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Superfluidity of dipolar excitons in doped double-layered hexagonal lattice in a strong magnetic field
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We examine the occurrence of Bose-Einstein condensation and superfluidity of dipolar excitons for a pair
of quasi-two-dimensional spatially separated hexagonal α-T3 layers. In the α-T3 model, the AB-honeycomb
lattice structure is supplemented with C atoms, located at the centers of the hexagonal lattice. We have solved a
two-body problem for an electron and a hole for the model Hamiltonian for the α-T3 double layer in a magnetic
field. The exciton binding energy is changed due to the magnetic field, and magnetoexcitons are formed as
excitons in a magnetic field. The energy dispersion of collective excitations, the spectrum of sound velocity,
and the effective magnetic mass of magnetoexcitons are obtained in the integer quantum Hall regime for high
magnetic fields. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition are probed
as functions of the excitonic density, the magnetic field, and the interlayer separation.
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I. INTRODUCTION

Many-particle systems of dipolar (indirect) excitons,
formed by spatially separated electrons and holes, in semi-
conductor coupled quantum wells (CQWs) in a magnetic field
B, as well as in the absence of magnetic field, have attracted
considerable attention. This interest has been generated in
large part by the possibility of Bose-Einstein condensation
(BEC) and superfluidity of dipolar excitons, which can be
observed as persistent electrical currents in each quantum well
and also through coherent optical properties [1–4]. Recent
progress in theoretical and experimental studies of the super-
fluidity of dipolar excitons in CQWs was reviewed in Ref. [5].
Electron-hole superfluids can be realized not only in the BEC
regime but also in the BCS-BEC crossover regime [6]. Quan-
tum Monte Carlo simulations obtaining and describing the
BCS-BEC crossover physics with electron-hole systems have
been performed [7].

Recently, a number of experimental and theoretical studies
were dedicated to graphene and the condensation of electron-
hole pairs, formed by spatially separated electrons and holes,
in a pair of parallel graphene layers. These investigations were
reported in Refs. [8–12]. Since the exciton binding energies in
novel two-dimensional (2D) semiconductors are quite large,
both BEC and superfluidity of dipolar excitons in double lay-
ers of transition-metal dichalcogenides (TMDCs) [13–17] and
phosphorene [18,19] have been discussed. Possible BEC in a
long-lived dark spin state of 2D dipolar excitons was demon-
strated for GaAs/AlGaAs semiconductor coupled quantum
wells at temperature T = 1.5 K with the exciton critical
concentration nc = 3 − 4 × 1010 cm−2 [20]. Measurements
reveal BEC of dipolar excitons in monolayers of the semi-
conductors tungsten diselenide and molybdenum diselenide,
separated by sheets of the 2D electrical insulator hexago-
nal boron nitride, at exciton densities of about 1012 cm−2

at temperatures up to 100 K [21]. In high magnetic fields,
2D excitons, referred to as magnetoexcitons, exist in a much
wider temperature range since the magnetoexciton binding
energies increase as the magnetic field is increased [22–28].
Magnetoexcitons in monolayer TMDCs have been studied in
Ref. [29].

Lately, there has been growing interest in the electronic
properties of the α-T3 lattice for its surprising fundamental
physical phenomena as well as its promising applications in
solid-state devices [30–43]. For a review of artificial flat-band
systems, see Ref. [44]. Raoux et al. [30] proposed that an
α-T3 lattice could be assembled from cold fermionic atoms
confined to an optical lattice by means of three pairs of laser
beams for the optical dice lattice (α = 1) [45]. A model of
this structure shown schematically in Fig. 1 consists of an
AB-honeycomb lattice (the rim) like that in graphene which
is combined with C atoms at the center/hub of each hexagon.
A parameter α is then introduced to represent the ratio of the
hopping integral between the hub and the rim to that around
the rim of the hexagonal lattice. By dephasing one of the three
pairs of laser beams, one could possibly vary the parameter,
0 < α = tan φ < 1.

We consider a pair of parallel α-T3 layers separated by an
insulating slab [e.g., SiO2 or hexagonal boron nitride (h-BN)]
in a strong perpendicular magnetic field. The equilibrium
system of local pairs of electrons and holes, spatially sepa-
rated on these parallel α-T3 layers, correspondingly can be
created by varying the chemical potential using a bias voltage
between the two α-T3 layers or between two gates located
near the respective α-T3 2D sheets [for simplicity, because
we consider the BEC regime, we also call these equilibrium
local electron-hole (e-h) pairs dipolar magnetoexcitons]. In
case 1 a dipolar magnetoexciton is formed by an electron in
Landau level 1 and a hole in Landau level −1. In this case,
a dipolar magnetoexciton is formed by the bound state of an
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FIG. 1. The α-T3 lattice. Hopping between sites A and B, which
form a honeycomb lattice identical to graphene, takes place with
hopping parameter amplitude t . Sites labeled C, located at the centers
of the hexagons, are coupled only to A sites with variable hopping
amplitude αt .

electron in the lowest Landau level above the Fermi level and
a hole in the highest Landau level below the Fermi level. We
choose to consider the lowest-energy state since the energy
required to create a magnetoexciton in this state is within the
range of energies which are possible to achieve experimen-
tally. Additionally, magnetoexcitons associated with higher
Landau levels can eventually transform to magnetoexcitons
at lower Landau levels emitting photons. Dipolar magnetoex-
citons with spatially separated electrons and holes can also
be created by laser pumping and by applying a perpendicular
electric field, as done for CQWs [2–4]. In case 2, a dipolar
magnetoexciton is formed by an electron in Landau level 1
and a hole in Landau level 0. We assume that the system
is in a quasiequilibrium state. We investigate the collective
properties and propose the occurrence of superfluidity of dipo-
lar excitons in α-T3 double layers in high magnetic field for
both cases 1 and 2. We assume that the dilute system of
magnetoexcitons forms a weakly interacting Bose gas.

