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Coherent transport of spin by adiabatic passage in quantum dot arrays
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We introduce an adiabatic transfer protocol for spin states in large quantum dot arrays that is based on time-
dependent modulation of the Heisenberg exchange interaction in the presence of a magnetic field gradient. We
refer to this protocol as spin-CTAP (coherent transport by adiabatic passage) in analogy to a related protocol
developed for charge-state transfer in quantum dot arrays. The insensitivity of this adiabatic protocol to pulse
imperfections has potential advantages for reading out extended spin qubit arrays. When the static exchange
interaction varies across the array, a quantum-controlled version of spin-CTAP is possible, where the transfer
process is conditional on the spin states in the middle of the array. This conditional operation can be used
to generate N-qubit entangled GHZ states. Using a realistic noise model, we analyze the robustness of the
spin-CTAP operations and find that high-fidelity (>95%) spin eigenstate transfer and GHZ state preparation is
feasible in current devices.
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I. INTRODUCTION

The study of the coherent dynamics of spin ensembles in
solids has a long history [1]. More recent advances allow
the study of single-spins in mesocopic and nanoscale devices
[2,3]. Physical confinement to low dimensions enhances in-
teraction effects and leads to quantum coherent phenomena
involving spins such as spin-charge separation in Luttinger
liquids [4] and skyrmions in quantum Hall ferromagnets
[5,6]. In zero-dimensional semiconductor quantum dots, spin-
dependent effects predominantly arise from the combination
of repulsive Coulomb interactions and the Pauli exclusion
principle [7]. Motivated by quantum information applications
[8], there is now increasing interest in the coherent transport
of spin in large arrays of tunnel-coupled quantum dots as a
means to distribute quantum information or to realize more
efficient spin-readout across the array [9–15].

A proposed method to achieve charge transport in quantum
dot arrays is known as coherent transport by adiabatic passage
(CTAP) [16–21]. This protocol uses an electrical analog of
the well-known stimulated Raman adiabatic passage (STI-
RAP) pulse sequence from atomic, molecular, and optical
(AMO) physics to move the electron coherently across the
array by keeping it in an adiabatic dark state [22,23]. Charge
coherence times in quantum dots are often relatively short
(∼1 ns) [24–26], so far preventing the realization of CTAP
in practice. However, the elegance of this method motivates
the search for spin-based analogs of CTAP (spin-CTAP) that
may allow robust spin transport. Single spins confined in
semiconductor quantum dots can have long spin-dephasing
times (T ∗

2 > 1 μs) compared to the timescale of exchange-
based spin dynamics (�10 ns) [27–30], setting up much more
favorable conditions for adiabatic transfer protocols.

In this paper, we develop the theoretical framework of spin-
CTAP using the Heisenberg exchange interaction in a linear

array of quantum dots in a magnetic field gradient. The combi-
nation of exchange interactions and a magnetic field gradient
leads to an effective Ising interaction [31–34]. By modulating
the exchange interaction in time, we can resonantly drive
flip-flop transitions of electron spins on neighboring dots of
a linear array [15,35,36]. As we show here, applying this
exchange modulation according to CTAP pulse sequences
allows adiabatic spin transfer across large quantum dot arrays.

The investigation of spin transport in Heisenberg coupled
spin chains dates back to foundational work on quantum
magnetism [37], with many studies focused on optimized
state transfer for quantum information applications [38–43].
Our approach differs in detail from these previous works
because of the large magnetic-field gradient imposed by a
micromagnet and the use of local, time-dependent control
of the exchange interaction throughout the array. For many
spin systems, local control of exchange coupling is difficult
to realize; however, it is readily achievable in quantum dot
arrays through electrical driving of the gates used to form the
dots [27–30]. Our spin transfer and entanglement generation
protocols are immediately applicable to current experiments
[13,14,44]. The overall simplicity and robustness to pulse im-
perfections make adiabatic spin transfer a promising method
for the readout of large quantum dot arrays. Motivated by
similar considerations, a related adiabatic transfer scheme was
recently implemented experimentally in an array of GaAs
quantum dot spin-qubits [45].

The paper is organized as follows: In Sec. II, we introduce
our theoretical model for extended arrays of quantum dots
based on a Hubbard model. We then briefly review charge-
CTAP in a quantum dot array containing a single electron.
In Sec. III, we transition to a regime where each site in
the quantum dot array is occupied by a single electron. We
include the effects of a magnetic-field gradient and develop
the theory of spin-CTAP for three dot arrays, specifically
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considering the fully polarized subspace with a single spin
flip. Varying the tunnel coupling, and therefore exchange be-
tween adjacent sites, along the array shifts subspaces with
different numbers of spin flips out of resonance with the
transfer protocol. We use this effect to realize a quantum-
controlled version of spin-CTAP conditional on the spin state
of the middle electron. We benchmark the performance of our
spin-CTAP pulses in the presence of a realistic noise model
and study the effects of imperfections in the adiabatic pulse
sequences. In Sec. IV, spin-CTAP is generalized to arbitrar-
ily large quantum dot arrays. In Sec. V, we show how to
use quantum-controlled spin-CTAP to generate many-qubit
Greenberger-Horne-Zeilinger (GHZ) states [46]. Including
the effects of noise, high-fidelity GHZ state preparation is pos-
sible for three dots, with persistent entanglement achievable in
arrays of up to 11 dots. We present our conclusions in Sec. VI.

