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Topological phase transitions of Thouless charge pumping realized in helical organic
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Recent studies indicated that helical organic molecules, such as DNA and the α-helical protein, can behave
as Thouless quantum pumps when a rotating electric field is applied perpendicularly to their helical axes. Here
we investigate the influence of long-range hoppings on this topological pumping of electrons in single-helical
organic molecules. Under variation of the long-range hoppings governed by a decay exponent μ, we find an
energy gap in the molecular band structure closes at a critical value μc of the decay exponent and reopens for
μ deviating from μc. The relevant bulk bands in a pumping cycle acquire different Chern numbers in the strong
(μ < μc) and weak (μ > μc) long-range hopping regimes, with a sudden jump at criticality. This topological
phase transition is also shown to separate two distinct behaviors of the midgap end states in the pumping process.
The end states carry quantized current pumped by the rotating electric field, and the current forms a plateau by
sweeping the Fermi energy over the gap. In the strong-hopping phase, the quantized current plateau is positive,
which is reversed to a negative one with smaller amplitude in the weak-hopping phase. However, the reversal is
a smooth crossover, not a sharp transition, due to the finite sizes of the molecules. We show that these transport
characteristics of the topological phase transition could also be observed at finite temperatures.
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I. INTRODUCTION

Topology is a mathematical concept that describes some
invariant properties of geometrical objects when they are
smoothly deformed. The study of topological physics began
with the discoveries of the integer [1] and fractional [2] quan-
tum Hall effects and the gapped quantum spin-liquid state
of integer-spin chains [3–5]. The integer quantum Hall effect
defines a first topological phase that is distinct from all states
of matter known before. In this effect, the quantized Hall con-
ductance carried by chiral edge states is a topological invariant
independent of material details [6,7]. When the time-reversal
symmetry is preserved, some spin-orbit coupled systems can
support exotic topological insulating states [8–14], which fur-
ther enrich our understanding of topological phases of matter.
Topological concepts can also be applied to unconventional
superconductors [14], superfluids [15–17], and nodal systems
[18–20]. Indeed, it has now become apparent that topological
phenomena are essentially a ubiquitous property of physical
systems in diverse fields, including condensed-matter physics,
ultracold atomic gases [21], photonics [22], polaritonics [23],
and even classical mechanics [24]. For gapped topological
quantum materials, the global structure of the wave function,
characterized by a topological invariant, remains unchanged
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under variations of system parameters, unless the gap is closed
at a topological phase transition. This wave function topol-
ogy manifests itself as gapless states localized at the system
boundary. Interestingly, topological invariants, such as the
Chern number, can count the number of particles that are
pumped through a spatially periodic system that is driven pe-
riodically and adiabatically in time. This topological quantum
pumping, first introduced by Thouless in 1983 [25], was re-
cently demonstrated in ultracold atomic experiments [26,27].

While most existing studies of topological phases of matter
are based on inorganic materials, recent works [28,29] have
proposed that topological states can also emerge in helical
organic or bioorganic molecules. A distinct feature of these
molecules, such as DNA and the α-helical protein, is their
unique helical structures. Due to this helical symmetry, the
α-helical protein and DNA provide direct realizations [28] of
the topological Thouless pump driven by a rotating electric
field applied perpendicularly to their helical axes. The pumped
current through these molecules exhibits quantized plateaus
by sweeping the Fermi energy over band gaps, which are topo-
logically protected against perturbations [28]. It has further
been shown that single-stranded DNA in the vicinity of a con-
ventional superconductor can support topologically nontrivial
superconducting phases hosting Majorana zero modes at the
ends [29]. These fascinating results may stimulate more re-
search interest in exploring topological physics of bioorganic
systems. On the other hand, DNA- and protein-based struc-
tures have been extensively studied as promising candidates
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for functional nanoelectronic devices [30–34]. In comparison
with inorganic materials, such organic systems exhibit great
flexibility. They can be easily bent, stretched, and twisted
[35–39], allowing a mechanical modulation of the amplitude
of electron hopping. It is now clear that in biological molec-
ular systems, electronic transport via long-range hoppings, in
addition to the nearest-neighbor one, can be significant [34],
which has already played an important role in generating
spin-selective phenomena in the protein and DNA [40–43].
This motivates us to address the influence of long-range
electron hoppings on the topological phases of these helical
molecules, and the long-range effect was, indeed, considered
in the DNA topological superconductors [29]. Nevertheless,
interesting questions remain about whether helical organic
molecules with long-range hoppings can still implement a
Thouless quantum pump and, if so, how its topological nature
and current characteristics are modified.