Our decision to investigate dipolar magnetoexcitons in a
double layer versus direct magnetoexcitons in a monolayer
was driven by the fact that the e-h recombination due to
tunneling of electrons and holes between monolayers in a
double layer is suppressed by the dielectric barrier, which is
placed between two monolayers [9]. Therefore, the dipolar
magnetoexcitons, formed by electrons and holes, located in
two separate α-T3 layers, have a longer lifetime than direct

magnetoexcitons in a single α-T3 layer. Moreover, due to
the interlayer separation D, dipolar magnetoexcitons in both
the ground and excited states have nonzero electrical dipole
moments. The dipole moments of the dipolar magnetoex-
citon produce a long-range dipole-dipole repulsion between
magnetoexcitons, which leads to larger sound velocity and,
consequently, higher critical temperature for superfluidity of
dipolar magnetoexcitons in a double layer compared with
direct excitons in a monolayer with the same magnetoexciton
densities.

The rest of the paper is organized in the following way.
In Sec. II, the model for electrons in an α-T3 monolayer in
a perpendicular magnetic field is reviewed to establish our
notation. In Sec. III, the two-body problem for an electron
and a hole, spatially separated in two parallel α-T3 monolay-
ers in a perpendicular magnetic field, is formulated, and the
corresponding eigenenergies and wave functions are derived.
In Sec. IV, the effective masses and binding energies for
isolated dipolar magnetoexcitons in the α-T3 double layer are
obtained. The collective properties and superfluidity of the
weakly interacting Bose gas of dipolar magnetoexcitons in the
α-T3 double layer are investigated in Sec. V. Our conclusions
are presented in Sec. VI.

II. α-T3 MODEL IN A MAGNETIC FIELD

The tight-binding Hamiltonian single α-T3 layer is ob-
tained by including additional hopping terms in a single-layer
graphene Hamiltonian. The additional terms describe the
hopping between the central C atom to the appropriate
nearest-neighbor C atoms and A atoms:

Ĥ =
[
−t

∑
〈i, j〉 σ

a†
i σ b j σ − αt

∑
〈i, j〉 σ

a†
i σ c j σ

]
+ H.c. (1)

The first term describes the graphene Hamiltonian, and the
term −αt

∑
〈i, j〉 σ a†

i σ c j σ + H.c. describes the hopping to the
central C atoms corresponding to the α-T3 model.

In the low-energy regime the tight-binding Hamiltonian
reduces to a linear term in momentum, and we have the
Weyl-Dirac system. This could be described by a model
Hamiltonian around the K and K ′ points of the Brillouin zone
describing the lower-energy states since we are interested in
the excitonic BEC characterized by the macroscopic occupa-
tion of the lowest-energy state. In the absence of magnetic
field, the Hamiltonian near the K point is given by

Ĥ = h̄vF

⎛
⎜⎝

0 (px + ipy) cos φ 0

(px − ipy) cos φ 0 (px + ipy) sin φ

0 (px − ipy) sin φ 0

⎞
⎟⎠, (2)

with vF being the Fermi velocity and the parameter α = tan φ describing the strength of the hopping to the central C atoms. In
the presence of a magnetic field B = Bêz parallel to the z axis, we use the Landau gauge A = xBêy with minimal coupling p →
p ± eA for electrons and holes. In addition, we have Zeeman splitting and a term for pseudospin splitting. For now we ignore
the Zeeman and pseudospin splitting. With the minimal coupling substitution in the Landau gauge we obtain the Hamiltonian
for electrons and holes using the annihilation operators for an electron and a hole as follows:

c± = 1√
2h̄eB

[px + i(py ∓ exB)], [c+, c†
+] = 1, [c−, c†

−] = 1, c†
+c+ = n̂+, c†

−c− = n̂−. (3)
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The Hamiltonians for the K and K ′ valleys are given in terms of these operators:

HeK
kin =

√
2

h̄vF

rB

⎛
⎜⎜⎝

0 c+ cos φ 0

c†
+ cos φ 0 c+ sin φ

0 c†
+ sin φ 0

⎞
⎟⎟⎠, HeK ′

kin =
√

2
h̄vF

rB

⎛
⎜⎝

0 c†
+ cos φ 0

c+ cos φ 0 c†
+ sin φ

0 c+ sin φ 0

⎞
⎟⎠. (4)

The two independent modes, around K and K ′, describing the full low-energy Hamiltonian take the form

He
kin =

√
2

h̄vF

rB

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 c+ cos φ 0 0 0 0

c†
+ cos φ 0 c+ sin φ 0 0 0

0 c†
+ sin φ 0 0 0 0

0 0 0 0 c†
+ cos φ 0

0 0 0 c+ cos φ 0 c†
+ sin φ

0 0 0 0 c+ sin φ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

and rB = 1√
h̄eB

is a magnetic length scale.
The energy eigenvalues are obtained in a way similar to that for graphene [46], and we obtain for an electron in the K valley

√
2

h̄vF

rB

⎛
⎜⎝

0 c+ cos φ 0

c†
+ cos φ 0 c+ sin φ

0 c†
+ sin φ 0

⎞
⎟⎠
⎛
⎜⎝

aK
n (φ)|n − 2〉
±|n − 1〉
bK

n (φ)|n〉

⎞
⎟⎠ = εn,s

⎛
⎜⎝

aK
n (φ)|n − 2〉
±|n − 1〉
bK

n (φ)|n〉

⎞
⎟⎠, (6)

where |m〉 is a harmonic oscillator wave function. We have a similar equation for the K ′ valley, giving the energy eigenvalues