II. CTAP IN QUANTUM DOT ARRAYS

Arrays of quantum dots with more than three indepen-
dent, electrically controllable sites are now routinely studied
in experiments [13,14,35,44,47–50]. A common approach to
analyze these experiments is to approximate the low-energy
Hamiltonian by a single-band Hubbard model,

H =
∑
i, j,σ

tc,i jc
†
iσ c jσ +

∑
i

Uini(ni − 1) − μini, (1)

where tc,i j is a tunnel coupling matrix element between the
lowest orbital state on each dot, Ui is the local Coulomb
repulsion on each dot, and μi is the local chemical potential.
Here, ciσ is a Fermion annihilation operator on dot i with spin
σ = ↑ or ↓, and ni = ∑

σ c†
iσ ciσ .

When there is only a single electron in a fixed spin state
in the entire array, then the Hamiltonian has a single-particle
description

H =
∑
i, j

tc,i j |i〉〈 j| −
∑

i

μi|i〉〈i|, (2)

where |i〉 = c†
i↓|0〉 is the electronic state with a single excess

electron in dot i in a spin-down state. For a linear three dot
array with uniform chemical potentials, this Hamiltonian has
the representation in the basis {|1〉, |2〉, |3〉} as

H =
⎛
⎝ 0 tc,12(t ) 0

t∗
c,12(t ) 0 tc,23(t )

0 t∗
c,23(t ) 0

⎞
⎠. (3)

The idea of CTAP is that the electron charge can be adiabat-
ically transferred from dot 1 to dot 3 by taking advantage of
special properties of three-level systems with this Hamiltonian
[16]. In particular, for any value of tc,i j there is a zero-energy
eigenstate |D〉 of H (i.e., H |D〉 = 0) that takes the simple form

|D〉 ∝ tc,23|1〉 − t∗
c,12|3〉. (4)

In AMO physics, this zero-energy state is called a dark state
because it is a nontrivial superposition state with zero popu-
lation in the intermediate state |2〉 of the three-level system.
Oftentimes, this intermediate state is an optically excited state
that emits photons, which is the origin of the terminology [51].

The dark state has a minimal energy gap to the other two
eigenstates of H (often called bright states) by an amount

|�Emin| =
√

|tc,12|2 + |tc,23|2. (5)

For a general time-dependent Hamiltonian, the adiabaticity
condition to remain in the adiabatic eigenstate |n〉 takes the
form

∑
m 	=n h̄|〈m|Ḣ |n〉|/|Em − En|2 
 1. Since the adiabatic

dark state always has a finite gap from the other two adiabatic
bright states, any sufficiently slowly evolving pulse sequence
ṫc,i j 
 |�Emin|2/h̄ will satisfy the adiabaticity condition and
maintain population in the dark state. State transfer is achieved
for pulse sequences that start with tc,12(t ) 
 tc,23(t ) and ends
with tc,12 � tc,23 such that |D〉 transforms from |1〉 at the
beginning of the sequence to |3〉 at the end. In AMO physics,
this adiabatic passage sequence, with its characteristic “coun-
terintuitive” ordering, is commonly referred to as stimulated
Raman by adiabatic passage (STIRAP) [22]. Applying such a
pulse sequence for a single electron in a quantum dot array
leads to coherent transport of charge by adiabatic passage
(CTAP) [16]. By adiabatically turning on a large tunnel cou-
pling on the middle dots to energetically isolate an extended
zero-energy state, this three-site CTAP protocol can be di-
rectly generalized to arbitrarily large arrays of dots [16].

III. SPIN-CTAP IN QUANTUM DOT ARRAYS

We now consider the generalization of CTAP to the spin
degree of freedom. Instead of working in the limit of a single
electron in the quantum dot array, we consider the half-filled
case with one electron per dot. Strong Coulomb repulsion
(U ∼ 2 meV) leads to the formation of a Mott insulating state
where the only mobile degrees of freedom at low energies are
the electron spins [see Fig. 1(a)]. Integrating out the double
occupancies from a single-band, spin-full Hubbard model at
half filling generically leads to an effective Heisenberg Hamil-
tonian for the spins at lowest order in tc,i j/Uk ,

H =
∑

i

gμBBtot
i · si +

∑
i, j

Ji j (t )(si · s j − 1/4), (6)

where Ji j (t ) is the exchange interaction between the spins on
dots i and j, Btot

i = Bext ẑ + BM
i is the local magnetic field

experienced by spin i averaged over the orbital wave function

FIG. 1. (a) A quantum dot array realizes a spin-1/2 chain. Driv-
ing the tunnel barriers modulates the exchange interaction, allowing
an adiabatic spin transport protocol which we refer to as spin-CTAP.
(b) Exchange pulse profile for spin-CTAP protocol with three dots.
Counterintuitively, j23 is turned on before j12 to keep the system in
an adiabatic dark state.
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and sμ
i = 1

2

∑
αβ c†

iασ
μ

αβciβ is the local spin-1/2 operator on
dot i for the Pauli matrix σμ (μ = x, y, z). The electronic
g factor g ≈ 2 in silicon. The total field includes contri-
butions from the global external field Bext and a local field
BM

i induced by an on-chip micromagnet [32]. The exchange
interaction can be modulated in time by changing the tunnel
barriers that separate the quantum dots [27–30]. In the regime
we consider here, where the overall Zeeman energy is much
greater than the temperature gμBBtot

i � kBT , we can initial-
ize the ground state of a single dot using energy-selective
tunneling [52]. Other sites in the array can then be loaded
by shuttling electrons [11–13] or applying pairwise SWAP
operations [14,15,35,36]. Readout can also be accomplished
through spin transport to dots used for spin-to-charge conver-
sion and charge sensing in the array [7].

