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We investigate a quantum well that consists of a thin topological insulator sandwiched between two trivial
insulators. More specifically, we consider smooth interfaces between these different types of materials such
that the interfaces host not only the chiral interface states, whose existence is dictated by the bulk-edge
correspondence, but also massive Volkov-Pankratov states. We investigate possible hybridization between these
interface states as a function of the width of the topological material and of the characteristic interface size. Most
saliently, we find a strong qualitative difference between an extremely weak effect on the chiral interface states
and a more common hybridization of the massive Volkov-Pankratov states that can be easily understood in terms
of quantum tunneling in the framework of the model of a (Dirac) quantum well we introduce here.
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I. INTRODUCTION

Topological insulators [1,2] (TIs) are insulating materi-
als that exhibit chiral conducting surface states. This exotic
property is a manifestation of the bulk-edge correspondence
which states that the topological invariant of the bulk Hamil-
tonian dictates the presence of gapless chiral edge or surface
states. The latter have been observed experimentally by angle-
resolved photoemission spectroscopy [3–5] or via quantized
conductances, e.g., in HgTe/CdTe quantum wells [6,7].

Already in the 1980s, two decades before the advent of
topological materials in general and TIs in particular, the
bulk-edge correspondence had been theorized in inverted-gap
systems [8–11], most prominently by Volkov and Pankratov
in the context of HgTe/CdTe heterostructures [8,9]. Indeed,
they found that HgTe has an inverted gap in the band structure
as compared to CdTe. In the modern language of topological
band theory, this is precisely a consequence of a difference in
the bulk invariant characterizing the two materials [6]. At the
interface of a HgTe/CdTe heterostructure, the gap therefore
needs to change sign, and a robust, topologically protected,
chiral state thus emerges. Moreover, Volkov and Pankratov
showed in their seminal work that, in the case of a smooth
change of the gap parameter over the interface, massive sur-
face states, now called Volkov-Pankratov (VP) states, can
occur beyond the chiral ones. Unlike in Ref. [12], VP states
mean here only the massive surface states and we do not call
the chiral states the massless VP states. Only recently, these
massive surface states have regained interest, namely, due
to their experimental observation in transport measurements
in HgTe/CdHgTe heterojunctions [13]. Theoretical studies by
Tchoumakov et al. showed that the occurrence of such states
is generic in what is now called a topological heterojunction
[14], i.e., a smooth interface between a topological mate-
rial and a trivial insulator. Indeed, they have been shown
to arise not only in TIs [12–15], but also in interfaces of
Weyl semimetals [16–18], topological graphene nanoribbons

[19], and topological superconductors [20]. Furthermore, the
magneto-optical properties of smooth topological interfaces
have been studied both in the context of TIs [15,21] and
Weyl semimetals [18] in the prospect of a, to the best of our
knowledge yet missing, direct spectroscopic identification of
massive VP states.

Previous theoretical studies interpreted these emergent
massive states as either another type of solutions of dif-
ferential equations [8,9] or Landau quantization induced by
a pseudomagnetic field, i.e., the smoothness [14,16,21–23].
In this paper, we adopt a complementary perspective on
VP states and topological chiral states in the framework of
quantum well physics. Indeed, the matrix model (it is at
least a two-band model), which describes the topological
heterojunction, can be transformed, within supersymmetric
quantum mechanics [24], in such a manner that the com-
ponents of the wave function satisfy a more conventional
Schrödinger equation in a modified well potential [9,25] that
arises from the (linearly) varying gap parameter. One is there-
fore confronted effectively with the conventional problem of a
one-dimensional (1D) quantum mechanical particle in a quan-
tum well, which we call henceforth Dirac quantum well (QW),
as a complementary and equivalent point of view with respect
to the topological heterojunction. As shown in Fig. 1, a single
interface in the form of a topological heterojunction thus gives
rise to a single Dirac QW within this treatment, which we will
review in detail in Sec. II. More importantly for this work, a
thin TI sandwiched between two trivial insulators, such as in
a CdTe/HgTe/CdTe heterostructure that is commonly said to
be a single QW, can be viewed as a double Dirac QW.

This complementary framework, i.e., the description of
topological heterojunctions in terms of Dirac QWs, has two
major advantages. The first one is conceptional: one can un-
derstand explicitly within the Dirac QW the appearance of
VP states in a smooth topological heterojunction in terms of a
quantum confinement effect. Indeed, one finds always at least
one bound state in one of the chiral sectors for which the

2469-9950/2020/102(15)/155311(12) 155311-1 ©2020 American Physical Society

https://orcid.org/0000-0002-6228-1480
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.155311&domain=pdf&date_stamp=2020-10-26
https://doi.org/10.1103/PhysRevB.102.155311


X. LU AND M. O. GOERBIG PHYSICAL REVIEW B 102, 155311 (2020)

FIG. 1. (a) Schematic of a single Dirac QW. (b) Schematic of
a double Dirac QW. The spatially varying gap �(z) switches from
positive sign to negative when one passes from the blue area (trivial
phase) to the red area (topological phase) and the gap is vanishing
somewhere in-between. l , l1, and l2 characterize the smoothness of
domain wall between phases.

potential is necessarily confining, and this state corresponds
to the robust chiral surface state. Furthermore, a smoother
interface yields, somewhat unexpectedly, a shallower confine-
ment with more bound solutions in the Dirac QW for both
chiralities. The second advantage is practical. Most studies
on VP states have been restricted so far to a single boundary
problem, i.e., the possible coupling between the surface states
located at two opposite surfaces of a TI with finite width has
not been considered. However, many theoretical and exper-
imental papers [26–30] are interested in quantum tunneling
between the chiral states on two sides of a thin TI film. The
Dirac QW turns out to be a suitable framework to discuss both
the tunneling between the chiral states and that between VP
states which reside at different sides of a finite system.

The main findings of our work are the following. We show
that the topological chiral state is actually the ground state of
the Dirac QW. One can engineer the depth and the width of
the Dirac QW by changing the smoothness of the interface.
Furthermore, we also study quantum tunneling between two
adjacent Dirac QWs that are inherently asymmetric. A plau-
sible realization of two Dirac QWs would be a finite-sized
TI. For the massive states, the quantum tunneling strength
depends on the smoothness and the distance of two Dirac
QWs in a similar way as in the case of quantum tunneling be-
tween two conventional QWs separated by a potential barrier
of finite width and height. The behavior of the massless chiral
states is strikingly different: within the Dirac QW model, we
find indeed a shift away from zero energy that leads to a
small mass gap in these states. However, there is no direct

hybridization in the absence of a perturbation that couples
the two different chiralities, and the mass gap is found to be
several orders of magnitude smaller than the direct hybridiza-
tion of the massive VP states. This particular feature provides
a complementary quantum mechanical view on topological
protection of chiral surface states.