εn,s =
√

2sgn(n)
h̄vF

rB

√
n − 1

2
(1 + η cos 2φ), εn,0 = 0 flat band, n = 2, 3, . . . . (7)

Here η = ±1, with η = 1 for the K valley and η = −1 for the K ′ valley. The corresponding energy eigenstates for n = 2, 3, . . .

are

∣∣ψK
±,n

〉 = 1√
2

⎛
⎜⎝

aK
n (φ)|n − 2〉
±|n − 1〉
bK

n (φ)|n〉

⎞
⎟⎠,

∣∣ψK ′
±,n

〉 = 1√
2

⎛
⎜⎝

aK ′
n (φ)|n〉

±|n − 1〉
bK ′

n (φ)|n − 2〉

⎞
⎟⎠. (8)

In this notation,

aK
n (φ) =

√
(n − 1) cos2 φ

n − cos2 φ
, bK

n (φ) =
√

n sin2 φ

n − cos2 φ
, aK ′

n (φ) = −
√

n cos2 φ

n − sin2 φ
, bK ′

n (φ) =
√

(n − 1) sin2 φ

n − sin2 φ
.

For the flat band with εn,0 = 0, the eigenstates are given by,

∣∣ψK
0,n

〉 = 1√
2

⎛
⎜⎝

bK
n (φ)|n − 2〉

0

aK
n (φ)|n〉

⎞
⎟⎠,

∣∣ψK ′
0,n

〉 = 1√
2

⎛
⎜⎝

bK ′
n (φ)|n〉

0

aK ′
n (φ)|n − 2〉

⎞
⎟⎠.

We treat the lowest state n = 1 separately. In this case, the eigenvalue problem is

HeK
kin |�〉 = h̄vF

rB

√
2

⎛
⎝ 0 c+ cos φ 0

c†
+ cos φ 0 c+ sin φ

0 c†
+ sin φ 0

⎞
⎠
⎛
⎝ 0

α|0〉
β|1〉

⎞
⎠ = ε

⎛
⎝ 0

α|0〉
β|1〉

⎞
⎠. (9)

The energy eigenvalues and eigenstates are

∣∣ψK
±,1

〉 = 1√
2

⎛
⎜⎝

0

±|0〉
|1〉

⎞
⎟⎠, ε1,± = ±

√
2

h̄vF

rB
sin φ, (10)

∣∣ψK ′
±,1

〉 = 1√
2

⎛
⎜⎝

|1〉
±|0〉

0

⎞
⎟⎠, ε1,± = ±

√
2

h̄vF

rB
cos φ. (11)

There is no flat-band wave function associated with n = 1.
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FIG. 2. Schematic illustration of a dipolar magnetoexciton in a
pair of α-T3 layers embedded in an insulating material. A uniform
perpendicular magnetic field B is applied, and negative and positive
biases are attached to the layers in the xy plane.

III. TWO-BODY PROBLEM FOR AN ELECTRON AND A
HOLE IN THE α-T3 DOUBLE LAYER IN A

PERPENDICULAR MAGNETIC FIELD

We first consider the Hamiltonian for a noninteracting
electron-hole pair excluding the Coulomb interaction. We
choose the electron-hole state belonging to a single K valley.
In general, the magnetoexciton state is a superposition of K
and K ′ valley states. Therefore, we will confine our states to
the subspace of K valley states in Eq. (5) (upper right 3 × 3
block), i.e.,

Ĥ = He
kin ⊗ 1h + 1e ⊗ Hh

kin.

In matrix form, we have

He−h
kin = Hkin = h̄vF

rB

√
2

⎛
⎜⎝

Hh
kin c+ cos φ1h 0

c†
+ cos φ1h Hh

kin c+ sin φ1h

0 c†
+ sin φ1h Hh

kin

⎞
⎟⎠. (12)

This is a 9 × 9 matrix where each entry above is a 3 × 3 matrix.
A schematic illustration of a dipolar magnetoexciton, which is a bound state of a spatially separated electron and a hole,

located on a pair of α-T3 layers embedded in an insulating material in a perpendicular magnetic field B, is depicted in Fig. 2. In
the case of noninteracting excitons, the eigenvalues are additive, and we obtain

εn+,n− = h̄vF

rB

√
2

(
sgn(n+)

√
n+ − 1

2
(1 + η cos 2φ)sgn(n−)

√
n+ − 1

2
(1 − η cos 2φ)

)
. (13)

The general eigenstates are a superposition of product states of the form

|�n+,n−〉 = |ψn+〉 ⊗ |ψn−〉, |�〉 =
∑

n+,n−

a(n+, n−)|�n+,n−〉.

We now rewrite the Hamiltonian in the center-of-mass (c.m.) and relative coordinates. The energy of indirect excitons is
obtained when a substrate is sandwiched between a double layer of α-T3. We then have the Coulomb term u(re − rh) between
an electron at re and a hole at rh. The magnetoexciton Hamiltonian is given by

H = He
kin ⊗ 1h + 1e ⊗ Hh

kin + u(re − rh) ⊗ 1

= h̄vF

⎛
⎜⎝

0 cos φ[pex + i(pey + eBxe)] 0

cos φ[pex − i(pey + eBxe)] 0 sin φ[pex + i(pey + eBxe)]

0 sin φ[pex − i(pey + eBxe)] 0

⎞
⎟⎠ ⊗ 1h

+ h̄vF1e ⊗

⎛
⎜⎝

0 cos φ[phx − i(phy − eBxh)] 0

cos φ[phx + i(phy − eBxh)] 0 sin φ[phx − i(phy − eBxh)]

0 sin φ[phx + i(phy − eBxh)] 0

⎞
⎟⎠. (14)

We go to the center-of-mass and relative coordinate system as follows:

pe/h = P/2 ± p, re/h = R ± r/2.