Single-spin addressability can be achieved in these systems
by applying a varying magnetic field across the array that is
larger across each pair of sites than the pairwise exchange
interaction [8]. In this regime, we can write an effective
Hamiltonian in the adiabatic approximation as

H =
∑

i

h̄ωis
z
i +

∑
i, j

J̄i j s
z
i s

z
j + [ ji j (t )eiωi j t s−

i s+
j + H.c.], (7)

where J̄i j is the time-averaged exchange, s±
i are spin

raising/lowering operators, ji j (t ) is the amplitude of the ex-
change oscillating at a frequency ωi j near the difference
in Zeeman frequency �i j = gμB(Btot

i − Btot
j )/h̄, and h̄ωi =

gμBBtot
i + ∑

j J̄2
i j/2h̄�i j is the local spin-frequency including

a perturbative correction from the time-averaged dc exchange
interaction [15]. The condition for the rotating wave approx-
imation to be valid is that the difference in Zeeman energy
between each pair of sites is much larger than the exchange
and the detuning from resonance. Otherwise, we do not make
any assumptions about the spatial profile of the magnetic
field. Several recent experiments have operated in the same
regime studied here with a large magnetic field gradient and ac
exchange driving to realize spin transport or entangling gates
[15,35,36].

The effective Hamiltonian H conserves Stot
z = ∑

i sz
i ,

which implies that, when restricted to the fully polarized
subspace with a single spin flip, the many-body dynamics
has a single-particle description. In analogy to a particle in
a discrete lattice, the transverse exchange interactions act as
tunneling terms, while the longitudinal exchange interactions
and magnetic fields act as local potentials. We exploit this
simplified description to design spin-CTAP pulse sequences.
Building on this, we then take advantage of the many-body
interacting nature of the problem to realize a form of quantum-
controlled spin-CTAP that can be used to generate GHZ states
in quantum dot arrays.

In the subsections below, we consider a linear array of three
silicon quantum dots and show how to achieve state trans-
fer |↑↓↓〉 → |↓↓↑〉. In Sec. IV, we show how to generalize
our results to arbitrarily large one-dimensional arrays. The
basic control sequence is illustrated in Fig. 1(b). This pulse
sequence has the “counterintuitive” ordering that j23 is turned
on before j12, which, we show below, ensures that the system
remains adiabatically in the dark state of the three-level sys-
tem without ever directly exciting the intermediate state |↓↑↓〉

[16,22,23]. We first study state transfer for idealized Gaussian
pulses

j12(t ) = j0 exp

[
−

(
t − t0 + 2σ

2

)2

/2σ 2

]
, (8)

j23(t ) = j0 exp

[
−

(
t − t0 − 2σ

2

)2

/2σ 2

]
, (9)

where j0 is the peak amplitude, t0 is the mean center of the two
pulses and σ is the pulse width, which is set to be the same as
the timing offset between the two pulses. For t < 0, we set
j12 = j23 = 0 and define a maximal cutoff time tmax such that
j12 = j23 = 0 for t > tmax. In practice, it may be difficult to
realize ideal Gaussian pulses; however, the adiabatic transfer
protocol only relies on the existence of a well-defined dark
state that satisfies the adiabaticity condition. As a result, it is
robust to small pulse imperfections as we describe in more
detail in Sec. III D.

A. Resonantly driven spin subspace

We now consider the transfer of the spin state across a
three-dot array. Restricting to the Stot

z = −1/2 subspace and
moving into a rotating frame H → U †HU − iU †dU/dt with

U = e−i
∑N−1

j=1 h̄δ j s
z
j t and δ j = ∑

k� j ωkk+1, the Hamiltonian in
the basis {|↑↓↓〉, |↓↑↓〉, |↓↓↑〉} takes the form [see Fig. 2(a)
for the level diagram]

H0 =
⎛
⎝ η0

2 j12(t ) 0

j∗12(t ) η0
1 j23(t )

0 j∗23(t ) 0

⎞
⎠, (10)

where the two-photon energy detuning (terminology is taken
from quantum optics, e.g., Ref. [51]) is η0

2 = E0
1 − E0

3 −
h̄(ω12 + ω23), the single-photon energy detuning is η0

1 =
E0

2 − E0
3 − h̄ω23, the bare energies are E0

i = E0 + h̄ωi −∑
j J̄i j/2, and E0 = −∑

i h̄ωi/2 is an energy offset. The
phase of ji j is set by the phase of the ac exchange drive
[15]. For illustrative purposes, we have chosen a magnetic

FIG. 2. (a) Level diagram in the Stot
z = −1/2 subspace realizes

a canonical three-level system. For illustrative purposes, we took
Bz

1 < Bz
3 < Bz

2 to realize a 	 system, but our analysis does not
rely on this condition. (b) Spin-up population pi↑ = 1/2 + 〈sz

i 〉 on
dots 1 dots and 3 during the spin-CTAP pulse sequence, illustrating
adiabatic transfer of the spin across the array. In these simula-
tions, we took a gradient profile with Bz

1 < Bz
2 < Bz

3, �ii+1/2π =
−150 MHz, J̄12/23/h = 20/40 MHz, j0/h = 3 MHz, ω12/23/2π =
−190/100 MHz, tmax = 20h̄π/ j0, and σ = tmax/8.
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field gradient profile with Btot
1 < Btot

3 < Btot
2 , so the level di-

agram in the Stot
z = ±1/2 subspace maps to a canonical 	/V

system. This assumption is not required and our numerical
simulations below are performed for the more natural profile
Btot