The inclusion of long-range hoppings in systems without
helical geometry has already been studied in the litera-
ture. It is shown that while second-neighbor hopping has
a strong impact on the defect scattering in Schrödinger
chains [44], one-dimensional metacrystals with long-range
hoppings can support robust unidirectional transport [45]. In
the layered honeycomb lattice Na2IrO3 [46] and a generalized
Su-Schrieffer-Heeger chain [47], the change in long-range
hoppings has been shown to drive a transition from triv-
ial normal to nontrivial topological phases. Also topological
adiabatic pumping itself has been addressed, mostly in the
context of photonic waveguide arrays and optical lattices
[22,26,27,48–50]. Particularly, Xu et al. [50] explored the
pumping of atoms trapped in an optical lattice and predicted
a topological phase transition when the second-neighbor hop-
ping amplitude equals the first-neighbor one. Their scheme
relied on simultaneously applying a high-frequency tilt os-
cillation and a slow temporal variation to the lattice and a
somewhat tricky in situ detection of the center of mass of
the atomic cloud. However, as elucidated in the following,
our helical-molecule scheme resorts to only a single rotating
electric field and allows the well-established transport mea-
surement of relevant physical processes.

In this paper, we study the topological Thouless pump in
helical organic molecules by explicitly taking into account the
long-range electron hoppings. It is demonstrated that while
the adiabatical charge pumping still occurs by the rotating
electric field, the long-range hoppings, which decay exponen-
tially, can induce a topological phase transition with transport
features appearing in the pumped current through the lead-
molecule-lead setup. The phase transition is characterized by
the closure of a band gap at the critical decay exponent,
separating two topologically nontrivial phases with strong and
weak long-range hoppings. We show that the Chern invariants
of the bulk bands adjacent to the gap and the evolution of
midgap end states in the pumping process indicate clear dif-
ferences between these two phases of the helical molecules.
In particular, the strong- and weak-hopping phases support
the transport of pumped electrons through the molecule in
opposite directions, giving rise to two quantized current
plateaus with different signs and amplitudes, as set by the
sum over the Chern numbers of all the filled bands below the
gap. However, a sharp reversal of the pumped current plateau

FIG. 1. Schematic representation of a single-helical molecule
coupled with two external electrodes in the case of large helical
pitch. The blue balls are local sites that can represent, e.g., amino
acids for α-helical proteins and nucleobases for single-stranded DNA
molecules. The intersite electron hoppings, t1, t2, t3, . . . , are de-
termined by Euclidean distances between sites. When a rotating
electric field with uniform amplitude E is applied perpendicularly to
the helical axis, the molecule can behave as a Thouless topological
pump.

is absent near the topological phase boundary. It features
instead a smooth crossover due to the finite-size effect. The
experimental observability of these transport characteristics at
finite temperatures is discussed.

The remainder of the paper is organized as follows. Sec-
tion II introduces the model Hamiltonian for the Thouless
pump realized in single-helical organic molecules with long-
range hoppings and explains some necessary details of the
computational scheme. Numerical results are presented in
Sec. III. Section III A analyzes the bulk bands and end states
of the system, revealing a topological phase transition in-
duced by the long-range hoppings. We discuss consequences
of the topological phase transition in the pumped current in
Sec. III B. Finally, Sec. IV is devoted to a conclusion.

II. MODEL AND METHOD

The α-helical protein and singe-stranded DNA molecules
possess similar helical structures. In the presence of the long-
range hoppings and a rotating electric field perpendicular to
their helical axes, as shown in Fig. 1, these single-helical
organic molecules are modeled by the following Hamiltonian
[28,40,51–53]:

H(t ) =
N∑

n=1

εn(t )c†
ncn +

N−1∑
n=1

N−n∑
j=1

t j (c
†
ncn+ j + c†

n+ jcn). (1)

