ /L)−1 = 0.5 and k(2π/L)−1 = 0.237, where vF (γ /h̄)−1 =
1.0 for the armchair nanoribbon and nanotubes and 0.819 for the zigzag nanoribbon. Vertical solid and dashed lines indicate analytical plasmon
energies for the armchair nanoribbon and nanotubes and for the zigzag nanoribbon, respectively.

of the nanotubes in Fig. 9. Thus, the correspondences between
the nanoribbons and nanotubes in Fig. 9 are considered to
be valid in a wide range of categories of nanoribbons and
nanotubes.

We briefly consider asymptotic behaviors of the exci-
tons and the plasmons in the limit of large width. First,

we consider a case where the Fermi energy is set to
zero or a constant in units of 2πγ /W . In this case, the
excitons would diminish because energies of associated in-
terband transitions vanish. The plasmons caused by intraband
transitions would disappear because the electron density per
unit area around the Fermi energy vanishes, and the plasmons
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caused by interband transitions would also vanish because en-
ergy gaps above associated one-particle excitation continuums
disappear. Another case in which the Fermi energy is fixed to
a constant independent of the width may be more realistic. In
this case, the excitons would disappear because separations
between energy bands vanish and minima of energies for
optical transitions with high joint densities of states like edges
of parabolic energy bands vanish. The plasmons caused by
intraband transitions would change to those in graphene since
the electron density per unit area around the Fermi energy
converges to a constant, while the plasmons caused by inter-
band transitions would disappear because of the same reason
as that in the first case. For high conduction and low valence
bands, the average number of edges of energy bands in the
energy interval 2πγ /W is four both for armchair and zigzag
nanoribbons. Thus, between armchair and zigzag nanoribbons
with similar Fermi energies and similar widths, the densities
of free electrons are approximately the same and the plasmons
caused by intraband transitions would be less distinguishable,
smearing the effects of the boundaries of nanoribbons.

Finally, we discuss methods to calculate optical absorption
with depolarization effects. Although σ̃μμ in Eq. (34) gives ac-
curate optical absorption spectra with depolarization effects,
its calculation is complicated. On the other hand, 〈σ̃μμ〉 in
Eq. (35) can be simply calculated. In Fig. 9, dotted lines show
〈σ̃μμ〉, which corresponds to σ̃μμ denoted by the solid lines.
For the exciton peaks in Figs. 9(a) and 9(d), almost no differ-
ence between 〈σ̃μμ〉 and σ̃μμ can be seen because excitons for
parallel polarization are hardly affected by depolarization ef-
fects [112]. For the plasmons in Figs. 9(b), 9(c), 9(e), and 9(f),
peak positions for 〈σ̃μμ〉 are almost the same as those for σ̃μμ

while peak intensities for 〈σ̃μμ〉 are slightly larger than those
for σ̃μμ by factors of less than one half in the studied cases.
Thus, this indicates that 〈σ̃μμ〉 can semiquantitatively describe
optical absorption spectra with depolarization effects.

The above result may be understood by optical absorp-
tion of systems with the continuous translational symmetry
according to a theory by Ajiki and Ando [114,115]. In this
case, the conductivities with and without depolarization ef-
fects, σ̃μμ(r, r′) and σμμ(r, r′), respectively, depend on r and
r′ as a function of r − r′. Since the integrals in Eqs. (32)
for these conductivities become convolutions, for an external
electric field E0,μ(k) with a wave vector k, we have a self-
consistent electric field Eμ(k) = [σ̃μμ(k)/σμμ(k)]E0,μ(k),
where σ̃μμ(k) and σμμ(k) are the Fourier transforms of
σ̃μμ(r, r′) and σμμ(r, r′), respectively, with respect to r − r′.
If we consider the conductivity with depolarization effects
by calculating a self-consistent electric field using classical
electrodynamics, we have

σ̃μμ(k) = σμμ(k)

1 + i
(
k2
μ/ω̃

)
V (k)σμμ(k)

, (38)

where the self-consistent electric field is derived from the
continuity equation and the Poisson equation and V (k) is
the Fourier transform of 1/|r| for the space of the electronic
system. Thus we have optical absorption power per unit area
given by