1 < Btot
2 < Btot

3 [33].
Similar to Eq. (3), we can write down the adiabatic dark

state of H0 for η0
2 = 0 and any value of η0

1

|D0〉 ∝ j23(t )|↑↓↓〉 − j∗12(t )|↓↓↑〉, (11)

which satisfies H0(t )|D0(t )〉 = 0 for all times t . This state has
a minimal energy gap to the other two adiabatic eigenstates
(the bright states) by an amount

|�Emin| =
√

| j12(t )|2 + | j23(t )|2 + η0 2
1 /2 − ∣∣η0

1

∣∣/2. (12)

Thus, by choosing a sufficiently slowly varying exchange
h̄ j̇i j/|�Emin|2 
 1, we can ensure that the adiabaticity con-
dition is satisfied. In this limit, the system will remain in
the adiabatic eigenstates during the evolution. Note that the
precise values of J̄i j are not relevant to the design of the
pulse sequence because these values only enter into the reso-
nance conditions for the ac driving fields. In the next section,
however, we will show that when the Stot

z = −1/2 subspace
is tuned into resonance, then the behavior of the Stot

z = 1/2
subspace sensitively depends on the relative values of J̄12 and
J̄23.

As an example of the spin-CTAP performance, we show
the population dynamics of the two spin states under this
driving protocol in Fig. 2(b). When the initial state is |ψ0〉 =
|↑↓↓〉, it evolves adiabatically into the state |↓↓↑〉 with high
fidelity >99%. Finally, we remark that when the system is
initialized in the state |↓↓↑〉, then the left-to-right spin-CTAP
pulse sequence has the intuitive ordering and can still transfer
the spin-up state across the array from right-to-left. There is an
important difference, though, that this right-to-left process is
mediated by the two adiabatic bright states instead of the dark
state. As a result, this backward right-to-left transfer process
generally has a lower fidelity than the left-to-right transfer
process.

B. Blockaded spin subspace

We next describe how to realize a quantum-controlled ver-
sion of spin-CTAP that is conditioned by the spin state of
the middle electron. In the Stot

z = 1/2 subspace, the Hamil-
tonian in the basis {|↓↑↑〉, |↑↓↑〉, |↑↑↓〉} takes the same
form as Eq. (10) with ji j (t ) → j∗i j (t ), ωi j → −ωi j , and the
shifted energies E1

i = −E0 − h̄ωi − ∑
j J̄i j/2 [see Fig. 3(a)].

The complex conjugation can be understood as arising from a
time-reversal operation associated with switching to this sub-
space. These modifications imply that if we set η0

1 = η0
2 = 0,

then the Stot
z = 1/2 sector will have a finite one- and two-

photon detuning η1
1 = −J̄12 and η1

2 = J̄23 − J̄12, respectively.
As a result, for a finite exchange gradient δJ = J̄23 − J̄12, the
single-photon detuning η1

1 becomes nonzero.
Despite the different effective Hamiltonians, when J̄12 =

J̄23 the Stot
z = 1/2 subspace still undergoes a transfer process

from the state |↑↑↓〉 to |↓↑↑〉. This transfer proceeds through
a different mechanism, however, because it is effectively driv-
ing the transfer from right to left (3 to 1) instead of left to

FIG. 3. (a) Level diagram in the Stot
z = +1/2 subspace realizes a

V system for the same gradient profile as Fig. 2(a). When the system
is tuned for spin-CTAP in the Stot

z = −1/2 subspace, but J̄12 	= J̄23,
then transport in the Stot

z = 1/2 subspace is blocked because the
adiabatic dark state begins and ends on one side of the array. This
blockade effect can be used to generate GHZ states. (b) Spin-up
population pi↑ = 1/2 + 〈sz

i 〉 in the blockaded subspace. The spin-up
electron in dot 2 blocks spin-CTAP because the adiabatic dark state
remains localized in dot 1. We took parameters as in Fig. 2(b).

right (1 to 3). As we mentioned in the previous subsection,
in the adiabatic limit, this reversed state transfer process is
mediated by the two bright states, but the transfer fidelity still
converges to one in the ideal limit. Thus, for J̄12 = J̄23, the
ideal transfer process will effectively map the spin population
across the array in both subspaces.

On the other hand, when J̄12 	= J̄23 and the system is tuned
for spin-CTAP in the Stot

z = −1/2 subspace, we now show that
the Stot

z = 1/2 subspace is blocked from adiabatic transport.
Starting from the state |↑↑↓〉 with j12 = j23 = 0, we can
calculate the associated adiabatic eigenstate for finite ji j in
the limit | j23(t )| 
 h̄|�1| and | j12(t ) j23(t )/η1

1| 
 η1
2:

|D1〉 ≈
[

1 − | j23(t )|2
2η1 2

1

]
|↑↑↓〉 + j∗12 j∗23

η1
2η

1
1

|↓↑↑〉 − j∗23

η1
1

|↑↓↑〉.

(13)

As a result, the adiabatic spin-state configuration in this
subspace remains localized during the spin-CTAP pulse se-
quence. This implies that we can realize a quantum-controlled
version of spin-CTAP where the spin state of the middle
electron acts as the control qubit. As we show in Fig. 3(b),
when the middle spin is pointing up |ψ0〉 = |↑↑↓〉, the spin
population returns to dot 1 at the end of the pulse sequence.