The paper is organized in the following manner. In Sec. II,
we provide an introduction to the link between a topolog-
ical heterojunction and the Dirac QW. We review here the
existence, in an explicit as well as a general treatment, of
a chiral state and show how the emergence of the massive
surface states can be understood as a quantum confinement
effect in terms of Dirac QWs. Section III presents our main
results on the tunneling effect between massive VP states,
which we discuss in the framework of two coupled Dirac
QWs, as a function of the interface smoothness and their
relative separation. In particular, we give an analytical recipe
to estimate the energy splitting of the massive VP states in
comparison with the chiral ones. We also show the similarities
and the peculiarities of a double Dirac QW when compared to
a conventional double square QW.

II. QUANTUM CONFINEMENT: DIRAC QUANTUM WELL

In this section, we introduce the concept of Dirac QW
via an explicit example. We consider here a single boundary
between a three-dimensional (3D) TI and trivial insulator
modeled by a 3D TI Hamiltonian with spatially varying gap
parameter. The caveat behind this model is the following:
we consider that the low-energy model in the vicinity of a
topological phase transition can be described in terms of a
massive Dirac fermion the gap parameter (mass) of which is,
say, negative in the topologically nontrivial phase and positive
otherwise. Suppose that the half-space z < 0 is filled by a
topological phase and the other half-space z > 0 filled by a
trivial one [see Fig. 1(a)]. The situation can be described with
the generic Hamiltonian [31]

H0 = �(z)τz + h̄vkzτy + h̄vτx(kyσx − kxσy) (1)

for a massive Dirac fermion, where v is Fermi velocity and
�(z) is the gap parameter (half of the spatially varying gap).
While the Pauli matrices σμ represent here the true spin of the
system with underlying spin-orbit coupling, the Pauli matrices
τμ represent another (lattice) degree of freedom, such as for
example orbitals in a multiorbital system as mentioned above.
The gap parameter �(z) changes its sign across the interface.
By construction, one enters into a topological phase (with an
inverted gap) when �(z) < 0 and into a trivial phase when
�(z) > 0. For simplicity, we suppose additionally �(z) to be
an increasing function of z and

�(z) =
{−�0 if z → −∞,

�0 if z → +∞,
(2)

where �0 > 0 is half of the bulk gap. Here, kz should be
replaced by −i∂z because of its noncommutativity with �(z)
while the components of the wave vector in the interface
plane remain good quantum numbers. Even without the ex-
plicit calculation of the spectrum of Hamiltonian (1), we may
already appreciate an important point here. Due to the spatial
variation of the gap function �(z), the electronic motion in the
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z direction is generically quantized into (d − 1)-dimensional
surface bands if we start from a d-dimensional bulk system.
While we illustrate our model in 3D heterostructures, it is
thus directly applicable to other spatial dimensions such as
two-dimensional (2D) TIs. It is more convenient to work in
the Weyl basis, which is obtained by the unitary transforma-
tion T = exp(iπτy/4) that simply interchanges the role of τx

and τz (τx → τz and τz → −τx), and then solve the equation
HT |ψ〉 = E |ψ〉 where HT = T H0T †. In this basis, the Hilbert
space can be decomposed into an orthogonal direct sum of two
subspaces with opposite chiralities. Notice that the eigenstates
|ψ〉 are four-component spinors that can be written as

|ψ〉 =
(
χ+(z)
χ−(z)

)
, (3)

where χ± are themselves two-component spinors of chirality
±. We obtain thus a set of two differential equations [8,9]:

(E2 − h̄2v2k2
‖ )χλ = [�(z) + λh̄v∂z][�(z) − λh̄v∂z]χλ, (4)

where k2
‖ = k2

x + k2
y , and λ = ± represents the chirality.

Let us now consider the differential equations (4) for the
two chiral sectors in terms of a 1D quantum mechanical prob-
lem. Indeed, the equations can be rewritten as

(E2 − h̄2v2k2
‖ )χλ = Ẽ2

λχλ = (−h̄2v2∂2
z + Uλ(z)

)
χλ, (5)

the right-hand side of which shows now a second-order
derivative in z, as it is the case for a 1D Schrödinger equation
with a confining potential

Uλ(z) = �(z)2 + λh̄v∂z�(z) (6)

which itself depends on the chirality λ. Solving E for the
Hamiltonian HT is equivalent to solving

Ẽ2
λ ≡ E2 − h̄2v2k2

‖ (7)

for this Schrödinger equation whose spectrum Ẽ2
λ must be

non-negative. Note that the spectrum and the potential in the
Schrödinger-type equation (5), which we have just obtained,
have the physical dimension of a squared energy. To empha-
size that we are working with such auxiliary quantities that
do not have the dimension of energy (but its square), we
explicitly use, in the following paragraphs, the term virtual
energies when we consider the context of the Schrödinger
equation (5).

The dispersion relation of the interface states thus reads as

E = Eα,λ(k‖) = α

√
Ẽ2

λ + h̄2v2k2
‖ , (8)

where α = ± denotes the band index. This relation shows also
how to convert a virtual energy to a physical energy. Since
we are interested in the states localized at the surface, we
consider only bound states in the quantum well defined by
Uλ(z), which, depending on the sign of the derivative ∂z�(z),
is confining for at least one chirality, λ = −sgn(∂z�).

This is the essence of the Dirac quantum well, which arises
at a topological heterojunction: once squared, the transformed
Hamiltonian HT in the Weyl basis yields two decoupled
Schrödinger equations for an effective quantum well given by
the chirality-dependent potential Uλ(z). Moreover, the plane-
wave motion in the xy plane is decoupled from the quantized
motion in the z direction so that we effectively have to deal

with a simple 1D quantum problem. Once solved the 1D
problem, we can retrieve the spectrum of HT using Eq. (8).