P = |E0,μ(k)|2
2(AW )2

Reσ̃μμ(k), (39)

where we used that σμμ(k) can approximately be regarded
as real numbers at energies for peaks in optical absorption
spectra. Optical absorption is simply characterized by the real
part of the conductivity with depolarization effects. Thus, if
〈σ̃μμ〉 in Eq. (35) is approximately regarded as the Fourier
transform with zero wave vector in the direction of the width,
〈σ̃μμ〉 may be expected to well describe optical absorption
with depolarization effects for homogeneous external electric
fields as long as the confinement does not have severe effects.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have theoretically studied the optical re-
sponse of armchair and zigzag graphene nanoribbons without
and with doping in an effective-mass approximation by in-
cluding electron correlations in the RPA. For screening of the
Coulomb interactions, antiscreening effects locally appear in
semiconducting armchair nanoribbons. In optical absorption
spectra, various prominent peaks arise from excitons and plas-
mons, which can be assigned to specific optical transitions.
For parallel polarization, exciton peaks at high energies split
in armchair nanoribbons because of interactions with dark
excitons. For perpendicular polarization, in nondoped semi-
conducting armchair nanoribbons, moderate exciton peaks
appear while in doped armchair and zigzag nanoribbons, only
when the Fermi energy crosses at least two energy bands,
plasmon peaks appear because of a nature of Dirac electrons.
Energy and intensity of optical absorption peaks arising from
the excitons and plasmons in a wide range of categories of
nanoribbons approximately correspond to those of carbon
nanotubes with a factor of about two in intensity by appro-
priate scaling of energy and the wave vector. The numerical
results indicate that the dynamical conductivity calculated
with the use of electronic states in the RPA can semiquantita-
tively describe optical absorption spectra with depolarization
effects by itself.
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APPENDIX A: DERIVATION OF THE SELECTION RULE

We derive the selection rule for optical transitions in
nanoribbons without electron correlations and depolarization
effects. In this case, the selection rule is determined by 〈σ̃μμ〉
with velocity matrix elements between electron states and
hole ones in the one-particle model. The velocity operator is
vμ(w; k) = (γ /h̄)σμe−ikl̂δ(w − ŵ) and (γ /h̄)σ ∗

μe−ikl̂δ(w −
ŵ) for the K and K ′ points, respectively, where ŵ and l̂ are
position operators in the directions of the width and length,
respectively.

For armchair nanoribbons, we denote one-particle states
by |se, k, i〉 with i = {1, 2}, where i indicates Ci in Eq. (12),
except for states with kx = 0 in the linear dispersions of
metallic nanoribbons, which we denote as |se, ky, 0〉, where
0 indicates C0 in Eq. (14). For parallel polarization, velocity
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matrix elements are given by

〈〈se, k, 1|v̂y|s′
e, k′, 1〉〉 = iγ

2h̄
(s′

eeiϕ − see−iϕ′
) fy,−, (A1)

〈〈se, k, 1|v̂y|s′
e, k′, 2〉〉 = iγ

2h̄
(s′

eeiϕ + seeiϕ′
) fy,+, (A2)

〈〈se, k, 2|v̂y|s′
e, k′, 2〉〉 = − iγ

2h̄
(s′

ee−iϕ − seeiϕ′
) fy,−, (A3)

with

fy,± = sin[(kx ± k′
x )W ]

(kx ± k′
x )W

, (A4)

where we define 〈〈· · · |v̂μ| · · · 〉〉 = (1/W )
∫ W

0

dw〈· · · |v̂μ(w; k)| · · · 〉 and eiϕ′
is eiϕ with replacement

k → k′. The first and the third matrix elements are valid for
kx �= k′

x and are those with fy,− → 1 for kx = k′
x. For metallic

nanoribbons, in particular, since kx, k′
x = mπ/W in Eq. (11)

and fy,± = 0, only 〈〈se, k, i|v̂y|s′
e, k′, i〉〉 with i = {1, 2} for

kx = k′
x can be nonzero. For transitions associated with the

linear dispersions, we have

〈〈se, ky, 0|v̂y|s′
e, k′, i〉〉 = 0 (A5)

