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Sound in a system of chiral one-dimensional fermions
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We consider a system of one-dimensional fermions moving in one direction, such as electrons at the edge
of a quantum Hall system. At sufficiently long timescales the system is brought to equilibrium by weak
interactions between the particles, which conserve their total number, energy, and momentum. The time evolution
of the system near equilibrium is described by hydrodynamics based on the three conservation laws. We find
that the system supports three sound modes. In the low-temperature limit one mode is a pure oscillation of
particle density, analogous to the ordinary sound. The other two modes involve oscillations of both particle and
entropy densities. In the presence of disorder, the first sound mode is strongly damped at frequencies below the
momentum relaxation rate, whereas the other two modes remain weakly damped.
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Small perturbations of density propagate through ordinary
fluids in the form of sound waves [1]. Oscillations of density
in a sound wave are accompanied by oscillations of entropy
density, such that the entropy per particle retains its equilib-
rium value. An important exception to the above picture is
superfluid 4He, whose quantum nature results in the existence
of two sound modes. The first sound is predominantly a wave
of density, similar to sound in ordinary fluids, whereas the
second sound is a wave of entropy [1,2].

It was recently shown that the superfluid behavior char-
acterized by the existence of two sound modes is a generic
feature of the one-dimensional quantum fluids [3,4]. This is
a consequence of the fact that in addition to the number of
particles, energy, and momentum, the collisions of particles
in these systems conserve an additional quantity J . The latter
has the meaning of the difference of the numbers of the right-
and left-moving particles. Although the scattering processes
changing J are not strictly forbidden, their rate is exponen-
tially small at low temperatures, τ−1 ∝ e−D/T [5–7]. (Here, D
is the bandwidth of the system and T is the temperature.) At
low frequencies ω � τ−1 the conservation of J is violated,
and the system behaves as an ordinary fluid, with a single
sound mode. On the other hand, in a broad range of frequen-
cies between τ−1 and the much larger rate of quasiparticle
relaxation τ−1

ex , the additional conservation law changes the
dynamics of the quantum fluid dramatically, resulting in two
sound modes.

In this paper we study sound in a gas of chiral one-
dimensional fermions. The best known example of such a
system is the edge of the two-dimensional electron gas in the
integer quantum Hall regime [8]. The chiral nature of transport
in this system was demonstrated by observing propagation
of the density pulses along the edge [9]. More recently, an
analog of the quantum Hall system was created with cold
atoms, and the chiral nature of the edge states has also been
demonstrated experimentally [10]. We show below that the
number of sound modes in a chiral system is equal to the

number of conserved quantities. In the absence of disorder,
collisions between fermions conserve the number of particles,
energy, and momentum, resulting in three sound modes. By
breaking the conservation of momentum, static disorder re-
duces the number of sound modes to two. This is in contrast
to nonchiral systems, where no sound may propagate in the
presence of disorder.

We focus on the simplest case of a single-component chi-
ral Fermi gas, which corresponds to the occupation fraction
ν = 1 in the quantum Hall realizations of the system. At low
temperatures, the energy spectrum of fermions, which we
assume to be spinless, can be expanded in momentum near
the Fermi point,

εp = vF p + p2

2m
+ λp3

2m2vF
+ · · · . (1)

Here, we measure the momentum p from the Fermi point, vF

is the Fermi velocity, parameter m has the dimension of mass,
while λ is dimensionless. For simplicity, we assume that the
interactions between particles are weak and account for them
only to the extent that they bring the system to thermal equi-
librium, with the characteristic relaxation rate τ−1

ex . Stronger
interactions would alter our results for the sound velocities
but not the fundamental features, such as the number of the
sound modes.

We note that it is important to properly account for the
nonlinear corrections to the energy spectrum in Eq. (1). In-
deed, for the linear spectrum the energy of the system is
determined by its momentum, E = vF P, and the two cor-
responding conservation laws become equivalent. Because
of that, the subsequent calculations simplify considerably if
instead of conservation of momentum one discusses conser-
vation of the quantity � = E − vF P. In this approach, the
equilibrium state of the system is fully determined by spec-
ifying the total number of particles N , energy E , and �.
Correspondingly, the occupation numbers of the fermionic
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states,

fp = 1

e(εp−μ−γ θp)/T + 1
, θp = εp − vF p, (2)

are controlled by three parameters: the chemical potential μ,
the temperature T , and the dimensionless parameter γ . The
values of μ, T , and γ are determined by the magnitudes of
the conserved quantities N , E , and �.