Here c†
n (cn) creates (annihilates) an electron with energy εn(t )

at site n, and the total number of sites, i.e., the molecular
length, is denoted by N . The sites represent the amino acids
for the protein and the nucleobases for the DNA. t j is the
hopping amplitude between the nth site and the (n + j)th
site. A precise description of the long-range hopping strength
requires taking into account the Euclidean distance between
remote sites and the symmetry of local orbitals [29,40]. This
would involve too many parameters. For the purpose of in-
troducing a minimal model for helical molecules that already
captures qualitatively new features, we restrict ourselves to
the special case of large helical pitches, where the Euclidean
distance of a site to its jth neighbor monotonically increases
with j, as shown in Fig. 1. One can thus approximately
take the long-range hopping amplitude, t j = t1e−μ( j−1), which
exponentially decays with site index, as characterized by μ

the decay exponent. Note that the previous helical-molecule
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realization [28] of topological pumping took into account
only the nearest-neighbor hopping t1 (i.e., μ → ∞). Since in
realistic protein, DNA, and other helical organic molecules
the decay exponent μ is very different, we thus treat μ as a
variable parameter in the model study. This is also inspired
by the fact that in experiments μ can be tuned to a large
degree by stretching and twisting the helical molecules and
thus changing their intersite distances [35–39].

Effects of the helical structure and the rotating electric field
are manifested in the time-dependent on-site energy εn(t ),
which reads [54,55]

εn(t ) = Vg cos[nφ0 − ϕ(t )], (2)

where Vg = eER describes the half energy difference across
the molecules along the direction of the electric field E , R
denotes the cross-sectional radius of the molecules, φ0 is
the twist angle between two neighboring sites in the cross
section, and the phase ϕ(t ) = 2π f t represents the orientation
of the electric field, with f being the rotational frequency.
In the absence of long-range hoppings, i.e., t j = 0 for j > 1,
the Hamiltonian (1) is, equivalently, a dimension-reduced
mapping of the Harper-Hofstadter model [56,57] describing
a quantum Hall system in a two-dimensional square lattice.
In this mapping, the twist angle φ0/2π corresponds to the
magnetic flux per primitive cell in units of the flux quantum,
and the direction of the electric field ϕ(t ) is reduced from the
transverse momentum [22]. As already shown in Ref. [28],
such helical molecules can be adiabatically pumped by slowly
rotating the external electric field and hence modulating the
on-site energy periodically in time, which shares the same
topological origin as the integer quantum Hall effect [6,7].
The main ingredient of the present work is to investigate
consequences of the long-range hopping t j in this topological
Thouless pump. We would like to further mention that apart
from the protein- and DNA-inspired models, Hamiltonians
like Eq. (1) can also describe other helical lattices in a broader
context, e.g., for ultracold atoms trapped on helical space
curves [58]. In fact, helices constitute a quite intriguing
model. Rich physical behaviors arising from the helical
geometry have already been extensively studied in the past
for quantum [58–62] and classical [63–67] setups, although
in the nontopological aspect.

Our computational scheme is straightforward. Consider-
ing ϕ(t ) to be a time-independent variable parameter ϕ, we
diagonalize the time-independent Hamiltonian (1) with finite
molecular lengths and open boundary conditions to obtain the
single-particle eigenenergies El and eigenstates ψl . From this
spectrum, the end states and the spatial distribution of electron
density Pln = |ψln|2 can be identified (ψln is the amplitude
of the lth eigenstate ψl at site n). For helical molecules with
infinite length, the longitudinal momentum k defined within
the first Brillouin zone (BZ) is a good quantum number.
After the Fourier transform, diagonalizing the Hamiltonian
(1) (N → ∞) in the momentum space yields the Bloch state
ui(k, ϕ) corresponding to the ith energy band Ei(k, ϕ). In this
case, the bulk band topology is characterized by the first Chern
number [22,25]

Ci = − 1

π

∫
BZ

dk
∫ 2π

0
dϕ Im

〈
∂ui(k, ϕ)

∂k

∣∣∣∣∂ui(k, ϕ)

∂ϕ

〉
, (3)

which is a Z topological invariant.

In order to calculate the current pumped adiabatically by
the slowly rotating electric field, the explicit time dependences
of the phase ϕ(t ) and thus the Hamiltonian (1) need to be
considered. This does not mean that H(t ) is a truly driven sys-
tem, but with its eigenenergy El (t ), eigenstate ψl (t ), and the
electron density Pln(t ) always taken to be the instantaneous
ones for the parameter configuration at time t . To allow the
current to flow through the system, we attach two electrodes
to the helical molecule (see Fig. 1): the left (L) lead is coupled
to the first site, and the right (R) lead is coupled to the last site.
The additional Hamiltonian terms are

H0 =
∑
k,α

εkc†
kαckα +

∑
k,α

t0(c†
kαcnα

+ H.c.), (4)

where α = L/R, nL = 1, nR = N , c†
kα (ckα) creates (annihi-

lates) an electron with momentum k and energy εk in the α

lead, and t0 is the tunneling amplitude between the leads and
the end sites of the molecule. It is convenient to introduce the
quantity 	 = 2πρt2