We define the pseudospin-1 operators Sx(φ) and Sy(φ) as

Sx(φ) =

⎛
⎜⎝

0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎞
⎟⎠, Sy(φ) = i

⎛
⎜⎝

0 − cos φ 0

cos φ 0 − sin φ

0 sin φ 0

⎞
⎟⎠.

The total Hamiltonian is then given by

H = h̄vF [Pxm+
x (φ) + 2pxm−

x (φ) + (Py − eBx)m−
y (φ) + 2pym+

y (φ) + 2(py + eBX )m+
y (φ)] + u(r) ⊗ 1.
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In this notation,

m±
x (φ) = 1

2 [Sx(φ) ⊗ 1h ± 1e ⊗ Sx(φ)],

m±
y (φ) = 1

2 [Sy(φ) ⊗ 1h ± 1e ⊗ Sy(φ)].

The unitary operator U = eieBXy transforms the Hamiltonian

U †HU = h̄vF [2p · m−(φ) + (P − ẑ × r) · m+(φ)]

+ u(r) ⊗ 1;

shifting r → r − ẑ × P moves the P dependence to the po-
tential energy. This gives the same form of two-particle wave
function as in [9]. Here are the states and the energies are
in the same notation and form as in [9] [see their Eqs. (4)
and (6)]. The nine-component wave function is written as
follows. Note the symbols have the same definitions as in [9].
We have

�(R, r) = exp

[
i

(
P + e

2c
[B × r]

)
· R

h̄

]

̃(r − ρ0). (15)

A. Magnetoexciton states for n+, n− = 2, 3, . . .

We assume that both electrons and holes are in the K val-
ley, and we first consider n+ = 2, 3, . . . and n− = 2, 3, . . .

states. Therefore, for a magnetoexciton state, we use the ten-
sor product of the above states for the electron-hole wave
function. We express the wave function using


n+,n− (r) = (2π )−1/22−|m|/2 ñ!√
n+!n−!

1

rB
sgn(m)m r|m|

r|m|
B

× exp

[
−imφ − r2

4r2
B

]
L|m|

ñ

(
r2

2r2
B

)
, (16)

where m = |n+ − n−|, ñ = min(n+, n−), and L are Laguerre
polynomials. We have

ψn+ (re) ⊗ ψn− (rh) = 1

2

⎛
⎜⎝

an+ (φ)
n+−2(re)


n+−1(re)

bn+ (φ)
n+ (re)

⎞
⎟⎠

⊗

⎛
⎜⎝

an− (φ)
n−−2(rh)

−
n−−1(rh)

bn− (φ)
n− (rh)

⎞
⎟⎠. (17)

This leads to the following wave function in the c.m. coordi-
nate frame of reference:


̃n+,n− (r) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an+ (φ)an− (φ)
n+−2,n−−2(r)

−an+ (φ)
n+−2,n−−1(r)

an+ (φ)bn− (φ)
n+−2,n− (r)

an− (φ)
n+−1,n−−2(r)

−
n+−1,n−−1(r)

bn− (φ)
n+−1,n− (r)

bn+ (φ)an− (φ)
n+,n−−2(r)

−bn+ (φ)
n+,n−−1(r)

bn+ (φ)an− (φ)
n+,n− (r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

B. Landau levels for n± = 1

The n± = 1 Landau levels are treated separately as de-
scribed below. We express the eigenvalue problem as

He
kin|�〉 = γB

⎛
⎜⎝

0 c+ cos φ 0

c†
+ cos φ 0 c+ sin φ

0 c†
+ sin φ 0

⎞
⎟⎠
⎛
⎜⎝

0

α|0〉
β|1〉

⎞
⎟⎠

= ε

⎛
⎜⎝

0

α|0〉
β|1〉

⎞
⎟⎠, (19)

and we have a similar equation for a hole from which the states
are given by

ψn+=1(re) = 1√
2

⎛
⎜⎝

0

±
0(re)


1(re)

⎞
⎟⎠,

ψn−=1(rh) = 1√
2

⎛
⎜⎝

0

±
0(rh)


1(rh)

⎞
⎟⎠. (20)

We note that the n± = 1 states are independent of the hopping
parameter φ.

C. Magnetoexciton states for n+ = 2, 3, . . . and n− = 1

ψn+ (re) ⊗ ψn− (rh) = 1

2

⎛
⎜⎝

an+ (φ)
n+−2(re)


n+−1(re)

bn+ (φ)
n+ (re)

⎞
⎟⎠

⊗

⎛
⎜⎝

0

−
0(rh)


1(rh)

⎞
⎟⎠. (21)

This leads to the following wave function in the c.m. coordi-
nate system:


̃n+,n− (r) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−an+ (φ)
n+−2,0(r)

an+ (φ)
n+−2,1(r)

0

−
n+−1,0(r)


n+−1,1(r)

0

−bn+ (φ)
n+,0(r)

bn+ (φ)
n+,1(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

D. Magnetoexciton states for n+ = 1, n− = 2, 3, . . .

ψn+ (re) ⊗ ψn− (rh) = 1

2

⎛
⎜⎝

0


0(re)


1(re)

⎞
⎟⎠ ⊗

⎛
⎜⎝

an− (φ)
n−−2(rh)

−
n−−1(rh)

bn− (φ)
n− (rh)

⎞
⎟⎠.