We are interested in the dynamics of the system at frequen-
cies ω well below the quasiparticle relaxation rate τ−1

ex . In this
regime, the Fermi-Dirac form (2) of the occupation numbers
applies at every point in space, but the parameters μ, T , and
γ may depend on the position x and time t . The dynamics
of the system is fully described by the continuity equations
expressing the three conservation laws,

∂t n + ∂x jn = 0, (3a)

∂tε + ∂x jε = 0, (3b)

∂tϑ + ∂x jϑ = 0. (3c)

Here, n, ε, and ϑ are the densities of N , E , and �, respectively,
whereas jn, jε, and jϑ are the corresponding currents. For
noninteracting fermions they are given by

n =
∫

d p

h
fp, ε =

∫
d p

h
εp fp, ϑ =

∫
d p

h
θp fp,

jn =
∫

d p

h
vp fp, jε =

∫
d p

h
vpεp fp,

jϑ =
∫

d p

h
vpθp fp, (4)

where h is the Planck’s constant and vp = ∂pεp is the velocity
of the fermion with momentum p. Substitution of the densities
and currents defined by Eq. (4) with fp given by Eq. (2) into
the continuity equations (3) gives three equations upon the
three parameters μ(x, t ), T (x, t ), and γ (x, t ) of the distribu-
tion function.

To obtain the sound modes of the system, we assume that
these parameters oscillate according to

μ(x, t ) = δμ ei(qx−ωt ), T (x, t ) = T + δT ei(qx−ωt ),

γ (x, t ) = δγ ei(qx−ωt ), (5)

with small amplitudes δμ, δT , and δγ and linearize Eq. (3)
in these parameters. This yields a system of three linear equa-
tions, which we write in the matrix form(

ωD̂ − qĴ
)
� = 0. (6)

Here,

D̂ =

⎛
⎜⎝

∂μn ∂T n ∂γ n

∂με ∂T ε ∂γ ε

∂μϑ ∂T ϑ ∂γ ϑ

⎞
⎟⎠,

Ĵ =

⎛
⎜⎝

∂μ jn ∂T jn ∂γ jn

∂μ jε ∂T jε ∂γ jε

∂μ jϑ ∂T jϑ ∂γ jϑ

⎞
⎟⎠, (7)

and the column vector � = (δμ, δT, δγ )T. The sound modes
are given by nonvanishing solutions of Eq. (6), which exist

only when ω and q satisfy the condition

det
(
ωD̂ − qĴ

) = 0. (8)

For a given q, the above condition is a cubic equation for ω,
which in general has three solutions. This conclusion applies
to any chiral system with a conserved number of particles,
energy, and momentum.

In the particular case of the gas of chiral fermions at low
temperature, further progress can be made by evaluating the
matrices (7) to leading order in T/mv2

F using Eqs. (4) and (2).
We obtain

D̂ =

⎛
⎜⎜⎜⎝

1
hvF

− π2T
3hmv3

F

π2T 2

6hmv3
F

− π2T 2

3hmv3
F

π2T
3hvF

7π4(λ−2)T 4

30hm2v5
F

π2T 2

6hmv3
F

7π4(λ−2)T 3

30hm2v5
F

7π4T 4

60hm2v5
F

⎞
⎟⎟⎟⎠ (9)

and

Ĵ =

⎛
⎜⎜⎜⎝

1
h 0 π2T 2

6hmv2
F

0 π2T
3h

7π4(λ−1)T 4

30hm2v4
F

π2T 2

6hmv2
F

7π4(λ−1)T 3

30hm2v4
F

7π4T 4

60hm2v4
F

⎞
⎟⎟⎟⎠. (10)

Then by solving Eq. (8) we find three values of the sound
velocity ω/q,

v1 = vF , v± = vF

(
1 ±

√
7

5

πT

mv2
F

)
, (11)

where we kept only the terms up to first order in T/mv2
F . In

this approximation the relative magnitudes of the oscillations
of μ, T , and γ are given by

δT = 0,
δμ

δγ
= − 7

10

π2T 2

mv2
F

, (12)

for the mode propagating at velocity v1 = vF , and

δμ = 0,
δT

δγ
= ±

√
7

20

πT 2

mv2
F

, (13)

for the solutions with sound velocities v±. One can use the
expression (9) for the matrix D̂ to obtain the relative mag-
nitude of the oscillations of density δn and entropy density
δs = δε/T . At T/mv2

F → 0 one finds δs/δn = 0 for the so-
lution with velocity v1 = vF and δs/δn = ±π