〈〈se, ky, 0|v̂y|s′
e, k′

y, 0〉〉 = − γ

2h̄
(s′

esgnky + sesgnk′
y), (A6)

where i = {1, 2}.
We consider optical transitions between band edges at ky =

k′
y = 0. In this case, e±iϕ = sgnkx = 1, where sgnkx is the sign

of kx. In semiconducting nanoribbons, for transitions between
the valence and conduction bands with se = −s′

e, those be-
tween energy bands with vi and ci are allowed, where we
used fy,− = 0 in Eqs. (A1) and (A3) for kx �= k′

x because kx −
k′

x = nπ/W with n being integers. The other transitions are
prohibited. For intravalence band and intraconduction band
transitions, there are no allowed transitions, where we used
fy,+ = 0 in Eq. (A2) because kx + k′

x = nπ/W . In metallic
nanoribbons, only transitions between valence and conduction
bands with vi and ci, respectively, where i �= 1 are allowed.

For perpendicular polarization, we have the following ma-
trix elements:

〈〈se, k, 1|v̂x|s′
e, k′, 1〉〉 = iγ

2h̄
(s′

eeiϕ + see−iϕ′
) fx,−, (A7)

〈〈se, k, 1|v̂x|s′
e, k′, 2〉〉 = iγ

2h̄
(s′

eeiϕ − seeiϕ′
) fx,+, (A8)

〈〈se, k, 2|v̂x|s′
e, k′, 2〉〉 = iγ

2h̄
(s′

ee−iϕ + seeiϕ′
) fx,−, (A9)

with

fx,± = cos[(kx ± k′
x )W ] − 1

(kx ± k′
x )W

. (A10)

The first and the third matrix elements are valid for kx �= k′
x

and vanish for kx = k′
x. We also have matrix elements associ-

ated with the linear dispersions of metallic nanoribbons as

〈〈se, ky, 0|v̂x|s′
e, k′, 1〉〉

= −〈〈se, ky, 0|v̂x|s′
e, k′, 2〉〉

= − iγ

2h̄
(is′

esgnky + see−iϕ′
)
cos k′

xW − 1

k′
xW

, (A11)

〈〈se, ky, 0|v̂x|s′
e, k′

y, 0〉〉 = 0. (A12)

For transitions between band edges, we have the following
selection rule: In semiconducting nanoribbons, transitions are
allowed between the valence and conduction bands for the
different Ci, i.e., vi and c j with even i and odd j and with
odd i and even j, while intravalence (intraconduction) band
transitions are allowed between energy bands for the same Ci,
i.e., vi and v j (ci and c j) with even i and even j and with
odd i and odd j, except for the case of kx − k′

x = 2nπ/W with
n being integers. In metallic nanoribbons, the same rule as
that for semiconducting nanoribbons is applicable except that
transitions from the Dirac point to the other energy bands with
k′

x �= 2nπ/W can be allowed by taking either of the limits of
ky → ±0.

For zigzag nanoribbons, we denote one-particle states other
than edge states as |v, se, k〉. Velocity matrix elements be-
tween these states at the K point are given by

〈〈K, se, k|v̂μ|K, s′
e, k′〉〉 = 2γC2

z

h̄

−ky sin k′
yW + k′

y sin kyW

k2
y − (k′

y)2

× g1(ky, k′
y), (A13)

with

g1(ky, k′
y)

=
{

s′
esgn(sin kyW ) + sesgn(sin k′

yW ) for μ = x

i[−s′
esgn(sin kyW ) + sesgn(sin k′

yW )] for μ = y,

(A14)

where kx and k′
x are eliminated by using Eq. (18). For

transitions associated with edge states, which we denote as
|K, se, k̃〉 with k̃ = (kx, k̃y), velocity matrix elements are given
by

〈〈K, se, k̃|v̂μ|K, s′
e, k′〉〉 = 2

√
2γCzC̃z

h̄

−k̃y sin k′
yW + k′

y sinh k̃yW

k̃2
y + (k′

y)2
g2(k′

y), (A15)