(23)
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This leads to the following wave function in the c.m. coordi-
nate system:


̃1,n− (r) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

an− (φ)
0,n−−2(r)

−
0,n−−1(r)

bn− (φ)
0,n− (r)

an− (φ)
1,n−−2(r)

−
1,n−−1(r)

bn− (φ)
1,n− (r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

E. Magnetoexciton states for n+ = 1, n− = 1

We note that for n = 0 we have no valence or conduction
band states, but there is a flat band described by

ψn+=1(re) ⊗ ψn−=1(rh) = 1

2

⎛
⎜⎝

0

+
0(re)


1(re)

⎞
⎟⎠ ⊗

⎛
⎜⎝

0

−
0(rh)


1(rh)

⎞
⎟⎠,

(25)

which yields the following wave function in the c.m. frame of
reference:


̃n+=1,n−=1(r) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

−
0,0(r)


0,1(r)

0


1,0(r)


1,1(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

F. Magnetoexciton states for n+ = 1, n− = 0

For the case when n = 0, there is neither a valence nor
conduction band, but there is a flat band. We now consider
an electron in n+ = 1 and a hole in the flat band with n− = 0.
The n = 0 state

ψn−=0(rh) =

⎛
⎜⎝

0

0


0(rh)

⎞
⎟⎠. (27)

The corresponding exciton state becomes

ψn+=1(re) ⊗ ψn−=0(rh) = 1√
2

⎛
⎜⎝

0


0(re)


1(re)

⎞
⎟⎠ ⊗

⎛
⎜⎝

0

0


0(rh)

⎞
⎟⎠.

(28)

This leads to the following wave function in the c.m. coordi-
nate system:


̃n+=1,n−=0(r) = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0


0,0(r)

0

0


1,0(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

IV. ISOLATED DIPOLAR MAGNETOEXCITON

For case 1, we calculate the magnetoexciton energy using
the expectation value for an electron in Landau level 1 and a
hole in level 1. In high magnetic field, the magnetoexciton is
constructed from an electron and a hole in the lowest Landau
level with the following nine-component wave function with
relative coordinates:


̃1,1(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

−
0,0(r)


0,1(r)

0


1,0(r)


1,1(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

For case 2, we calculate the magnetoexciton energy using
the expectation value for an electron in Landau level 1 and a
hole in level 0. We have


̃1,0(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0


0,0(r)

0

0


1,0(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

The 2D harmonic oscillator eigenfunctions 
ne,nh (r) are given
by [46]


ne,nh (r) = (2π )−1/22−|m|/2 ñ!√
n1!n2!

1

rB
sgn(m)m r|m|

r|m|
B

× exp

[
−imφ − r2

4r2
B

]
L|m|

ñ

(
r2

2r2
B

)
, (32)
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where rB = √
h̄/(eB) is the magnetic length, L|m|

ñ (x) de-
notes Laguerre polynomials, m = ne − nh, ñ = min(ne, nh),
and sgn(m)m = 1 for m = 0.

The magnetoexciton energy in high magnetic field can
be calculated by employing perturbation theory with respect
to the Coulomb electron-hole attraction, analogously to 2D
quantum wells with finite electron and hole masses [22]. This
approach allows us to derive the spectrum of isolated dipolar
magnetoexcitons with spatially separated electrons and holes
in the α-T3 double layer. For the α-T3 double layer, this per-
turbation theory is valid only for relatively large separation
D between electron and hole α-T3 double layers and rela-
tively high magnetic fields B, i.e., D 	 rB when e2/(εD) 

h̄vF /rB. Here e2/(εD) is the characteristic Coulomb electron-
hole attraction for the α-T3 double layer, and h̄vF /rB is
the energy difference between the first and zeroth Lan-
dau levels in α-T3. The operator of electron-hole Coulomb
attraction is

V̂ (r) = − ke2

ε
√

r2 + D2
, (33)

where k = 9 × 109 N × m2/C2; ε is the dielectric constant of
the insulator (SiO2 or h-BN), surrounding the electron and
hole α-T3 monolayers, forming the double layer; and D is
the separation between electron and hole α-T3 monolayers.
For the h-BN barrier we substitute the dielectric constant ε =
4.89, while for the SiO2 barrier we substitute the dielectric
constant ε = 4.5. For h-BN insulating layers, ε = 4.89 is the
effective dielectric constant, defined as ε =

√
ε⊥√

ε‖ [13],
where ε⊥ = 6.71 and ε‖ = 3.56 are the components of the
dielectric tensor for h-BN [47]. We will also discuss the case
when the α-T3 double layer is surrounded by air.

The magnetoexciton energies En+,n− (P) in first-order per-
turbation theory are given by

Ene,nh (P) = E (0)
ne,nh

+ Ene,nh (P), (34)

where E (0)
ne,nh

is the unperturbed spectrum and

Ene,nh (P) = −
〈
nenhP

∣∣∣∣ ke2

ε
√

D2 + r2

∣∣∣∣nenhP
〉
. (35)

Neglecting the transitions between different Landau levels,
first-order perturbation with respect to the Coulomb attraction
leads to the following result for the energy of magnetoexciton
for case 1:

E1,1(P) = −
〈
1, 1, P

∣∣∣∣ ke2

ε
√

D2 + r2

∣∣∣∣1, 1, P
〉
, (36)

and for case 2,

E1,0(P) = −
〈
1, 0, P

∣∣∣∣ ke2

ε
√

D2 + r2

∣∣∣∣1, 0, P
〉
. (37)

Denoting the averaging involving the 2D harmonic oscilla-
tor eigenfunctions 
ne,nh (r) in Eq. (32) as 〈〈ñmP| · · · |ñmP〉〉
[ñ and m are defined below Eq. (32)], we obtain the energy
of an indirect magnetoexciton created by spatially sepa-
rated electrons and holes in the lowest Landau level for
case 1:

E1,1(P) = 〈1, 1, P|V̂ (r)|1, 1, P〉

= 1
4 [〈〈0, 0, P|V̂ (r)|0, 0, P〉〉
+ 2〈〈0, 1, P|V̂ (r)|0, 1, P〉〉
+ 〈〈1, 0, P|V̂ (r)|1, 0, P〉〉], (38)

and for case 2, we have

E1,0(P) = 〈1, 0, P|V̂ (r)|1, 0P〉 = 1
2 [〈〈0, 0, P|V̂ (r)|0, 0, P〉〉

+ 〈〈0, 1, P|V̂ (r)|0, 1, P〉〉]. (39)

Substituting for small magnetic momenta P 
 h̄/rB and P 

h̄D/r2

B, we get the following relations [26]:

〈〈ñmP|V̂ (r)|ñmP〉〉 = E (b)
ñm + P2

2Mñm(B, D)
. (40)

Making use of this in Eqs. (38) and (39), we obtain the disper-
sion law of a magnetoexciton for small magnetic momenta in
cases 1 and 2, i.e.,

E1,1(P) = 1

4

[
E (b)

00 (B, D) + 2E (b)
01 (B, D) + E (b)

10 (B, D)
]

+ 1

4

( 1

M00(B, D)
+ 2

M01(B, D)
+ 1

M10(B, D)

)P2

2

= −E (b)
B (D) + P2

2mB(D)
(41)

and

E1,0(P) = 1

2

[
E (b)

00 (B, D) + E (b)
01 (B, D)

]
+ 1

2

(
P2

2M00(B, D)
+ P2

2M01(B, D)

)

= −E (b)
B (D) + P2

2mB(D)
, (42)

where the binding energy E (b)
B (D) and the effective magnetic

mass mB(D) of a magnetoexciton with spatially separated
electrons and holes in the α-T3 double layer are, for case 1,

E (b)
B (D) = −1

4

[
E (b)

00 (B, D) + 2E (b)
01 (B, D) + E (b)

10 (B, D)
]
,

1

mB(D)
= 1

4

[ 1

M00(B, D)
+ 2

M01(B, D)
+ 1

M10(B, D)

]
,

(43)

and, for case 2,

E (b)
B (D) = −1

2

[
E (b)

00 (B, D) + E (b)
01 (B, D)

]
,

1

mB(D)
= 1

2

( 1

M00(B, D)
+ 1

M01(B, D)

)
, (44)

where the constants E (b)
00 (B, D), E (b)

01 (B, D), E (b)
10 (B, D),

M00(B, D), M01(B, D), and M10(B, D), depending on
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magnetic field B and the interlayer separation D, are defined by [26]

E (b)
00 (B, D) = −E0 exp

[
D2

2r2
B

]
erfc

[
D√
2rB

]
,

E (b)
01 (B, D) = −E0

{(
1

2
− D2

2r2
B

)
exp

[
D2

2r2
B

]
erfc

[
D√
2rB

]
+ D√

2πrB

}
,

E (b)
10 (B, D) = −E0

{(
3

4
+ D2

2r2
B

+ D4

4r4
B

)
exp

[
D2

2r2
B

]
erfc

[
D√
2rB

]
− D

2
√

2πrB

−
(

D√
2rB

)3 1√
π

}
,

M00(B, D) = M0

{(
1 + D2

r2
B

)
exp

[
D2

2r2
B

]
erfc

[
D√
2rB

]
−
√

2

π

D

rB

}−1

, (45)

M01(B, D) = M0

{(
3 + D2

r2
B

)
D√

2πrB

−
(

1

2
+ 2

D2

r2
B

+ D4

2r4
B

)
exp

[
D2

2r2
B

]
erfc

[
D√
2rB

]}−1

,

M10(B, D) = M0

{
1

4

(
7 + 25

D2

r2
B

+ 11
D4

r4
B

+ D6

r6
B

)
exp

[
D2

2r2
B

]
erfc

[
D√
2rB

]
−
(

17

2
+ 5

D2

r2
B

+ D4

2r4
B

)
D√

2πrB

}−1

,

where the constants E0 and M0 and function erfc(z) are given
by [26]

E0 =
〈〈

00P

∣∣∣∣ e2

ε|r|
∣∣∣∣00P

〉〉
P=0

= ke2

εrB

√
π

2
,

M0 = −
[

2

(〈〈
00P

∣∣∣∣ e2

ε|r|
∣∣∣∣00P

〉〉
−E0

)]−1

P2= 23/2ε h̄2

√
πke2rB

,

erfc(z) = 2√
π

∫ ∞

z
exp(−t2)dt . (46)

For both cases 1 and 2, for large interlayer separation
D 	 rB, the asymptotic values for the binding energy E (b)

B (D)
and the effective magnetic mass mB(D) of the dipolar magne-
toexciton in the α-T3 double layer are the same and are given
by

E (b)
B (B, D) = ke2

εD
, mB(D) = εD3B2

k
. (47)

Measuring energy from the binding energy of the magne-
toexciton, the dispersion relation εk (P) for an isolated dipolar
magnetoexciton is a quadratic function at small magnetic mo-
mentum P 
 h̄/rB and P 
 h̄D/r2

B:

εk (P) = P2

2mBk
, (48)

where mBk , the effective magnetic mass, is dependent on B
and the separation D between electron and hole layers as well
as the quantum number k [k = (ne, nh) are magnetoexcitonic
quantum numbers].