0 , with ρ being the density of lead states,
to represent the lead-molecule coupling strength. Note that
there is no bias voltage between the two leads; that is, they are
held at the same chemical potential, having the same Fermi
energy EF . Under the adiabatic approximation, the system
is time independent at every instant. We can calculate the
instantaneous current for the parameters at every t and then
integrate it over one pump cycle to obtain the pumped current.
Specifically, the instantaneous current I (t ) flowing from the
L lead to the molecule is given by the time derivative of the
electron number M = ∑

k c†
kLckL of the L lead,

I (t ) = −e
d

dt
〈M〉 = − e

ih̄
〈[M, H(t ) + H0]〉. (5)

It is convenient to rewrite H(t ) and H0 in the basis of instan-
taneous eigenstates,

H(t ) =
N∑

l=1

El (t )d†
l dl , (6)

H0(t ) =
∑
k,α

εkc†
kαckα

+
∑
k,α

N∑
l=1

t0ψlnα
(t )(c†

kαdl + H.c.), (7)

with dl = ∑N
n=1 ψln(t )cn. Substituting Eqs. (6) and (7) into

Eq. (5), one obtains I (t ) = ∑N
l=1 Il (t ) and

Il (t ) = ie

h̄

∑
k

t0ψl1(t )(〈c†
kLdl〉 − 〈d†

l ckL〉). (8)

Using the Keldysh nonequilibrium Green’s function tech-
nique and the Dyson equations [68,69], the current through
the lth eigenstate Il (t ) reads

Il (t ) = ie	

h̄
Pl1(t )

∫
dε

2π

[
G<

l (ε, t ) + 2i fFD(ε)ImGr
l (ε, t )

]
,

(9)
where fFD(ε) is the Fermi-Dirac distribution function and
G<,r

l (ε, t ) are the Fourier transforms of the lesser (<) and
retarded (r) Green’s functions of the lth eigenstate for system
parameters at time t . While the integral of G<

l (ε, t ) gives the
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electron occupation ml (t ) of the lth eigenstate,∫
dε

2π
G<

l (ε, t ) = i〈d†
l dl〉 = iml (t ), (10)

the second term of Eq. (9) can be calculated as∫
dε

2π
fFD(ε)ImGr

l (ε, t )

=
∫

dε

2π

− fFD(ε)	̃/2

[ε − El (t )]2 + 	̃2

4

� − fFD[El (t )]
∫

dε

2π

	̃/2

[ε − El (t )]2 + 	̃2

4

= −1

2
fFD[El (t )]. (11)

The second line of Eq. (11) assumes that 	̃ ≡ 	(Pl1 + PlN ) is
sufficiently small such that fFD(ε) is a slowly varying function
near El (t ) and can be taken out of the integral. Substituting
Eqs. (10) and (11) into Eq. (9) leads to

Il (t ) = e	

h̄
Pl1(t ){ fFD[El (t )] − ml (t )}. (12)

Here ml (t ) evolves obeying the equation of motion,

dm(t )

dt
= 1

ih̄
〈[d†

l dl , H(t ) + H0]〉. (13)

Following a procedure similar to that for calculating the cur-
rent, it is readily found that

dml (t )

dt
= 	

h̄
[Pl1(t ) + PlN (t )]{ fFD[El (t )] − ml (t )}. (14)

Consequently, we can self-consistently solve Eq. (14) to de-
termine the electron occupation ml (t ) of the lth eigenstate and
then obtain the current Il (t ) by Eq. (12).

It is defined that the adiabatically pumped current is the
average current over one pump cycle. Therefore, the integral,

Il = f
∫ 1

f

0
Il (t ) dt, (15)

gives the pumped current through the lth eigenstate and the
total pumped current I = ∑N

l=1 Il .

III. RESULTS AND DISCUSSION

In the numerical results presented below, we fix the
nearest-neighbor hopping t1 = 0.1 eV as the energy unit, Vg =
1.5t1, the twist angle φ0 = 2π/5, and the molecular length
N = 100, unless stated otherwise. To calculate the pumped
current, we take the lead-molecule coupling 	 = 10−6t1 and
the rotational frequency f = 105Hz, such that the adiabatic
condition, h f � 	, t1 (h is the Planck constant), always
holds. The temperature T is set to be kBT = 0 (kB the Boltz-
mann constant), unless stated otherwise.