√
7/5 for the

modes with velocities v±.
Let us now discuss the effect of static disorder on the

sound modes. Disorder breaks the translation invariance of
the system, and the total momentum is no longer a con-
served quantity. This brings about two changes in the above
discussion. First, the parameter γ in the Fermi-Dirac distri-
bution (2) of the occupation numbers is now permanently set
to zero. Second, only the continuity equations (3a) and (3b)
are satisfied. Upon linearization in δμ and δT , Eq. (6) still
applies, but the matrices D̂ and Ĵ are given by the first two
rows and columns of the corresponding expressions in Eq. (7),
and � = (δμ, δT )T. At a given q, the condition (8) is now a
quadratic equation for ω. It has two solutions corresponding to
two sound modes. For the chiral Fermi gas at low temperatures
we solve Eq. (8) using the matrices D̂ and Ĵ given by the
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first two rows and columns of Eqs. (9) and (10). The resulting
sound velocity ω/q takes two possible values,

v± = vF

(
1 ± π√

3

T

mv2
F

)
. (14)

Here again we omitted the terms of second and higher powers
in T . The eigenvectors � corresponding to these two solutions
have δμ/δT = ±π/

√
3. The corresponding oscillations of

density δn and entropy density δs in the two sound modes
satisfy the conditions δs/δn = ±π/

√
3.

To gain further insight into the effect of disorder on the
sound modes, we consider the case of weak disorder. The
latter condition means that the rate of relaxation of momentum
τ−1

P due to disorder is small compared to the quasiparticle
relaxation rate τ−1

ex . At ω � τ−1
ex the quasiparticles of the

Fermi gas are in equilibrium, and the occupation numbers
take the form (2), but the parameter γ experiences relaxation
due to the momentum nonconserving scattering processes.
Assuming this relaxation takes the usual form

γ̇ = − γ

τP

, (15)

we now obtain the effect of these processes on the three sound
modes.

First, we note that a nonzero γ̇ is accompanied by nonzero
μ̇ and Ṫ . Indeed, the remaining laws of conservation of the
particle number and energy imply ṅ = 0 and ε̇ = 0. The
set of three quantities �̇ = (ṅ, ε̇, ϑ̇ )T is obtained from �̇ =
(μ̇, Ṫ , γ̇ )T with the help of the matrix D̂ [see Eq. (7)], i.e.,
�̇ = D̂�̇. We then obtain μ̇ and Ṫ by imposing the condition
that the first two components of D�̇ vanish. The remaining
component ϑ̇ then takes the value

ϑ̇ = 4π4T 4

45hm2v5
F

γ̇ , (16)

where we used Eq. (9) for D̂. It has the meaning of the rate
of change of the density of � due to the scattering processes
violating the conservation of momentum.

Next, we add ϑ̇ given by Eq. (16) with γ̇ given by Eq. (15)
to the right-hand side of Eq. (3c) and solve the system of
equations (3) in linear order in small δμ, δT , and δϑ intro-
duced via Eq. (5). In the low-temperature regime T � mv2

F ,
the frequency ω for a given q can be presented as

ω = vF q

(
1 + T

mv2
F

x

)
, (17)

where x satisfies

x3 + ix2

η
− 7π2x

5
− iπ2

3η
= 0, η = qT

mvF
τP. (18)

This cubic equation has three solutions x(η) that correspond
to the three sound modes. Although analytic expressions for
these solutions can be obtained, their form is overly com-
plicated. Thus, we focus on the important limiting cases of
η → 0 and η → ∞.

One of the three solutions is purely imaginary. In the limit-
ing cases we find x = −i/η at η → 0 and x = −(5/21)i/η
at η → ∞. This solution corresponds to the sound mode
that propagates at velocity v1 = vF at high q. The other two

solutions of Eq. (18) yield the modes propagating with veloc-
ities v±. For these solutions we find x = ±π/

√
3 − 8π2iη/15

at η → 0 and x = ±√
7/5π − (8/21)i/η at η → ∞. Using

these expressions, we obtain the frequencies of the sound
modes in the limits of small and large q. At q � mvF /T τP
our results for x at η → ∞ upon substitution into Eq. (17)
yield

ω = vF q − 5i

21τP

, ω = vF

(
1 ±

√
7

5

πT

mv2
F

)
q − 8i

21τP

.

(19)
At τP → ∞ Eq. (19) recovers our earlier results for the three
sound modes in the absence of momentum relaxation with the
sound velocities given by Eq. (11). At finite τP the frequencies
of the sound modes acquire imaginary parts of the order of
−τ−1

P . The latter are the rates of attenuation of sound due to
the momentum relaxation processes.