A. Existence of zero-energy mode and Jackiw-Rebbi argument

Before making an explicit mapping to the problem of a
quantum well, let us just remember the Jackiw-Rebbi ar-
gument [32], adopted by Aharonov and Casher [33] in the
presence of a vector potential (reminiscent of our gap func-
tion). It states that Eq. (4) always hosts a chiral zero-energy
solution, for k‖ = 0, that is the solution of

[�(z) − λh̄v∂z]χ
0
λ (z) = 0, (9)

which yields the massless Dirac mode with E (k‖) = ±h̄vk‖.
This zero-energy solution is directly obtained by integration,
as long as the gap function �(z) is integrable,

χ0
λ (z) ∼ exp

[
λ

h̄v

∫ z

z0

dz′�(z′)
]
, (10)

where z0 is a reference point, which we can choose to be that
where �(z0) = 0. One immediately sees that the solution has
a definite chirality which depends on the behavior of the gap
function at the interface. For a gap function that varies as (2),
only the solution with λ = − is normalizable and represents
thus the physical surface state with zero energy.

To illustrate this chiral solution in a concrete example that
also serves us in the discussion of the Dirac QW, let us con-
sider the following explicit form of the gap function, which
varies linearly over an interface of width 2l ,

�(z) =
{−�0 if z < −l,

�0
z
l if z ∈ [−l, l],

�0 if z > l,
(11)

which can, for example, be obtained from the linearization
of a more complex behavior. Indeed, Volkov and Pankratov
considered a smooth gap function �(z) = �0 tanh(z/l ) in
their original work [8,9], but Tchoumakov et al. showed in
Ref. [14] that the linearized version (11) of this function yields
the same type of massive surface states, within the simpler
framework of harmonic-oscillator function, as we remind in
more detail below. In the linearized case, the chiral solution
(for λ = −) is given by

χ0
λ ∼

{
e−z2/2ξ l for |z| < l,
e−|z|/ξ for |z| > l,

(12)

where

ξ = h̄v

�0
(13)

defines an intrinsic length given in terms of the material’s
bulk parameters �0 and v. One thus notices a crossover from
a Gaussian behavior in the interface to an exponential one
outside [14]. The Gaussian behavior already indicates that the
solutions of the topological heterojunction with a linearized
gap function are related to a parabolic confinement potential
as we show in the next subsection. Notice finally that a more
general form of the gap function, given in terms of a corrective
term δ�(z), does not alter the functional form derived here, as
long as this term is bounded and converges rapidly to zero
outside the interface, i.e., for |z| > l .
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B. Witten index

All these results are in agreement with general topologi-
cal arguments. It turns out that the specific form of Eq. (5)
stipulates the presence of a zero mode in a supersymmetric
quantum mechanical framework. Indeed, a 1D Schrödinger
equation such as that in Eq. (5) with a potential formed by
a linear combination of �(z)2 and ∂z�(z) is called the Witten
equation in the literature [9,25] for supersymmetric quantum
mechanics [24].

To briefly develop the argument, we consider only the band
extrema where k‖ = 0. Our Bloch Hamiltonian in the Weyl
basis becomes

Hs = −�(z)τx + h̄vkzτy. (14)

Since Hs contains only off-diagonal Pauli matrices, it maps
χ+ to χ− and vice versa when it acts on χ−. In the context of
supersymmetric quantum mechanics [34], Hs plays the role of
the supercharge operator which relates linearly the subspaces
of fermions and bosons (here two subspaces of chirality) and
H̃ = H2

s is thus the supersymmetric Hamiltonian. When �(z)
verifies Eq. (2), only χ− gets a zero-energy mode with a
definite chirality λ = − while χ+ does not. We can define a
quasitopological invariant called Witten index [25]:

IW := dim kerHs|V− − dim kerHs|V+ , (15)

where dim kerH |V is the dimension of the kernel of a linear
operator H acting on a subspace V and Vλ are the two Hilbert
subspaces of opposite chirality. Thus, IW must be an integer
and invariant under continuous changes of �(z). It dictates
also the number of zero mode, zero or one, at the interface.

C. Explicit discussion in terms of a Dirac quantum well

To illustrate the Dirac QW in a concrete example, we
consider again the explicit form (11) of the gap function. Its
profile is shown in Fig. 2(a) for two different values of the
smoothness parameter l/ξ . As a result, �(z)2 and ∂z�(z) are
both even functions and Uλ(z) defines thus a symmetric QW
potential [see Fig. 2(b)]. When the interface is abrupt, i.e.,
l/ξ 
 1, one immediately sees, as already mentioned, that
only the fermions with λ = − are submitted to a confining
1D QW. In contrast to this, fermions with chirality λ = +
cannot be confined in the region z ∈ [−l, l] because they can
tunnel out of z ∈ [−l, l] where the potential is no longer con-
fining [see, for example, the dashed orange lines in Fig. 2(b)].
Thus, we can already anticipate, well-known in 1D quantum
mechanics, that there must be a bound state for λ = −, but
not necessarily for λ = +. We will show this explicitly in the
following.

In the domain z ∈ [−l, l], our Hamiltonian locally co-
incides with the Hamiltonian for a 1D quantum harmonic
oscillator. This can be seen after formally substituting
�0/v

2 → 2m and v/l → ωc/2 (or equivalently �0/l2 →
mω2

c/2) in Eq. (5), such that the effective Schrödinger Hamil-
tonian reads as

Ẽ2
λ

�0
χλ =

(
− h̄2

2m
∂2

z + 1

2
mω2

c z2 + λ
h̄ωc

2

)
χλ. (16)

Here, we find the Hamiltonian of a quantum harmonic oscil-
lator with an energy shift depending on the chirality due to a

(a)

(b)

FIG. 2. (a) Interface profiles described by a spatially varying gap
�(z) for two values of characteristic interface width l/ξ = 0.9, 2.3.
(b) Profiles of Dirac QWs for its corresponding �(z) and chirality
λ = ±. U− is represented by solid lines and U+ by dashed lines.

vertical shift between U− and U+ determined by the interface
width l . The spectrum of this Hamiltonian is thus given by
[14]

Ẽ2
λ

�0
= h̄ωc

(
n + 1 + λ

2

)

or Ẽλ =
√

2
ξ

l

(
n + 1 + λ

2

)
�0, (17)

where n � 0 is an integer and λ = ±. Clearly, the Schrödinger
equation (5) thus possesses exactly one zero mode for n =
0 in the QW confining potential U−, in agreement with the
general arguments developed in the previous Secs. II A and
II B while all other levels can in principle be accessed by both
chiralities. We discuss the latter states with n �= 0 in detail
in the following Sec. II D. The zero mode, which due to the
parabolic potential has exactly the Gaussian shape obtained in
Eq. (12), is precisely the chiral state whose energy is immune
to details at the surface and independent of the well width l .
The ground state in a single Dirac QW is thus the topological
massless state at the surface of TI. Only one chiral state exists
because we consider only one boundary. We obtain another
chiral state if we take into account the other complementary
boundary.