A. Bulk topology and end states

Before investigating the consequence of long-range hop-
ping on the adiabatic pumping, it is helpful to examine first
its effect on the bulk topology and end states by considering

the orientation ϕ(t ) of electric field as a time-independent but
variable parameter ϕ. Figure 2 presents the energy spectra
of single-helical organic molecules as functions of the phase
ϕ [Figs. 2(a)–2(d)] and the momentum k [Figs. 2(e)–2(h)]
with finite length under open boundary conditions and infinite
length, respectively, for different long-range decay exponents
μ. In either case, the molecule possesses five energy bands
(bands 1–5, bottom to top) separated by four gaps [gaps I–IV,
bottom to top; see, e.g., Fig. 2(a)] since its unit cell contains
five sites due to φ0 = 2π/5. These energy bands are asymmet-
ric above and below zero energy because the presence of the
long-range hoppings and/or the external electric field breaks
the electron-hole symmetry of the system. Interestingly, there
is a pair of end states in each energy gap. As the phase ϕ

varies, these state pairs, denoted by colored lines in Figs. 2(a)–
2(d), traverse the gaps and intersect at some values of ϕ.
For odd numbers of intersection points [see gaps I and IV in
Figs. 2(a)– 2(d) and gap III in Fig. 2(c)], the electronic states at
ϕ = 0 and 2π on the same colored line are different, signaling
an evolutionary cycle of 4π just like a Möbius strip. When the
number of intersection points is even [see gap II in Figs. 2(a)–
2(d) and gap III in Figs. 2(a) and 2(d)], the evolutionary period
is 2π .

The most striking feature lies in the evolution of energy
spectra with the variation of the long-range hoppings. It is
shown in Fig. 2 that upon decreasing the decay exponent μ

(i.e., enhancing the long-range hoppings), the system under-
goes a topological phase transition at a critical decay exponent
μc � 1.145. For μ > μc [Figs. 2(a), 2(d), 2(e), and 2(h)], gap
III exists, and the two midgap end states intersect twice as a
function of ϕ with a period of 2π . Gap III closes at μ = μc

[Figs. 2(b) and 2(f)] and reopens for μ < μc [Figs. 2(c) and
2(g)]. In the latter case, the two midgap end states intersect
three times as a function of ϕ with a period of 4π . Therefore,
the transition at the critical decay exponent separates two
topologically distinct phases of the system. Note that gaps I,
II, and IV and the ϕ evolutions of the end states in these gaps
do not change qualitatively in the whole range of μ.

This topological phase transition driven by the long-range
hoppings is also manifested in the bulk topology characterized
by the Chern numbers. As the decay exponent μ increases
past the critical value μc, the Chern number C3 of band 3
jumps from 1 to −4, while the Chern number C4 of band 4
jumps backwards [Fig. 3(a)]. On the other hand, the Chern
numbers of bands 1, 2, and 5 are always 1 for arbitrary μ

[inset of Fig. 3(a)], indicating that no phase transition occurs
in these energy bands. For systems with different twist angles
φ0, this topological phase transition is rather universal. Indeed,
the phase transition always occurs in helical molecules with
more than two sites in the unit cell (2π/φ0 � 3), although it is
absent when the unit cell contains only two sites (2π/φ0 = 2).
We plot in Fig. 3(b) the critical decay exponent μc as a
function of the site number 2π/φ0 in the unit cell, where
μc overall increases with 2π/φ0 but exhibits an even-odd
oscillation.

To further elucidate the distinct topological nature of the
two phases separated by the transition at μ = μc, we study
the spatial distribution of electronic states marked by the
two magenta lines pertinent to gap III [see Figs. 2(a)–2(d)].
Depending on the values of the phase ϕ, these states are
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FIG. 2. (a)–(d) Energy spectra of single-helical organic molecules with finite length under open boundary conditions for different long-
range decay exponents μ as a function of the phase ϕ. The colored lines indicate the evolutions of electronic states traversing energy gaps, and
the green crosses mark the electronic states whose spatial distributions are shown in Fig. 4. (e)–(h) Energy bands of single-helical molecules
with infinite length for different μ at fixed ϕ = 0. Here a in the abscissa label ka/π denotes the lattice constant. (d) and (h) are energies in the
absence of long-range hoppings, shown for completeness.