Our expressions for x at η → 0 yield the sound mode
frequencies at q � mvF /T τP,

ω = vF q − i

τP

, ω = vF q

(
1 ± πT√

3mv2
F

)
− 8π2iq2T 2τP

15m2v2
F

.

(20)
At q → 0 the first mode is overdamped, while the other two
experience only weak attenuation. Their velocities recover our
earlier result (14).

The effect of weak static disorder on the three sound modes
can be summarized as follows. At high q each of the three
modes is attenuated with the rate of the order of τ−1

P . However,
their behavior at lower q is dramatically different. The sound
mode propagating with velocity v1 = vF remains attenuated
with the rate of the order of τ−1

P , and at ω � τ−1
P this sound

mode ceases to exist. On the other hand, the attenuation rates
of the other two modes depend on q in such a way that they
remain weak (i.e., small compared to the real part of ω) at
all frequencies. The main effect of the momentum relaxation
is the crossover of the sound velocities v± from their values
given by Eq. (11) at ωτP � mv2

F /T to Eq. (14) at ωτP �
mv2

F /T .
It is instructive to compare the behavior of sound modes

in chiral one-dimensional systems with that in nonchiral ones.
In the latter case the nature of the two sound modes depends
on the presence of spins in the system. For fermions with
spin, the two modes are very similar to sound modes in super-
fluid 4He [1,2]. In particular, they have different velocities at
T → 0: The first sound is a wave of particle density, whereas
the second sound is the wave of entropy [3]. For spinless
one-dimensional quantum fluids the two sound modes have
the same velocity at T → 0. At small but finite temperature
the degeneracy is split, but the two resulting modes are hy-
brids of the first and second sounds: The amplitudes of the
oscillations of density δn and entropy density δs are of the
same order of magnitude [4]. The two sound modes in the
case of chiral fermions with disorder are of a similar hybrid
nature, with both velocities approaching vF at T → 0 [see
Eq. (14)] and δs/δn = ±π/

√
3. In the absence of disorder, the

modes propagating with velocities v± are also hybrids, with
δs/δn = ±π

√
7/5, whereas the additional mode propagating

at velocity vF is a wave of density, analogous to the first
sound: δs/δn → 0 at T → 0. Similarly to the ordinary sound,
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this mode is effectively damped at small q in the presence
of disorder. On the other hand, disorder results in only weak
attenuation of the two hybrid modes.

It is important to distinguish between the sound modes
discussed in this paper and the bosonic excitations in the
Luttinger liquid theory [11]. Indeed, our model of chiral spin-
less fermions can be bosonized, resulting in an alternative
theory based on bosonic rather than fermionic elementary
excitations. The bosons are essentially quantized waves of
particle density that propagate at the Fermi velocity. The
nonlinear corrections to the energy spectrum (1) translate
into anharmonic coupling of bosons [11], resulting in a finite
lifetime τb ∼ h̄mv2

F /T 2 for excitations with energy of order
T [12]. The lifetime τb is usually shorter than the lifetime of
fermionic quasiparticles τex [13,14]. At timescales beyond τex,
neither type of quasiparticles remains well defined, and the
hydrodynamic description of the fluid presented here becomes
appropriate.

The two sound modes in the disordered system can be
studied in an experiment with quantum Hall devices, where
propagation of a density pulse along the edge is observed. At
timescales t � τex the pulse is expected to split in two, propa-
gating with velocities v+ and v− given by Eq. (14). An exper-
iment of this type was reported in Ref. [9], where the density
pulse was created by a local gate. The propagation of the

density pulse was observed, but it did not split into two pulses.
A possible reason is that at the very low measurement temper-
ature of 0.3 K the relaxation time τex may have exceeded the
time during which the pulse was observed. For spinless chiral
fermions τex scales with the temperature as T −2 and T −6 [13]
for pure Coulomb interactions and those screened by a nearby
gate, respectively, and as T −14 in the case of very short-range
interactions [14]. Thus the conditions for the observation of
sound modes are more favorable at higher temperatures. We
mention finally that in the case of a disorder-free system, only
the first sound mode is efficiently coupled to the gate, because
to leading order the oscillations of the chemical potential in
the hybrid modes vanish [see Eq. (13)].

To summarize, we have studied sound modes in a system
of chiral one-dimensional weakly interacting fermions. In the
absence of disorder the system supports three sound modes:
the first sound propagating at the Fermi velocity and two
hybrid modes with velocities v± different from vF by δv ∼
±T/mvF . Disorder effectively damps the first sound, but the
hybrid modes propagate with little damping.
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