D. Massive Volkov-Pankratov states

In the previous subsection, we have discussed the zero-
energy state n = 0 within the explicit model of a Dirac QW.
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Aside from this zero mode, the Dirac QW model hosts other
higher-energy states for n �= 0 (massive VP states) as allowed
bound states for both chiralities so that they are no longer
protected from backscattering [15]. VP states exist when the
energy scale h̄ωc is sufficiently small compared to �0. Equiv-
alently, if l is much larger than ξ = h̄v/�0, the Dirac QW can
have massive VP states aside from the chiral one. The critical
smoothness lc to have n = 1 VP state is equal to αξ where
α is on the order of one but its precise value depends on the
precise form of �(z). The number of massive states which a
single Dirac QW can host scales as [14]

nmax ≈ l

ξ
. (18)

The wave function χλ for n = 0 behaves as a Gaussian at
the interface and decays exponentially in the bulk. The wave
function of the bound states can penetrate into the region out
of the QW due to the finite well depth related to the bulk
gap and the smoothness l . The spatial extension of the wave
functions is thus described by a length scale ls = √

lξ which
depends on the well width and the bulk gap. As we can see
from this model, the smoothness of the surface, encoded in
�(z)2 and ∂z�(z), does not only determine the width of the
quantum well but it also modifies its depth [see the orange
and green lines in Fig. 2(b)]. This is essentially different from
the conventional (square) QW where one can independently
tune its depth and width.

Note that a smoother interface gives rise to a wider but
shallower Dirac QW which can nevertheless host more bound
states by the thumb rule (18). We can argue in the context of
supersymmetric quantum mechanics. If a nonzero mode χn,−
exists in V−, one can find a nonzero mode of same energy
in V+ by χn−1,+ = Hsχn,− because Hs commutes with H̃ .
Alternatively, if U− can host a bound state n = 1, U+ must
host a bound state n = 0 of same energy [see Eq. (17)]. Due
to the tunneling effect, a bound state in U+ must have a virtual
energy below �2

0. A smoother interface with larger value of
l reduces exactly the vertical shift between Uλ and thus make
the minimum of U+ sink below �2

0 [see Fig. 2(b)]. However,
this is a necessary but not sufficient condition for the existence
of bound states because the zero-point energy is finite. Yet, a
smoother interface can host more bound states.

Since we consider only bound states at the interface, the
argument above still applies when we consider the full global
profile Eq. (11). In fact, an interface between a TI and a trivial
one can be always modeled by Eq. (2) without losing much
generality. For example, Tchoumakov et al. [14] considered
a profile �(z) = �0 tanh(z/l ) and got the same conclusions.
This is because the band inversion mechanism allows one to
linearize the spatially varying gap at the interface. Massive VP
states can in principle emerge in any topological heterojunc-
tion when the interface is sufficiently smooth. In other words,
Dirac QW can host more bound states if it is sufficiently wide.

III. QUANTUM TUNNELING: DOUBLE DIRAC
QUANTUM WELL

We are now armed to describe the configuration of two
adjacent topological heterojunctions that arises when a TI
is sandwiched between two trivial insulators, as depicted in

(a)

(b)

FIG. 3. (a) Profile of the spatially varying gap �(z) for finite-size
system with l/ξ = 1 and L/ξ = 4. (b) Profiles of two adjacent Dirac
QWs for two chiralities. Two dashed lines, blue and red, indicate the
energy level (close to zero) of chiral states of λ = ±, respectively.

Fig. 1(b). Similarly to the situation presented in the last sec-
tion, this configuration corresponds, once written in terms of
Eq. (5), to a double Dirac QW separated by a virtual energy
barrier of height �2

0. Here, we are mainly interested in the
hybridization of the surface states as a function of the width
L of the (thin) TI film and the interface smoothness l/ξ .
This hybridization can be illustrated as being due to tunneling
between the two Dirac QWs, as we explicitly show in the
following with the help of the gap function:

�(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�0 if z < − L
2 − l,

−�0
l

(
z + L

2

)
if z ∈ [ − L

2 − l,− L
2 + l

]
,

−�0 if z ∈ [ − L
2 + l, L

2 − l
]
,

�0
l

(
z − L

2

)
if z ∈ [

L
2 − l, L

2 + l
]
,

�0 if z > L
2 + l,

(19)

which enters in our model Hamiltonian (1) and in the effective
Schrödinger equation (5). Notice that the width 2l of the Dirac
QWs must naturally be smaller than the width L of the TI
film, defined as the distance between the positions where the
gap function vanishes, �(z) = 0. Figure 3 shows the form of
�(z) along with its corresponding Schrödinger potential Uλ(z)
obtained from Eq. (6), for l/ξ = 1 and L/ξ = 4. The potential
Uλ(z) = U−λ(−z) is inherently symmetric around z = 0 upon
interchange of the two chiralities and thus gives rise to a chiral
state localized only in one of the quantum wells: λ = + for the
right QW and λ = − for the left one. Similarly to the single
Dirac QW with a gap function given by Eq. (11), we can
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solve this Hamiltonian analytically, and its energy spectrum
is obtained by solving numerically a secular equation (see
Appendix). Notice that this equation has always plane-wave
bulk solutions for energies above the bulk gap in addition to
the bound states of the two Dirac QWs. This means that the
hybridization of the surface states, which we find in exact cal-
culations, does not only involve direct tunneling between the
bound states of two Dirac QWs, but also tunneling processes
via the bulk states at energies above the gap.