localized at the left end (L) or right end (R) of the molecule,
when the lines are within the energy gap. They can also be
extended states (E) distributed in the whole system when the
lines merge into band 3 or band 4. More specifically, in the
topological phase of weak long-range hoppings (μ > μc), by
varying ϕ from zero to 2π , the spatial distributions of the
states along the solid and dotted magenta lines in Figs. 2(a)
and 2(d) evolve following

(16)

(17)

respectively. Here the evolutionary steps contributing to the
charge pumping (see Sec. III B) are enclosed by boxes, and
their typical spatial distributions are shown in Figs. 4(a)– 4(c).
In the topological phase of strong long-range hoppings (μ <

μc), the evolutions of these states are

(18)

(19)

for the solid and dotted magenta lines in Fig. 2(c), re-
spectively, and Figs. 4(d)–4(h) present the typical spatial

distributions of the contributing steps that are enclosed by
boxes in Eqs. (18) and (19). Obviously, the spatial evolutions
of the states in gap III are very different between the weak-
and strong-hopping phases. This difference in the spatial dis-
tributions of end states as a function of ϕ will have important
consequences in the charge pumping effect discussed sub-
sequently. At the critical point μ = μc, although gap III is
closed, the electronic states in the magenta lines can still be
localized at the molecular ends (not shown here) for some
values of ϕ at which the lines do not merge into the bands.
One more notable feature is that in some variation ranges
of the phase ϕ, the energy of a certain end state can be a
nonmonotonic function of ϕ, and its slope can change sign;
see, e.g., the dotted magenta line in Fig. 2(a) in the range of
0.4π < ϕ < 0.8π . Hence, there is no one-to-one correspon-
dence between the slopes of the midgap end states and the
end they localize on in our system.

B. Topological charge pumping

We now turn to investigate the adiabatic charge pumping
in single-helical organic molecules with long-range hoppings.
The focus is on demonstrating how the topological phase
transition driven by the long-range hoppings is manifested in
the pumped current through the system. The general rule for
electronic tunnelings between the molecule and the electrodes
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FIG. 3. (a) Chern numbers, C1–C5, for the five energy bands of
the single-helical molecule as a function of the long-range decay
exponent μ. C3 and C4 jump at the critical value, μc � 1.145, of the
decay exponent, indicating the topological phase transition. (b) De-
pendence of the critical decay exponent μc on the twist angle φ0.
2π/φ0 gives the number of sites in each unit cell.

FIG. 4. Spatial distributions of electron density Pln for the
16 electronic states marked by the 16 green crosses shown in
Figs. 2(a) and 2(c), with solid (dotted) lines here corresponding to
the solid (dotted) lines there. The specific phase values of these states
are shown in each panel. More specifically, (a)–(c), with μ = 1.8,
display the typical spatial evolutions of the two end states in gap III
in the weak-hopping topological phase, while (d)–(h), with μ = 0.6,
are in the strong-hopping topological phase.

FIG. 5. Schematic diagrams of the charge pumping process in
single-helical organic molecules coupled with two electrodes. (a)–(f)
correspond to the phase ϕ(t ) evolving in time from zero to 2π . The
magenta lines here represent the energy levels marked by the solid
magenta line in Fig. 2(a), and the black balls symbolize electrons.

is as follows. At zero temperature, any molecular states with
energy higher (lower) than the Fermi energy EF must be
empty (occupied). Therefore, when a molecular state moves
downwards (upwards) across EF , it changes from empty (oc-
cupied) to occupied (empty), and there must be an electron
tunneling into (out of) the molecule. Taking the end state
indicated by the solid magenta line in Fig. 2(a) as an example
in the weak-hopping (μ > μc) phase, we illustrate in Fig. 5
the physical mechanism of electronic transport through topo-
logical end states driven by the slowly rotating electric field.
Placing the Fermi energy EF in the middle of gap III, we start
with the initial state at the zero phase ϕ(t ) = 0. This initial
state in the solid magenta line is an extended state which lies
above EF and touches the bottom of band 4 [Figs. 2(a) and
5(a)]. Under adiabatic modulation of the pumping parameter
ϕ(t ) by rotating the electric field, the state evolves with time.
Specifically, as ϕ(t ) increases from zero to π , the state is
dragged downwards from the bottom of band 4 to the top of
band 3 [Figs. 5(a)–5(c)], and its spatial distribution evolves
according to E → R → E [Eq. (16)]. During this process,
the state is localized at the right end of the molecule while
it moves downwards across the Fermi energy. An electron
can then tunnel into the molecule from the right electrode
[Fig. 5(b)]. Further adjusting ϕ(t ) from π to 2π pushes the
state from the top of band 3 up to the bottom of band 4
[Figs. 5(c)–5(f)], and its spatial distribution changes as E →
L → E [Eq. (16)]. In particular, the electron is transferred to
the left electrode because the state is now localized at the
left end of the molecule while passing upwards through the
Fermi energy [Fig. 5(e)]. Therefore, over each pump cycle,
one electron is pumped from the right electrode to the left
one across the molecule. The evolutionary steps contributing
to this pumping process are R → E → L, as enclosed by the
box in Eq. (16). For the state marked by the dotted magenta
line in gap III [Fig. 2(a)], the contributing evolutionary steps
are L → E → R [see the box in Eq. (17)], which first transfer
an electron from the molecule to the left electrode and then
another electron from the right electrode to the molecule. The
overall effect is also that one electron is pumped from the right
electrode to the left one over each pump cycle. As a result, in