The squared 2D radius of a magnetoexciton for case 1 can
be defined as

r2
1,1(P = 0) = 〈1, 1, P|r2|1, 1, P〉P=0

= 1
4

(
l2
00 + 2l2

01 + l2
10

) = 4r2
B, r1,1 = 2rB, (49)

and for case 2 it can be defined as

r2
1,0(P = 0) = 〈1, 0, P|r2|1, 0, P〉P=0

= 1
2

(
l2
00 + l2

01

) = 3r2
B, r1,0 =

√
3rB, (50)

where l2
ñm = 〈〈ñmP|r̂2|ñmP〉〉P=0 and (l2

00 = 2r2
B, l2

01 = 4r2
B,

l2
10 = 6r2

B) [26].

V. SUPERFLUIDITY OF DIPOLAR MAGNETOEXCITONS
IN AN α-T3 DOUBLE LAYER

Dipolar magnetoexcitons have electrical dipole moments,
produced by the interlayer separation D. We assume that
dipolar magnetoexcitons repel each other like parallel dipoles.
The latter assumption is reasonable when D is larger than the
mean separation between an electron and hole parallel to the
α-T3 layers D 	 (〈r2〉)1/2.

Since electrons on an α-T3 monolayer can be located in two
valleys, there are four types of dipolar magnetoexcitons in an
α-T3 double layer. Since all these types of dipolar magnetoex-
citons have identical envelope wave functions and energies,
it is reasonable to assume that a dipolar magnetoexciton is
located in only one valley. We use n0 = n/(4s) as the density
of magnetoexcitons in one valley, where n is the total density
of magnetoexcitons and s is the spin degeneracy (s = 4 for
magnetoexcitons in an α-T3 double layer).

We shall treat a dilute 2D magnetoexciton system in
the α-T3 double layer as a weakly interacting Bose gas by
applying the procedure described in Ref. [9]. Two dipolar
magnetoexcitons in a dilute structure repel each other with the
potential energy of the pair magnetoexciton-magnetoexciton
interaction, written as U (R) = ke2D2/(εR3), where R is the
distance between magnetoexciton dipoles parallel to the α-T3

layers. For the weakly interacting Bose gas of 2D dipolar
magnetoexcitons [when na2(B) 
 1, where a(B) is the in-
plane radius of a dipolar magnetoexciton defined for cases
1 and 2 in Eqs. (49) and (50), respectively] the summation
of ladder diagrams is valid [48]. The chemical potential μ,
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FIG. 3. The magnetoexciton binding energy Eb
B(B, D) as a function of magnetic field B for chosen interlayer separations D for (a) case 1

and (b) case 2.

corresponding to the summation of the ladder diagrams, can
be written as [9]

μ = κ2

2mB
= π h̄2n

smB ln
[
sh̄4ε2/

(
2πnm2

Bk2e4D4
)] , (51)

where s = 4 is the spin degeneracy factor.
The spectrum of collective excitations, obtained from the

ladder approximation, at low magnetic momenta corresponds
to the sound spectrum of collective excitations ε(P) = csP
with the sound velocity cs = √

μ/mB, where μ is defined by
Eq. (51). Since magnetoexcitons have a sound spectrum for
collective excitations at small magnetic momenta P due to
dipole-dipole repulsion, the magnetoexcitonic superfluidity is
possible at low temperatures T in α-T3 double layers because
the sound spectrum satisfies the Landau criterion for superflu-
idity [48,49].

The magnetoexcitons constructed from spatially separated
electrons and holes in α-T3 double layers with large inter-
layer separation D 	 rB form a weakly interacting 2D gas
of bosons with dipole-dipole pair repulsion. Consequently,
the superfluid-normal phase change in this system is the
Kosterlitz-Thouless transition [50]. The temperature Tc of this

conversion to the superfluid state in a 2D magnetoexciton
system is determined by the equation

Tc = π h̄2ns(Tc)

2kBmB
, (52)

where ns(T ) is the superfluid density of the magnetoexciton
system as a function of temperature T , magnetic field B, and
interlayer separation D and kB is the Boltzmann constant.
The function ns(T ) in Eq. (52) can be determined from the
relation ns = n/(4s) − nn, where n is the total density and
nn is the normal component density. Following the procedure
described in Ref. [9], we have for the superfluid density

ns = n

4s
− nn = n

4s
− 3ζ (3)

2π h̄2

k3
BT 3

c4
s mB

. (53)

In a 2D system, superfluidity of magnetoexcitons ap-
pears below the Kosterlitz-Thouless transition temperature
[Eq. (52)], where only coupled vortices are present [50]. Us-
ing Eq. (53) for the density ns of the superfluid component,
we obtain an equation for the Kosterlitz-Thouless transition
temperature Tc. Its solution is

Tc =
⎧⎨
⎩
[

1 +
√

32

27

(
smBkBT 0

c

π h̄2n

)3

+ 1

]1/3

−
[√

32

27

(
smBkBT 0

c

π h̄2n

)3

+ 1 − 1

]1/3⎫⎬
⎭ T 0

c

21/3
. (54)

Here T 0
c is the temperature at which the superfluid den-

sity vanishes in the mean-field approximation [i.e., ns(T 0
c )

= 0],
T 0

c = 1

kB

(
π h̄2nc4

s mB

6sζ (3)

)1/3

. (55)
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FIG. 4. The effective magnetic mass mB(B, D) of a magnetoexciton as a function of magnetic field B for chosen interlayer separation D for
(a) case 1 and (b) case 2.

In Fig. 3, we present results showing the dependence of
the magnetoexciton binding energy Eb

B(B, D) on the magnetic
field B for chosen interlayer separation D in cases 1 and 2.
According to Fig. 3, Eb

B(B, D) is increased as B is increased,
and D is decreased. For the same parameters Eb

B(B, D) is
slightly larger for case 2 than case 1.