In the following parts, we discuss the spectrum of the
double Dirac QW, by solving Eq. (5) then using Eq. (8) for
the appropriate gap function (19), in comparison with that of
a single one, the spectrum of which can be retrieved in the
limit L/l → ∞. From a tunneling point of view, the spectrum
of the surface states is expected to be close to that for a single
Dirac QW, the energies at k‖ = 0 we represent henceforth by
the superscript 0, E0

n (k‖ = 0), while the deviation in energy
is denoted by ±�En. Indeed, this deviation can be calculated
with the help of the virtual energies Ẽ2 in Eq. (5) as

�En = ∥∥Ẽ | − |E0
n (k‖ = 0)

∥∥, (20)

for each of the chiralities λ = ±. In the spectrum of the
surface states, this deviation has different consequences ac-
cording to whether we discuss the n = 0 state or the massive
n �= 0 VP states. Indeed, the most salient consequence is a gap
opening for the n = 0 states, which are no longer protected by
the Jackiw-Rebbi argument since the gap function now has the
same sign in both limits z → ±∞, and the energy shift �E0

in the double Dirac QW model manifests itself in terms of a
mass gap in the spectrum,

Eα,n=0(k‖) = α

√
�E2

0 + h̄2v2k2
‖ . (21)

In contrast to this situation, the massive VP states are “split”
in energy by ±�En,

Eα,n(k‖) = α

√(
E0

n (k‖ = 0) ± �En
)2 + h̄2v2k2

‖ , (22)

as a consequence of quantum tunneling between the two Dirac
QWs and the resulting hybridization of the QW states.

Two situations, a sharp and a smooth interface, respec-
tively, are discussed in the following sections. All the length
scales are written in units of the intrinsic length ξ = h̄v/�0.

A. Sharp interface: l � ξ

When l 
 ξ , only the chiral states with n = 0 are obtained
as localized solutions at two spatially separated interfaces.
They cannot hybridize directly due to their opposite chiralities
that give rise to a vanishing scalar product between their
respective spinorial wave functions. However, we obtain in
our exact calculations a mass-gap opening in the spectrum
since even the n = 0 QW states are no longer forced by the
Jackiw-Rebbi argument to remain at zero energy. Indeed, the
gap function changes its sign twice such that the gap has the
same sign on the far left-hand side of the double QW as well
as on the far right-hand side. A function of the form (10)
would thus no longer be normalizable. In the double QW
model [see Eq. (5)] this can be understood in perturbation
theory. Indeed, the wave functions χλ,n=0(z) are sensitive, via
their exponential tail to the modified well potential even if it

is situated at higher energies (above the virtual energy �2
0).

Within our exact calculations, we can obtain the deviation in
energy and thus the mass gap, in the limit l 
 ξ of a sharp
interface, by an expansion of the secular equation (A9) in
terms of l/ξ (see Appendix). This yields

�E0 = �0e− L
ξ

√
1 + 4l2

3ξ 2
. (23)

The exponential decay with increasing thickness L in our
formula agrees with previous theoretical results on thin films
of TIs with sharp surfaces [26–28,35]. When L > ξ , the gap in
the surface spectrum is an exponentially decreasing function
of the bulk gap parameter �0, exp(−L/ξ ) = exp(−L�0/h̄v),
such that one can say that the chiral states are protected by the
bulk gap. Furthermore, we obtain another algebraic correction
in (l/ξ )2 that stems from the smoothness of the interface. For
a Bi2Se3 thin film of four quintuple layers (QLs), Neupane
et al. have measured an energy gap of the surface Dirac cone
0.05 eV for a sample of 4 QLs [29]. Remarkably, we find
a very close value of 2�E0 = 0.03 eV by our recipe even
though l equals at least the thickness of a QL (∼1 nm), which
is of the same order as the intrinsic length ξ . For Bi2Se3, ξ

is 1.5 nm taking 2�0 = 0.35 eV and v = 2.5 eV Å [3,36].
The discrepancy between our calculated value and the experi-
mentally measured one could be attributed to the particle-hole
symmetry-breaking term k2 which we do not include in our
model. Another possible origin of the slight mismatch be-
tween the values could be an asymmetry in the experimental
quantum wells where the interface thickness is not always
the same, i.e., l− �= l+ at ∓L/2 in our approach where l−
for the left and l+ for the right interface. We emphasize that
the main advantage of our formula is that one can estimate
the chiral state splitting with rather reliable precision with
simple analytical calculations. One can also use our formula
to deduce the characteristic length l from the energy splitting
of the surface Dirac cone. We estimate l ∼ 2 nm for Neupane
et al.’s sample.

B. Smooth interface: l > ξ

Let us now consider the more interesting situation of
smooth interfaces when l > ξ and massive VP states emerge
in addition to the chiral state. The magnitude of the energy
splitting depends on l/ξ , L/ξ , and the VP state index n for a
given set of Fermi velocity and bulk gap. In the following, we
first fix L/ξ = 20 and change l/ξ .

Figure 4(a) shows the results of our calculation, based on
Eq. (A9), for the variation of ω as a function of l/ξ for the
massive VP until n = 4. We define here ω, a reduced QW
energy

ω =
√

E2 − h̄2v2k2
‖

�2
0

∈ [0, 1], (24)

which is the energy at k‖ = 0 in units of half of the bulk
gap �0. For the given set of parameters, the gap opening of
the chiral state is 104 times smaller than the energy splitting
of the massive VP states, which is another manifestation of
topological protection (see discussion below). We first notice
in Fig. 4(a) that the massive VP states still follow to great
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(a)

(b)

FIG. 4. (a) Reduced energy ω as a function of smoothness l for
the massive VP states n = 1 to 4 by solving the secular equation (A9)
(solid lines). The l dependence of ω is well described by Eq. (25)
(crosses). Inset: zoom-in to show the splitting for the VP state n = 1.
(b) Reduced energy splitting �ω as a function of smoothness l
for the massive VP states n = 1 to 4. The distance between two
Dirac QWs is set to be L/ξ = 20. The continuous lines show the
splitting obtained from our secular equation (A9) of the double Dirac
QW problem, and the crosses indicate the values obtained from the
approximate formula (28) based on quantum tunneling between the
QWs. The dotted lines show results based on the same formula,
where we have used the exact energies for the VP states of a single
Dirac QW instead of the approximate ones given in Eq. (25).

accuracy the behavior

ω �
√

2n
ξ

l
(25)

expected from Eq. (17) for a linearized gap function in the
case of a single topological heterojunction [see crosses in
Fig. 4(a)]. As expected, the approximation becomes less ac-
curate at energies close to the bulk gap �0, where one notices
a deviation and, most prominently, a splitting of the energies.