155402-6



TOPOLOGICAL PHASE TRANSITIONS OF THOULESS … PHYSICAL REVIEW B 102, 155402 (2020)

FIG. 6. (a) Pumped current Il through end state pairs in gaps I–IV
as a function of the Fermi energy EF in the leads at the long-range
decay exponent μ = 1.8 greater than the critical value μc � 1.145.
(b) Pumped current Il through the state pair in gap III versus EF for
different μ. (c) Pumped current Il through the state pair in gap III
versus EF for different molecular lengths N at two decay exponents
μ very close to the critical value μc.

the weak-hopping (μ > μc) phase, the pumped current carried
by the two end states in gap III, as a function of EF , develops
a plateau at −2e f [see the magenta line in Fig. 6(a)], when
EF is in the gap, and thus, the system behaves as a Chern
insulator. The minus here represents the current direction
from the left to the right. Remarkably, the index theorem
[70] relates the number of pumped electrons after one cycle
and the sum of Chern invariants of occupied bands below
gap III. The current plateau can then be written as −2e f =∑3

i=1 Cie f , establishing the bulk-boundary correspondence
[22,70]. Note that |C1 + C2 + C3| also counts the number of
intersections of the two end states in gap III as ϕ(t ) runs
in [0, 2π ].

Similar analyses are equally applicable to the pumped cur-
rent carried by the topological end states in other bulk gaps.
Specifically, in the topological phase of weak long-range hop-
pings (μ > μc), when the Fermi energy sweeps through gaps
I, II, and IV, the sum of Chern numbers of occupied bands is

FIG. 7. Total pumped current I through all end states in the
four band gaps as a function of the Fermi energy EF at different
temperatures T for different long-range decay exponents μ (a) in the
μ > μc phase, (b) at the critical point μ = μc � 1.145, and (c) in the
μ < μc phase, respectively.

C1 = 1, C1 + C2 = 2, and
∑4

i=1 Ci = −1, respectively. These
give rise to quantized current plateaus of e f , 2e f , and −e f ,
as shown in Fig. 6(a). The heights of these current plateaus
do not change quantitatively even in the strong-hopping (μ <

μc) phase [see Fig. 7(c)] because the topological nature of the
end state pairs in gaps I, II, and IV is robust against arbitrary
amplitudes of the long-range hoppings.

However, the sum of Chern numbers of bands below gap
III,

∑3
i=1 Ci, changes abruptly from −2 to 3 as μ reduces to

the μ < μc regime [Fig. 3(a)]. A current plateau of 3e f is thus
expected when the Fermi energy sweeps through gap III [see
the red line in Fig. 6(b)]. Just like the analyses in the μ > μc

case, this current plateau can also be understood by analyzing
the specific pumping processes. In the topological phase of
strong long-range hoppings (μ < μc), for the state along the
solid magenta line in gap III [Fig. 2(c)], the contributing
evolutionary steps [see the box in Eq. (18)] can first pump
an electron from the left electrode to the right electrode and
then another electron from the left electrode to the molecule.
This is equivalent to transferring 1.5 (3) electrons from the
left to the right electrode in one (two) cycle(s). The same
is true for the contributing steps of the state marked by the
dotted magenta line. Therefore, the end state pair in gap III
totally pumps three electrons in one cycle, producing a current
plateau at 3e f in the μ < μc phase.