For the transfer process to be adiabatic, we require the
pulse width σ and overall length tmax to be large compared to
h̄ j−1

0 and h̄δJ−1. In Figs. 2(b) and 3(b), we took δJ/ j0 = 6.67,
tmax = 20π h̄/ j0 and σ = tmax/8. These values satisfy both
these constraints for the experimentally relevant parameters of
J12/23/h = 20/40 MHz and tmax = 3.33 μs [33,34]. An inter-
esting subject for future work will be to consider shortcuts to
adiabaticity to speed up this transfer process without reducing
the fidelity [21,53–55].

C. Effect of noise

To characterize the performance of spin-CTAP under more
realistic conditions, we numerically characterize the perfor-
mance of the protocol in the presence of noise in both the local
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FIG. 4. (a) Projection fidelity Fp = 1/2 + 〈sz
3〉 for three-dot spin-

CTAP in the presence of quasistatic noise. The maximal fidelity is
limited by nonadiabatic corrections to ∼95% for these parameters:
�ii+1/2π = −150 MHz, J12/23/h = 20/40 MHz, j0/h = 3 MHz,
ω12/23/2π = −190/100 MHz,

√
A = 0.5 μeV/

√
Hz [57,58], f� =

0.16 mHz, and fc = 100 kHz, tmax = 10h̄π/ j0, and σ = tmax/8. We
chose a relatively fast transfer time to balance effects from noise with
nonadiabatic corrections. Qe and T ∗

2 are taken to be uniform across
the array. Inset: The average gate fidelity Fg rapidly converges to one
with increasing tmax. (b) Fg for parameters as in (a) with a maximal
fidelity of ∼98%. Error bars denote one standard deviation due to
fluctuations in noise realizations.

magnetic field on each dot and the exchange interaction. For
illustrative purposes, we focus on the simplest realization of
spin-CTAP with three quantum dots in the resonantly driven
Stot

z = −1/2 subspace. We use a noise model, described in
more detail in our recent work [56], which is parameterized
by the coherence time T ∗

2i on each dot and a quality factor
Qe,i j that determines the envelope decay rate for exchange os-
cillations between dots i and j. The T ∗

2 decoherence processes
are modeled by adding 1/ f noise in the ωi parameter, while
the Qe,i j decoherence is modeled by coupling the same 1/ f
noise field to the parameters J̄i j and ji j ,

ωi(t ) = ω0
i + ωn

i vi(t ), (14)

Ji j (t ) = J0
i j

{
1 + δJn

i j[vi(t ) + v j (t )]
}
, (15)

ji j (t ) = j0
i j

{
1 + δJn

i j[vi(t ) + v j (t )]
}
, (16)

where the amplitude of the noise on each dot vi is given by
〈vi(t )v j (t )〉 = δi jv

2
0, v0 = √

2A log( fc/ f�), A is the amplitude
of the 1/ f noise in eV2/Hz and fc/� are high/low frequency
cutoffs, ωn

i = (v0T ∗
2,i )

−1, and δJn
i j = (

√
2v0Qe,i j )−1. We make

the simplifying assumptions the noise is quasistatic over the
relevant timescales and that T ∗

2i and Qe,i j do not vary through-
out the array.

In Fig. 4(a), we show that spin-CTAP becomes robust
against noise when transferring spin eigenstates already at
relatively modest values of Qe > 20 and T ∗

2 > 1 μs, which is
quantified by the projection fidelity Fp = 1/2 + 〈sz

3〉. Under
these conditions, we find that the main source of decoherence
arises from charge noise that leads to a finite Qe. We see very
little change when increasing T ∗

2 from 1-10 μs.
It is also of interest to consider the performance of the

transfer protocol for more general quantum states. We charac-
terize this fidelity by treating the spin-CTAP transfer process

|ψ〉 ⊗ |↓↓〉 → |↓↓〉 ⊗ |ψ〉 (17)

as a quantum channel E that maps an arbitrary quantum state
on the first site to the last site and traces over the remaining
sites in the system. In the ideal case, this channel acts as an
identity operation (up to a deterministic z-rotation that we
correct) on the single-qubit Hilbert space of the transferred
site. As a result, we can use the average gate fidelity to
characterize the performance of the transfer protocol [46]

Fg =
∫

dψ〈ψ |E (|ψ〉〈ψ |)|ψ〉, (18)

where dψ is the Haar measure over the quantum states of a
single-qubit. In the inset to Fig. 4(a), we show Fg vs tmax in
the limit of zero noise, which illustrates that the ideal fidelity
rapidly converges to one. The results for Fg including noise
as a function of Qe are shown in Fig. 4(b). Interestingly, the
fidelity first plateaus near 2/3 before increasing toward the
noiseless limit at large values of Qe > 200. The initial plateau
coincides with the convergence of the projection fidelity,
while the slower increase with Qe arises because the transfer
of superposition states are sensitive to phase fluctuations
in the wave function that vary from shot to shot due to the
noise. A related feature observed in the fidelity is the much
stronger dependence on T ∗

2 . When the total transfer time
[tmax = 1.67 μs in Fig. 4(b)] becomes comparable to T ∗

2 , the
fidelity substantially decreases from the noiseless limit due to
shot-to-shot variations in the phase accumulation during the
transfer process. This behavior is in sharp contrast to what
was observed for Fp, which is insensitive to phase fluctuations
even when tmax ∼ T ∗

2 .
Finally, we remark that the average gate fidelities calcu-

lated here are comparable to measured fidelities for SWAP
gates under similar conditions [15,35,36]. Thus, we conclude
that, under some conditions, spin-CTAP is a viable alternative
to sequential SWAP gates for transferring spin states in the
array.