Our results can be understood in the framework of the
asymmetric double quantum well for a given chirality, as
shown in Fig. 5, where two Dirac QWs of λ = ± with l/ξ = 3
are far away from each other. Thus, the tunneling effect is
negligible and two VP states, each of which is situated in one
of the QWs, respectively, are degenerate. Imagine now that we
bring two Dirac QWs together progressively and the tunneling
strength increases to lift the degeneracy of the VP states. Since
the tunneling effect between two states is strongest when they
have the same energy, the zero mode in one Dirac QW is
protected because its adjacent Dirac QW does not have a zero

(a)

(b)

FIG. 5. Profiles of two infinitely separated Dirac QWs for two
chiralities with l/ξ = 3: (a) for λ = + and (b) for λ = −. The dashed
lines, blue and red, indicate the energy level of chiral states and n = 1
VP states for λ = ±, respectively.

mode of the same chirality and other VP states are far from
the chiral state in energy. In other words, two zero modes with
n = 0 are present at each of the two interfaces, but they are
protected from tunneling-induced hybridization thanks to its
well-defined chirality.

In contrast to the n = 0 states, the massive VP states can
hybridize strongly because they have their partner of the same
energy and chirality in the adjacent QW. This is shown in
Fig. 4(b), where we represent the energy splitting of the n �= 0
VP states by solving the secular equation in our double Dirac
QW model (solid lines). In order to understand these results
in the light of tunneling events between the QWs, we can
heuristically derive a formula of the energy splitting due to
the tunneling between adjacent finite symmetric square QWs
[37]:

2�E = h̄2π2

4ml2

4e−K (L−2l )

2Kl
, (26)

where 2l is the width of a square QW, L the separation be-
tween the centers of the two square QWs, and K = √

2mV0/h̄
with the effective depth of the square QW, V0. As we did
above in the derivation of Eq. (16), we replace 2m by 1/v2

and V0 by (1 − ω2)�2
0 for the effective potential depth for a

surface state of reduced energy ω given by Eq. (24). Notice
that, in our Dirac QW approach, the energy splitting is that
of the virtual energies. In order to translate this splitting into
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one of the physical energies, one needs to take into account
an expansion of the virtual energies to linear order around
the VP energies ω, here. The wave vector that describes the
exponential suppression of the hybridization is given by

K = 1

ξ

√
1 − ω2. (27)

In the case of wide Dirac QWs or smooth interfaces, we can
use the linearized version for the energy of the VP states (25)
so that our heuristic formula reads as

�En = π2

4

�0√
2n

(ξ

l

)5/2 e−
√

1− 2nξ

l (L−2l )/ξ√
1 − 2nξ

l

(28)

for the VP states.
In Fig. 4(b), we compare the energy splitting of the VP

states obtained from the secular equation (solid lines) and by
the heuristic formula (28) (+ symbols). The heuristic formula
gives a good order of magnitude for the splitting, especially
for n = 1 and 2. Most saliently, the nonmonotonic behavior
of the splitting as a function of l is also captured by Eq. (28).
The reason is that the energy of the massive VP states de-
creases when l becomes larger [see Eq. (25)] as for a usual
quantum well when the well width increases. However, larger
values of l shorten the effective separation between two QWs,
Leff = L − 2l . These two effects compete with one another
and give rise to a minimal value of the energy splitting when
we bring the two QWs together. However, Eq. (26) is only
valid for the bound states at the bottom of the square QW. So,
our heuristic formula is also only valid for the VP states with
small n [see n = 1, 2, 3 in Fig. 4(b)] and large l/ξ . Otherwise,
even the approximation (25) is no longer valid. But, using
the exact energies does not improve much the results [see
dotted lines in Fig. 4(b)]. In the case of small values of both
n and l/ξ , the results by the heuristic formula are exceedingly
wrong because the virtual energy level is close to the virtual
energy edge �2

0 of the Dirac QW, i.e., the VP states just
emerge from the bulk gap. For the same reason, higher VP
states can have a monotonic behavior with increasing l [see
n = 4 in Fig. 4(b)]. Another possible origin of the quantitative
discrepancy between our results obtained from the secular
equation (A9) and those given by Eq. (28) stems from the
form of the wave functions inside each quantum well. While
our model shows that these wave functions are given by the
harmonic-oscillator functions (a Gaussian combined with a
Hermite polynomial), Eq. (28) has been obtained for a square
well potential in which case the wave functions inside are sine
and cosine functions.

Compared to the problem of one Dirac QW, the critical
values of ln in the double Dirac QW, above which the nth
massive VP states appear in the gap, are almost the same as
those of the single Dirac QW. For example, for L/ξ = 20, the
critical value of ln/ξ for n = 2 is around 3.6 while ln/ξ = 3.7
in the case of single Dirac QW. This means that the smooth-
ness of the surface is a local property of the surface. However,
due to the splitting, the first appearance of a massive VP state
requires a slightly smaller value of l for the double Dirac QW
than for the single Dirac QW. This can lead to a situation
where the lower-energy state of the nth VP states exists in
the gap but the higher one does not.

FIG. 6. Reduced energy ω as a function of the distance between
two Dirac QWs, L, for the massive VP states n = 1 and 2. The results
are obtained by solving the secular equation (A9). Inset: the reduced
energy splitting �ω decays exponentially with increasing L, only
shown for the massive VP states n = 1 and 2. The continuous lines
indicate the splitting from the secular equation, while the crosses
represent the results based on Eq. (28). The dotted lines show results
based on the same formula, where we have used the exact energies
for the VP states of a single Dirac QW instead of the approximate
ones given in Eq. (25).

Let us now fix l = 6ξ varying L/ξ to study how the split-
ting of VP states depends on the thickness L. Notice that the
splitting of the n = 0 states is again negligible here. Figure 6
shows the variation of ω changing L/ξ for VP states n = 1
and 2. As in the conventional double square QW, the energy
splitting due to the tunneling effect is exponentially weak
when we increase the distance between two QWs. This is
shown in the inset of Fig. 6, where we compare our results
from the secular equation (A9) (continuous lines) with that
obtained from Eq. (28) (crosses). One notices that the latter
approximate formula provides the correct order of magnitude
of the splitting, but overestimates it for n = 1. Some reasons
for it have already been invoked above: first, the linear-gap-
function approximation provides energies that are less reliable
when we approach the bulk-gap edge; and second, the heuris-
tic formula (28) has been obtained for a square quantum well,
while the potential used in our calculations is parabolic (see
Fig. 5). It is likely the latter that is at the origin of the quan-
titative discrepancy. Indeed, we have compared our results to
an approximate equation for the splitting, where we have used
in Eq. (28) the energies Ẽ0

λ of the single Dirac QW instead
of the approximate energies given by Eq. (25). The results
for the splitting obtained under this assumption are shown
in the inset of Fig. 6 in the form of the dotted lines. While
this approximation better fits with the slope of the splittings
obtained from the secular equation (A9), it continues to sys-
tematically overestimate the quantitative value of the energy
splitting.