Figure 4 presents our results for the dependence of the
effective magnetic mass mB(B, D) of a magnetoexciton on
the magnetic field B for chosen interlayer separation D for
cases 1 and 2. According to Fig. 4, mB(B, D) increases as
B is increased and D is increased. For the same parameters,
mB(B, D) is slightly larger for case 1 compared with case 2.

In Fig. 5, we display our results for the Kosterlitz-Thouless
transition temperature Tc(n, B, D) versus the magnetic field
B for various interlayer separations at fixed magnetoexci-
ton concentration n for cases 1 and 2. According to Fig. 5,
Tc(n, B, D) decreases as B is increased and D is increased. For
the same parameters, Tc(n, B, D) is slightly larger for case 2
compared with case 1.

We plot in Fig. 6 the functional dependence of the
Kosterlitz-Thouless transition temperature Tc(n, B, D) on the
magnetoexciton concentration n for several chosen magnetic
fields B and fixed interlayer separation D in both cases 1
and 2. We deduce from Fig. 6 that Tc(n, B, D) increases as
n is increased but decreases as B is increased. Additionally,
we conclude that for the same values of the parameters,
Tc(n, B, D) is slightly larger for case 2 than case 1.

Based on Figs. 3, 5, and 6, one can conclude that case
2 is slightly preferable to case 1 for observing dipolar mag-
netoexcitons and their superfluidity in the α-T3 double layer
since case 2 corresponds to slightly larger magnetoexciton
binding energy Eb

B(B, D) and Kosterlitz-Thouless transition

temperature Tc(n, B, D) than case 1 for the same described
parameters.

If the α-T3 double layer is surrounded by air, a lower
effective dielectric constant ε will result in higher magnetoex-
citon binding energy E (b)

B (B, D) and lower effective magnetic
mass of a magnetoexciton mB(D) at the same magnetic field
strength B and layer separation D according to Eqs. (46)
and (47). Lower mB(D) will correspond to higher Kosterlitz-
Thouless transition temperature Tc(n, B, D), which follows
from Eqs. (54) and (55). Therefore, embedding the α-T3 dou-
ble layer in air, implying a lower effective dielectric constant
ε, will lead to a higher Kosterlitz-Thouless transition temper-
ature Tc(n, B, D) for the same B and D. However, if the pair of
α-T3 layers is separated by a dielectric, the lifetime of dipolar
excitons is expected to be higher than for the case when
these layers are separated by air. The reason is that due to
the tunneling of electrons and holes, the electron-hole recom-
bination associated with different α-T3 layers is suppressed
by the dielectric barrier that separates the layers. Therefore,
the dipolar excitons with a dielectric medium between the
layers can have a very long lifetime, and therefore, they can be
treated as metastable particles described by quasiequilibrium
statistics.

VI. CONCLUSIONS

In this paper, we have proposed the occurrence of BEC
and superfluidity of dipolar magnetoexcitons in α-T3 dou-
ble layers in a strong uniform perpendicular magnetic field.
The low-energy Hamiltonian for a single α-T3 layer was ob-
tained by including additional hopping terms in a single-layer
graphene Dirac Hamiltonian. We have obtained the solution
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of a two-body problem for an electron and a hole for the
model Hamiltonian for the α-T3 double layer in a magnetic
field. We have calculated the binding energy, effective mass,
spectrum of collective excitations, superfluid density, and tem-
perature of the Kosterlitz-Thouless phase transition to the

superfluid state for dipolar magnetoexcitons in the α-T3 dou-
ble layer. We have demonstrated that at fixed exciton density,
the Kosterlitz-Thouless temperature for superfluidity of dipo-
lar magnetoexcitons is decreased as a function of magnetic
field. Our results show that Tc increases as a function of
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the density n and decreases as a function of the magnetic
field B and the interlayer separation D. We have demon-
strated that case 2 (in which the dipolar magnetoexciton is
formed by an electron in Landau level 1 and a hole in Lan-
dau level 0) is slightly preferable to case 1 (in which the
dipolar magnetoexciton is formed by an electron in Landau
level 1 and a hole in Landau level −1) to observe the dipolar
magnetoexcitons and their superfluidity in α-T3 double layers.
The reason is that case 2 corresponds to a slightly larger
magnetoexciton binding energy and Kosterlitz-Thouless
transition temperature than case 1 for the same chosen
parameters.

The superfluid state for T < Tc can lead to the existence of
persistent dissipationless superconducting oppositely directed
electric currents in each α-T3 layer, forming a double layer.
According to the reported results of our calculations, while
the external magnetic field has the desired effect of increasing
the magnetoexciton binding energy, we have found that the
Kosterlitz-Thouless transition temperature to the superfluid
phase increases as the magnetic field is decreased. This sug-
gests that one may employ a dipolar magnetoexciton system in

a double-layer to engineer a switch, where transport properties
of magnetoexcitons can be controlled by an external magnetic
field. Varying a quantizing magnetic field can result in a phase
transition between the superfluid and normal phases, thereby
changing the transport properties of magnetoexcitons in a
substantial way.

Our approach to study the superfluidity of dipolar magne-
toexcitons in double layers can be generalized and applied
to other two-dimensional materials. In particular, we are
interested in investigating a method of controlling the su-
perfluidity of dipolar magnetoexcitons in TMDC double
layers by an external magnetic field in future work. TMDC
double layers seem to be a promising system to study
electron-hole superfluity due to relatively high Tc mea-
sured without magnetic field in recent experiments (around
100 K) [21,51].
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