〈〈K, se, k̃|v̂μ|K, s′
e, k̃′〉〉 = 4γ C̃2

z

h̄

−k̃y sinh k̃′
yW + k̃′

y sinh k̃yW

k̃2
y − (k̃′

y)2
g3, (A16)

with C̃z being a normalization factor for edge states and

g2(k′
y) =

{
i[s′

e + sesgn(sin k′
yW )] for μ = x

s′
e − sesgn(sin k′

yW ) for μ = y,
(A17)

g3 =
{−s′

e − se for μ = x
i(s′

e − se) for μ = y.
(A18)

155409-16



EXCITONS AND PLASMONS OF GRAPHENE NANORIBBONS … PHYSICAL REVIEW B 102, 155409 (2020)

From Eq. (18), ky for the ith valence and conduction
bands satisfies (i − 1)π/W < ky < iπ/W . Thus, for parallel
polarization with μ = x, transitions between the valence and
conduction bands with vi and c j, respectively, are allowed for
odd (even) i and even (odd) j while intravalence (intracon-
duction) band transitions between vi and v j (ci and c j) are
allowed for odd i and odd j and for even i and even j. For
perpendicular polarization with μ = y, a selection rule is that
for parallel polarization where the rule for band indices i and
j for transitions between the valence and conduction bands is
exchanged with that for intravalence band and intraconduction
band transitions. For the K ′ point, we have the same selection
rule.

APPENDIX B: ENERGY DISPERSION
RELATIONS OF PLASMONS

We consider plasmons for transitions in the same energy
bands in the long-wavelength limit in the case of a single
channel. When v

(2)
(r;t )(s;u) is neglected in the RPA equation, the

RPA equation is written as [59,111,112]

gs

⎛
⎜⎝ ∑

〈m′,i′〉
v

(1)
(m;i)(i′;m′ )Xm′i′ +

∑
〈m′,i′〉

v
(1)
(m;i)(m′;i′ )Ym′i′

⎞
⎟⎠

= (h̄�ν − εm + εi )Xmi, (B1)

−gs

⎛
⎜⎝ ∑

〈m′,i′〉
v

(1)∗
(m;i)(m′;i′ )Xm′i′ +

∑
〈m′,i′〉

v
(1)∗
(m;i)(i′;m′ )Ym′i′

⎞
⎟⎠

= (h̄�ν + εm − εi )Ymi, (B2)

where m and m′ denote electron states, i and i′ indicate hole
ones, and the summations run over e-h pairs for the corre-
sponding expansion coefficients. Electron and hole states for
Ymi are chosen in such a way that km − ki for Ymi is km − ki for

Xmi with the minus sign. In the long-wavelength limit, since
the plasmons consist of e-h pairs in the same energy band c1
or v1 with infinitesimally small separation in the wave vector,
we have

v
(1)
(m;i)(i′;m′ ) = v

(1)
(m;i)(m′;i′ ) = −2e2

κA
log

|k|W
2

, (B3)

where F†
m(w)Fi(w) ≈ F†

i′ (w)Fm′ (w) ≈ 1/W was used and
|k| = |km − ki| = |km′ − ki′ | � 2π/W . Substituting Eq. (B3)
into Eqs. (B1) and (B2), we have

Xmi = −2e2

κA
log

|k|W
2

C

h̄�ν − εm + εi
, (B4)

Ymi = 2e2

κA
log

|k|W
2

C

h̄�ν + εm − εi
, (B5)

with

C =
∑
〈m,i〉

Xmi +
∑
〈m,i〉

Ymi. (B6)

Substituting Eqs. (B4) and (B5) into Eq. (B6), we have

1 + 2e2gs

κA
log

|k|W
2

∑
〈m,i〉

2(εm − εi )

(h̄�ν )2 − (εm − εi )2
= 0, (B7)

where the summation runs over e-h pairs for Xmi. Using
εm − εi ≈ h̄vF |k| and that the number of e-h pairs contributing
in the summation is given by |k|(2π/A)−1, we have Eq. (36).
In the case of carbon nanotubes, replacing Eq. (B3) with
[59,112]

v
(1)
(m;i)(i′;m′ ) = v

(1)
(m;i)(m′;i′ ) = −2e2

κA
log

|k|L
4π

, (B8)

which is given from matrix elements of the Coulomb inter-
actions for nanotubes [7], and adding a factor of two of the
valley degeneracy in front of the summation in Eq. (B7), we
have Eq. (37).
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