We finish this section with a short discussion of the chiral
n = 0 states. As mentioned in Sec. III A, the energy shift
yields a mass gap of the chiral states given by the energy
2�E0 = 2ω�0, the logarithm of which is plotted as the
blue lines in Fig. 7, based on the solution of the secular
equation (A9) for the double Dirac QW problem. From the
slope of the curves, we can infer that the mass gap scales
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FIG. 7. Top: log10 ω vs l for the n = 0 chiral state and L/ξ =
20. Bottom: log10 ω vs L for the n = 0 chiral state and l/ξ = 6. The
results from the secular equation (A9) are represented by blue lines,
those using Eq. (30) by orange lines, and those using Eq. (32) by
green line.

approximately as

E0 ∼ e−(L−l )/ξ , (29)

i.e., the effective width of the potential barrier is now L0
eff =

L − l instead of Leff = L − 2l , as for the massive VP states.
In order to corroborate the different underlying physical prop-
erties of the n = 0 state as compared to the VP states, let us
consider first of all, erroneously as we show below, a similar
tunneling formula as Eq. (26), in which case we would obtain

�E0 = π

2
�0

(ξ

l

)3/2

e−(L−2l )/2ξ (30)

for the chiral state, upon the same substitutions as for the
massive VP states. Notice that, in contrast to the tunneling
formula for the massive VP states, there is no linearization
of the virtual energies involved here because the originally
chiral surface states with n = 0 are situated at zero energy.
The splitting in energy is therefore obtained directly by taking
the square root of the virtual energies in our Dirac QW model.
This is reflected by the factor 1

2 in the exponent of Eq. (30)
as compared to the analogous expression (28). That Eq. (30)

is now based on shaky grounds should be clear from the fact
that the n = 0 state has no partner of the same chirality in
the “other” QW, but one would need to invoke a coupling in
the form of a perturbative term that relates the two chiralities
λ. This provides a stronger protection of the n = 0 states, a
topological protection, than that of the massive VP states.
Indeed, we have plotted the splitting expected on the basis
of Eq. (30) with the orange lines. One immediately notices
that a tunneling-induced splitting mechanism overestimates
the correct mass gap by several orders of magnitude in the
full range of values L/ξ and l/ξ that we have investigated.

However, we can get a better agreement in perturbation
theory. The leading order of perturbation to open a gap is
given by the process that the chiral state is weakly affected by
the deviation of the potential Uλ(z) from �2

0 in the exponential
tail. To illustrate this point, let us consider the chirality λ = +,
in which the n = 0 state is located in the left QW, in terms
of a wave function (12) but now centered around z = −L/2
[see Fig. 5(a)]. This wave function represents the exact zero-
energy state when the QW potential is constant when z >

−L/2 + l so that U+(z > −L/2 + l ) = �2
0, i.e., when there

is no second QW. The other QW at z = L/2 therefore gives
rise to a deviation

�U+(z) = �2
0

[(
ξ

l
− 1

)
+

(
2z − L

2l

)2]
, (31)

and the deviation in energy of the zero mode can be calculated
as

�E2
0 =

∫ ∞

−∞
dz χ0∗

+ (z)�U+(z)χ0
+(z). (32)

In terms of �ω2, the formula reads as

�ω2 = A2 ξ 3

2l2
e− 2L−l

ξ

[
sinh

(2l

ξ

)
− 2l

ξ
e− 2l

ξ

]
, (33)

where A is the normalization factor of the wave function χ0
+:

A−2 =
√

π lξ erf

(√
l

ξ

)
+ ξ e− l

ξ , (34)

where erf (x) is the error function. When l/ξ � 1, we have

�E0 = �0

2π1/4

(ξ

l

)5/4

e− Leff
ξ , (35)

where Leff is now L − 1.5l . We easily remark that this formula
captures the exponential decay of E0 as a function of L/ξ . On
the other hand, the formula (35), though limited at the first
order of perturbation, gives a rather good approximation to
the result by the secular equation (A9) especially when l/ξ
is not too large (green line in Fig. 7). The reason for the
discrepancy is that higher-order contributions in perturbation
theory are non-negligible when Leff becomes smaller. In a
tunneling point of view, since the energy spacing between the
n = 1 VP states and the chiral state is a decreasing function
of l/ξ [see Eq. (25)], the hybridization between them is thus
stronger with increasing l/ξ .

Notice that we have discussed, here, only hybridization
between states of the same index n. This is indeed the most in-
teresting situation in symmetric QWs, where the left and right
interfaces have the same width such that the surface states
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associated with the two different interfaces have the same
energy. In this resonant situation, hybridization is strongest,
while in the case of different interface widths the degener-
acy of the VP states is trivially lifted. As one can see from
Eq. (17), another resonant situation may arise between VP
states of different index (n− for the left and n+ for the right
interface) for well-chosen ratios l−/l+ � n−/n+ between the
width parameters of the left and right interfaces, respectively.
However, a detailed discussion of this situation is beyond the
scope of this paper.