D. Imperfections in ac exchange driving

A central requirement of our proposal is the ability to
simultaneously turn on exchange between every pair of sites
across the array. Achieving this regime can be challenging
and often leads to a nonlinear dependence of the exchange
on the external gate voltages [59,60]. As a result, it may be
difficult in practice to realize the ideally shaped Gaussian
pulses considered in the previous section. Fortunately, the
adiabatic nature of the control scheme renders spin-CTAP
largely insensitive to these effects.

Another source of nonidealities is the potential for
crosstalk between gates [13,44,61,62]. In the context of our
work, one needs to avoid an effect whereby modulating the
exchange on one pair of dots induces non-negligible ac ex-
change driving on neighboring pairs. Provided the magnetic
field gradient between sites is nonuniform across the array,
which is typical in devices where the gradient is produced
by a proximal micromagnet [49], this ac exchange driving
will be off-resonant. As a result, these cross-driving effects
can be neglected for the weakly driven limit considered here.
For example, for an ac exchange driving of 10 MHz and a
gate crosstalk of 10% or less, the variation or disorder in the
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magnetic field gradient should be much greater than 40 μT to
avoid cross-driving effects.

To study the impact of pulse distortions more quantita-
tively, we use a simple model for the exchange interaction
described in Ref. [33]. In a single-band Fermi-Hubbard model
for a quantum dot array, the exchange has the scaling J ∼
|tc|2/U , where tc ∼ 1 − 100 μeV is the tunneling between the
two dots and U ∼ 5 meV is the on-site interaction (estimates
are for Si/SiGe quantum dots [33]). By modeling the barrier
between the two quantum dots as a square well and using the
WKB approximation, one can derive a functional form for the
exchange

J ∝ |tc|2 = 16E (V − E )

V 2
exp(−2W

√
2m|V − E |), (19)

where V and W are the potential barrier height and width, E
is the energy of the unperturbed states, and m is the electron
mass. Using the approximation V ∝ −VB(t ) + offset, where
VB(t ) is the voltage on the barrier separating the two dots,
we obtain a precise prediction for the dependence of J[VB(t )]
on the barrier gate voltage, which provides a good match to
experimental data [33].

Our spin-CTAP proposal can be realized by modulating
the barrier gate voltages between dots i and j as VB,i j (t ) =
VB0,i j + vi j (t ) cos ωi jt , where vi j (t ) is a slowly varying en-
velope for the ac modulation term. Assuming vi j is a weak
perturbation, we can expand the exchange as

Ji j[VB0,i j + vi j cos ωi jt]

= J̄0
i j + J (1)

i j vi j cos ωi jt + J (2)
i j

2
v2

i j cos2 ωi jt

+ J (3)
i j

6
v3

i j cos3 ωi jt, (20)

where J (n)
i j = dnJi j/dV n

B,i j |VB0,i j are the derivatives of the ex-
change profile. In the rotating wave approximation, we only
need to account for the dc exchange term and the term that
oscillates near the difference in Zeeman energies between the
two dots. As a result, we can regroup the terms to arrive at the
expression

Ji j[VB,i j (t )] ≈ J̄0
i j + J (2)

i j

J (1)2
i j

[
j0
i j (t )

]2

+
(

1 + J (3)
i j

[
j0
i j (t )

]2

2J (1)3
i j

)
2 j0

i j (t ) cos ωi jt, (21)

where we defined j0
i j (t ) = J (1)

i j vi j (t )/2 and the first term cor-
responds to a slowly varying shift in the dc exchange due
to the ac driving. For the dependence on VB,i j given by
Eq. (19), we can calculate the leading order correction to
the dc and ac exchange profile by approximating the de-
pendence of the exchange on barrier gate voltage by a pure
exponential Ji j[VB0,i j + v] ≈ J̄0

i je
αv . This approximation leads

to particularly simple expressions for the slowly varying

FIG. 5. (a) Exchange pulse profile for spin-CTAP including
pulse distortions from Eq. (23). We took a larger value of j0/h =
15 MHz with other parameters as in Fig. 2 to amplify the effect
of shift in the dc exchange and the ac exchange pulse distortions.
(b) Spin-up population pi↑ = 1/2 + 〈sz

i 〉 on dots 1 dots and 3 during
the spin-CTAP pulse sequence. We see that even these large pulse
distortions do not spoil the state-transfer fidelity.

parameters

J̄i j (t ) =
(

1 +
[

j0
i j (t )

]2

[
J̄0

i j

]2

)
J̄0

i j, (22)

ji j (t ) =
(

1 +
[

j0
i j (t )

]2

2
[
J̄0

i j

]2

)
j0
i j (t ). (23)

Since j0
i j is directly proportional to the ac amplitude on the

middle barrier voltage, this shows that the the dc/ac exchange
amplitude has a quadratic/cubic nonlinear correction in vi j (t ).

It is most natural in experiments to design a Gaussian
envelope directly for the middle barrier voltage vi j , which
does not account for these nonlinear corrections. In Fig. 5(a),
we show the exchange pulse profile for this control strategy,
including the nonlinear correction from Eq. (23). We took
similar parameters as in Fig. 2, but with a five times larger
value of peak ac exchange value j0/h = 15 MHz to amplify
the effect of the shift in the dc exchange and the ac exchange
pulse distortions. In Fig. 5(b), we show the performance of
spin-CTAP and blockaded spin-CTAP in the presence of these
pulse imperfections. Although the intermediate dynamics has
slight distortions compared to the ideal case, the fidelity for
state transfer is nearly identical. This result is expected based
on the intrinsic robustness of these transfer schemes to pulse
imperfections and slowly varying perturbations provided one
chooses an adiabatic pulse that starts with j12 
 j23 and ends
with j12 � j23.