Figure 6(b) depicts the pumped current carried by the end
state pair in gap III as a function of the Fermi energy EF for
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different decay exponents ranging from μ > μc to μ < μc.
It is shown that the current plateau features a continuous
crossover from −2e f to 3e f , rather than a sudden jump typ-
ical for phase transitions, due to the finite-size effect [71,72].
For decay exponents μ close to the critical value μc and short
molecular lengths N , the width of gap III can be comparable
to the interval between adjacent energy levels in bulk bands,
so that the gap is not well defined, and the current plateau is
absent. This finite-size effect can be circumvented when en-
ergy levels in each band constitute continuums by increasing
the molecular length. Indeed, as demonstrated in Fig. 6(c), for
sufficiently long lengths, the pumped current carried by the
end states in gap III always exhibits a well-formed plateau at
either −2e f (for μ > μc) or 3e f (for μ < μc), even though
the decay exponents μ are very close to the critical value.

Since the adiabatic pumping effect is protected by the
bulk topology of the helical molecules, it should generally
be robust against perturbations such as disorder and many-
body interaction [73]. Nevertheless, helical organic molecules
could undergo a series of structural deformations, such as
longitudinal stretching and squeezing, radial variations, and
twisting and bending [35–39]. It is certainly worthwhile to
further study how the revealed transport features, characteris-
tic of the topological phase transition, are affected in all these
cases, but for now we will not perform such a study in this
paper. Instead, we would like to estimate the observability
of these transport characteristics at finite temperatures. Fig-
ure 7 presents the temperature evolution of the total pumped
current carried by all end states. Regardless of whether the
system is in the weak-hopping (μ > μc) phase [Fig. 7(a)],
in the strong-hopping (μ < μc) phase [Fig. 7(c)], or even
at criticality [Fig. 7(b)], all relevant plateaus are well re-
solved in the total current when the Fermi energy sweeps
consecutively through the four bulk gaps. As expected, these
plateaus are smeared out with the temperature. The smearing
mechanism is as follows. At finite temperatures, molecular
states with energy higher (lower) than EF still have a finite
probability of being occupied (empty). Consequently, when
a molecular state moves downwards (upwards) across EF ,
there is a finite probability that an electron can tunnel out
of (into) the molecule. These tunneling processes, opposite
to those occurring at zero temperature [e.g., Figs. 5(b) and
5(e)], cancel the charge pumping, thus effectively smearing
the current plateaus. Since the plateau widths are roughly
given by the corresponding gap widths, the wider the gap is,
the higher the temperature at which the current plateau can
persist is. We find that the current plateau at −2e f , character-
istic of the weak-hopping (μ > μc) phase, remains visible at
the temperature kBT = 0.02t1 [Fig. 7(a)], while in the strong-
hopping (μ < μc) phase, the characteristic plateau of 3e f can
persist up to the temperature kBT = 0.05t1 [Fig. 7(c)]. These
give out relatively high temperatures T � 23 K and 58 K if

one takes the nearest-neighbor hopping t1 = 0.1eV according
to the first-principles calculations [31,74–76]. Although the
exact temperature evolution of the pumped current plateaus
depends on the specific model parameters used in this paper,
there will be no qualitative changes when other values of the
model parameters are used [28]. Therefore, we expect that the
transport signature of the topological phase transition can be
observed at finite temperatures in realistic DNA and protein
molecules. Note that due to the downward shift of gap III
when decreasing μ, the current plateaus of −2e f and 3e f
occur at different EF . To experimentally achieve a switching
between the two characteristic plateaus by tuning μ, one needs
to either shift EF accordingly or counteract the band shift
somehow (e.g., by simultaneously tuning E the electric field
strength).

IV. CONCLUSION

We have studied the topological adiabatic pumping of
electrons in single-helical organic molecules with long-range
hoppings. We showed that the strong and weak long-range
hopping regimes represent two topologically distinct phases
of the system, which are separated by a topological phase
transition with characteristic features manifested in the molec-
ular band structure and in the pumped current. In particular,
the strong- and weak-hopping phases support the transport of
pumped electrons in opposite directions, resulting in the quan-
tized plateau in the pumped current as a function of the Fermi
energy exhibiting different signs and amplitudes between the
two phases. Due to the finite lengths of the molecules, we
observe a smooth crossover, rather than a sharp reversal, of
the current plateau near the topological criticality, which is
experimentally accessible in realistic helical molecules. The
study of topological physics in helical organic and bioorganic
molecular systems is still in its infancy. We hope the present
paper will attract more research interest in this direction.
Besides being fundamentally interesting in their own right,
such studies could also provide novel designing principles for
molecular electronic devices by exploiting their topological
phases.
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