IV. MULTIDOT SPIN-CTAP

The long-range transfer of spin states in extended arrays
is a long-standing goal for quantum-dot based spin qubits
[9–15]. In the context of charge based transport, Greentree
et al. showed that a natural generalization of CTAP from
three dots to arbitrarily large one-dimensional arrays of odd
numbers of dots can be obtained by modulating a large tunnel
coupling in the middle of the array [16]. Partially motivated
by recent experimental work in large quantum dot arrays
[13,14,44,47–50], we now consider the multidot generaliza-
tion of spin-CTAP. By applying a large ac exchange field on
the middle N − 2 dots for odd N , we can effectively isolate
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FIG. 6. (a) Spin-CTAP protocol for extended arrays with an odd
number of sites. The middle spins are taken to be strongly coupled
via exchange to effectively create a single zero energy state in the
middle of the array. (b) Pulse profile for multidot spin-CTAP. The
primary difference from the three-dot case is the large ac exchange
interaction that is turned on in the middle region during the transfer.

a single many-body spin state in the middle of the array that
is coupled to the outer two spins by weaker driving of the
ac exchange [see Fig. 6(a)]. For even N , adiabatic transfer
is still possible, but it does not proceed through a zero en-
ergy dark state, which generally reduces the efficiency and
transfer fidelities of the protocol [16]. At a qualitative level,
our approach is reminiscent of other methods for long-range
coupling of spin qubits using intermediate states [63–67].

To better understand the dynamics in this limit, we study
the resonantly driven Hamiltonian in the rotating frame in the
basis of states {σ+

i |↓ · · · ↓〉 : i = 1, . . . , N},

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 j12 0 · · · 0 0 0
j12 0 jM · · · 0 0 0
0 jM 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 jM 0
0 0 0 · · · jM 0 jN−1N

0 0 0 · · · 0 jN−1N 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(24)

where jM is the ac exchange interaction in the middle of the
array (assumed to be uniform). Setting j12 = jN−1N = 0, for
odd N , there is a zero-energy state:

|0〉 = 1√
(N − 1)/2

(N−1)/2∑
n=1

(−1)nσ+
2n|↓ · · · ↓〉. (25)

Denoting the energy eigenstates for the delocalized spin states
as | − (N − 3)/2〉, . . . , |(N − 3)/2〉, the energy gaps |En −
En+1| between neighboring levels all scale as jM/N . As a
result, for sufficiently large jM , we can reduce the problem
to a three-level system in the basis {|↑ · · · ↓〉, |0〉, |↓ · · · ↑〉},

H0 =
( 0 j1(t ) 0

j1(t ) 0 j2(t )
0 j2(t ) 0

)
, (26)

where j1 = − j12/
√

(N − 1)/2 and j2 =
(−1)(N−1)/2 jN−1N/

√
(N − 1)/2. Applying the spin-CTAP

pulse sequence for j1/2 given by Eqs. (8) and (9) now
achieves spin transport across the entire array of N dots.

To achieve the multidot transfer process in an adiabatic
manner, we also pulse on the exchange in the middle of the

FIG. 7. (a), (b) Level diagram for the Stot
z = −(N − 1)/2 sub-

space in energy eigenbasis with j12,N−1,N = 0 illustrating how the
multidot system reduces to an effective three-level state trans-
fer problem. (c) Nine-dot spin-CTAP projection fidelity Fp =
1/2 + 〈sz

9〉 vs tmax without noise for realistic pulse parameters.
We took j0/h = 5 MHz, jM = 10 j0, σ = tmax/8, J̄12/h = J̄N−1N/h =
30 MHz, J̄M/h = 60 MHz, �ii+1/2π = −1.5 GHZ, and ωi j = �i j −∑

k (J̄ik − J̄ jk )/2h̄.

array. This approach is inspired by the original CTAP pro-
posal [16]. In particular, as illustrated in Fig. 6(b), we use an
additional Gaussian ac exchange pulse on the middle spins,

jii+1(t ) = jM exp

[
−

(
t − t0

2

)2/
4σ 2

]
, (27)

for 2 � i � N − 2, with j12(t ) and jN−1N (t ) given by Eqs. (8)
and (9).

A schematic level diagram for the multidot spin-CTAP
protocol is shown Figs. 7(a) and 7(b). For our perturba-
tive description above to be valid, we require that | ji| =
| j12,N−1N |/√N 
 jM/N . Since the transfer time scales as
tmax ∼ 1/ ji,max this implies that tmax � N/ jM . As a result,
jM has to scale linearly with N and the maximum value of
j12,N−1N has to scale as

√
N to keep a constant transfer time in

the large N limit. We remark that the scaling for jM is expected
from general bounds on the speed of information spreading in
local Hamiltonian systems [68].

An example of the multidot spin-CTAP performance is
shown in Fig. 7(c) for nine dots in a linear array [47]. We
observe projection fidelities for transferring spin eigenstates
that exceed 99% for sufficiently long pulse times. As we noted
above, the adiabaticity condition becomes more difficult to
satisfy for large N because of decreasing gaps between the
dark state and other nearby eigenstates. In principle, this can
be overcome by increasing the drive parameter jM on the mid-
dle dots; however, this becomes difficult to realize in practice.
As a result, the requisite pulse time tmax will generally increase
with N .

V. GHZ STATE GENERATION

We now show how to extend the pulse sequences described
above to generate multipartite entanglement of the spins. The
blockaded version of spin-CTAP for a linear array of three
quantum dots can be realized whenever there is a difference
in the dc exchange for each adjacent pair of dots in the array.
Under these conditions, there is a natural method to generate
entangled GHZ states by applying the spin-CTAP protocol to
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FIG. 8. (a) GHZ state fidelity for spin-CTAP protocol with
tmax = 10h̄π/ j0 computed using full simulations of the spin dynam-
ics. The noiseless fidelity, limited by nonadiabatic corrections from
a finite tmax, is ∼98%. We took other parameters as in Fig. 7(b).
(b) Fidelity for GHZ state preparation using repeated spin-CTAP
vs. Qe. We took j0/h = 3 MHz, jM = 10 j0, tmax = (N − 1)10h̄π/ j0,
�ii+1/2π = −150 MHz, T ∗

2 = 10 μs and other parameters as in
Fig. 7(b). Error bars denote one standard deviation due to fluctuations
in noise realizations.

the state

|ψ〉 = 1√
2

(|↑↓↓〉 + |↑↑↓〉) → 1√
2

(eiφ|↓↓↑〉 + |↑↑↓〉),

(28)

where φ is a phase that will vary with the pulse profile and
external noise. Applying a π pulse on spin three, we arrive at
the state

|ψ〉 = 1√
2

(eiφ|↓↓↓〉 + |↑↑↑〉), (29)

which is equal to a GHZ state |GHZ〉 = 1/
√

2(|↓↓↓〉 +
|↑↑↑〉) up to a single-qubit Z rotation. In Fig. 8(a), we show
the state fidelity F = |〈GHZ|ψ〉|2 in the presence of noise
after correcting the random phase φ. We see that the GHZ
state fidelity is comparable to the fidelity for transferring spin
eigenstates. The noiseless limit is higher in this case than
Fp shown in Fig. 4(a) because the |↓↓↓〉 state comprises
half the amplitude of the GHZ state and incurs no errors in
our model for the spin-CTAP process. To spectroscopically
determine phase φ and directly measure the state fidelity in
experiment, one can perform a measurement of the parity
operator P = ∏

i σ
x
i [46].

Similar to the three-dot case, we can realize a type of
quantum-controlled multidot spin-CTAP by taking the value
of the time-averaged exchange in the middle of the array,
J̄ii+1 = J̄M for 2 < i < N − 1, to be different from the two
ends J̄12 and J̄N−1N . Under these conditions, we can extend
the GHZ state generation scheme to arbitrarily large arrays by
sequentially growing the size of the GHZ state by two qubits
in each time step as follows: Assume we are given an N − 2
GHZ state on the middle qubits:

|ψ〉 = 1√
2
|↓〉 ⊗ (|↑ . . . ↑〉 + |↓ . . . ↓〉) ⊗ |↓〉. (30)

We next flip spin one into an up state and then apply the pulse
sequences from Eqs. (8) and (27). Under ideal conditions, this

operation will transform the state

|ψ〉 → 1√
2

(|↑↑ . . . ↑↓〉 + eiφ |↓↓ . . . ↓↑〉), (31)

which is equal to a GHZ state up to a single-qubit Z rotation
and π pulse on the rightmost dot:

|GHZ〉 = 1√
2

(|↑↑ . . . ↑↑〉 + |↓↓ . . . ↓↓〉). (32)

The main challenge in applying this GHZ state preparation
scheme is the long-transfer time associated with each step in
the operation, which makes the protocol sensitive to noise.
In Fig. 8(b), we show the performance of this GHZ state
generation scheme for characteristic parameters up to 11 dots
obtained from full numerical simulations of the multidot spin
dynamics. Although we can successfully generate 11 qubit en-
tanglement with this approach, achieving the highest fidelities
requires much larger values of Qe compared to the three-dot
case. Furthermore, the transfer times become comparable to
T ∗

2 for N > 5, which begins to limit the achievable fidelities.
A more practical GHZ state preparation scheme for N > 3
likely involves local CNOT gates applied to the two ends to
sequentially grow the GHZ state [46]. This method has the
advantage over our proposal of not requiring full state transfer
in each step.

VI. CONCLUSIONS

We have introduced an adiabatic protocol for spin transfer
across arbitrarily large arrays of quantum dots that we refer
to as spin-CTAP. The spin transfer protocol is realized in the
one excitation subspace above the ground state of a spin-1/2
chain of Heisenberg exchange coupled spins in the presence
of a large magnetic field gradient. Our approach is based on
time-dependent modulation of the exchange interaction near
the resonance frequency for nearest-neighbor flip-flops in the
array. By controlling the static exchange profile across the
array, we can also realize a quantum-controlled version of
spin-CTAP, whereby the presence of spin flips in the middle
of the array blocks the spin transfer protocol. Quantum con-
trolled spin-CTAP can be used to generate large GHZ states.

Spin-CTAP has several applications to quantum informa-
tion processing with quantum dot spin qubits. In particular,
high-fidelity transfer of spin-eigenstates is feasible even in
the presence of modest amounts of noise in the spin sector.
Thus, this approach may find immediate use in scaling up
spin readout in two-dimensional arrays where the central spins
cannot be directly coupled to a nearby charge sensor. The
simplicity of the control sequence may have advantages for
achieving high-fidelity state transfer for some applications.
The adiabatic nature of the protocol makes it highly robust to
pulse imperfections but leads to relatively slow transfer times,
making it more difficult to transfer superposition states than
spin eigenstates. Reducing the strength of the noise by an ad-
ditional order of magnitude would allow high-fidelity transfer
of superposition states. Such a coherent transfer process could
be used to distribute long-range entanglement across the array
to implement nonlocal quantum gates.
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