IV. CONCLUSIONS

In this paper, we have investigated the surface states of a
thin TI sandwiched between two trivial insulators as a func-
tion of interface smoothness and the width of the TI slab. This
situation is conveniently described in terms of two decoupled
Schrödinger equations, one for each chirality, of a 1D quan-
tum particle in a double QW. As we have shown along the
lines of Ref. [14], the QW structure, which we call Dirac
QW here, arises when one squares the Hamiltonian describing
a Dirac particle that changes its mass gap from positive to
negative values in a topological heterojunction. If the sign
change is smooth in the interface, over a characteristic length
l that is larger than the intrinsic length ξ = h̄v/�0 in terms of
the bulk parameters v (velocity) and �0 (half of the bulk gap),
one finds massive VP states (n �= 0) in addition to the usual
chiral one (n = 0) [8,9,14]. Our main interest resides in the
fate of these states once we consider both interfaces, i.e., two
coupled topological heterojunctions that give rise, upon squar-
ing of the Hamiltonian, to a double Dirac QW problem with
an asymmetric well potential that respects Uλ(z) = U−λ(−z)
upon interchange of the chiralities λ. The massive VP states
behave extremely differently as compared to the topological
chiral states. Indeed, each massive VP state in one of the wells
has a partner of the same chirality λ in the other one. Since we
have considered a symmetric situation, where both interfaces
have the same smoothness l , these partners have the same
energy and are separated by an energy barrier of an effective
width Leff = L − 2l . The energy splitting of these VP states,
which is obtained by solving the secular equation for the dou-
ble Dirac QW, can to a great extent be understood as induced
by quantum tunneling between these states in the two quantum
wells, with an exponential behavior �E ∼ exp[−(L − 2l )/ξ ].
Possible quantitative discrepancies have been identified as due
to the form of the QW potentials.

Notice that, apart from transport measurements in
HgTe/CdHgTe heterostructures [13], there are no direct spec-
troscopic observations of massive VP states at the surfaces or
interfaces of topological materials. Additional surface states
have, however, been found in Bi2Se3 [4] and Bi2Te3 [5] when
the materials are exposed to an oxidizing atmosphere that
renders the surfaces effectively smooth, and the orders of
magnitude indicate that an interpretation in terms of VP states
is reasonable. A clear-cut experimental verification of our
theoretical findings would require heterostructures between
trivial and topological insulators, in which the chemical com-
position, e.g. in a growth process by molecular beam epitaxy,
varies smoothly over a certain distance in the nm range.

The fate of the chiral states is strikingly different from that
of the massive VP states. While they are no longer constrained
at zero energy, since the Jackiw-Rebbi argument no longer
applies here, the induced mass gap in these states is not due to
quantum tunneling since the n = 0 in one QW does not have
a partner of the same chirality λ in the other QW. Quantum-
tunneling induced mass gaps or splittings would therefore
require a coupling between the different chiral sectors. A
similar formula for quantum tunneling, as that for n �= 0
massive VP states, overestimates the mass gap of the n = 0
states by several orders of magnitude. The heuristic formula
(30) cannot describe this behavior of n = 0 chiral states as
well as Eq. (28) does for massive VP states. Furthermore,
we find that the mass gap scales as �E0 ∼ exp[−(L − l )/ξ ],
i.e., with an effective barrier width of L0

eff = L − l rather
than L − 2l . Although the formula (35) by first-order per-
turbation theory gives a not too bad estimation for �E0, its
effective barrier width is Leff = L − 1.5l instead of L − l .
The necessity of a coupling between the different chiral sec-
tors for a substantial mass-gap opening of the n = 0 states
in the Dirac QW model is a complementary understand-
ing of the usually invoked topological protection of these
states.
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APPENDIX: DERIVE AND SOLVE THE SECULAR
EQUATION FOR DOUBLE DIRAC QUANTUM WELL

We solve Eq. (5) for �(z) described by Eq. (19). If z <

−L/2 − l or z > L/2 + l or z ∈ [− L
2 + l, L

2 − l], the equation
reads as

∂2
z χλ − K2χλ = 0, (A1)

where K2 = (1 − ω2)/ξ 2. The solutions are a linear combina-
tion of exp (Kz) and exp (−Kz). If z ∈ [− L

2 − l,− L
2 + l], we

carry out a change of variable z + L/2 = αtL and α2 = lξ/2.
The equation then reads as

∂2
tL χλ − (

1
4 + aL,λ

)
χλ = 0, (A2)

where

aL,λ = −λ

2
− l

2ξ
ω2. (A3)

Equation (A2) is the standard form of the Weber differential
equation whose solution is parabolic cylinder function. By
concern for symmetry of the wave function, we represent
the solution in terms of confluent hypergeometric function
M(a; b; z). The even and odd solutions read as

uS (aL,λ; tL ) = e− t2
L
4 M

(
1

2
aL,λ + 1

4
;

1

2
;

t2
L

2

)
,

uA(aL,λ; tL ) = tLe− t2
L
4 M

(
1

2
aL,λ + 3

4
;

3

2
;

t2
L

2

)
, (A4)
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where S and A mean symmetric and antisymmetric, respec-
tively. If z ∈ [ L

2 − l, L
2 + l], we can solve the differential

equation and represent the solutions in the similar way. After
a change of variable z − L/2 = αtR,

∂2
tRχλ − (

1
4 + aR,λ

)
χλ = 0, (A5)

where

aR,λ = λ

2
− l

2ξ
ω2. (A6)

Similarly, the solutions for Eq. (A5) are

uS (aR,λ; tR) = e− t2
R
4 M

(
1

2
aR,λ + 1

4
;

1

2
;

t2
R

2

)
,

uA(aR,λ; tR) = tRe− t2
R
4 M

(
1

2
aR,λ + 3

4
;

3

2
;

t2
R

2

)
. (A7)

Using the fact that the wave function is vanishing at infinity
and it is continuous as well as its derivative, we can match the
solution in different regions at their common point along the z
direction. For simplicity, we note

uS/A,L/R,λ = uS/A

(
aL/R,λ;

√
2l

ξ

)
, vS/A,L/R,λ = ∂

∂tL/R
uS/A(aL/R,λ; tL/R)

∣∣∣∣
tL/R=

√
2l
ξ

. (A8)

Since λ = ± are equivalent when we consider double Dirac QW, we will omit λ in the following discussion. The final secular
equation reads as(√

l (1 − ω2)

ξ
uS,L + vS,L

)(√
l (1 − ω2)

ξ
uA,L + vA,L

)(√
l (1 − ω2)

ξ
uS,R + vS,R

)(√
l (1 − ω2)

ξ
uA,R + vA,R

)

= e−2
√

1−ω2

ξ
(L−2l )

(
l (1 − ω2)

ξ
uS,RuA,R − vS,RvA,R

)(
l (1 − ω2)

ξ
uS,LuA,L − vS,LvA,L

)
. (A9)

Let us first try several particular solutions to check the
validity of our model. Suppose now ω = 0 where we know it
is impossible for finite L and nonzero l . Equation (A9) would
become

l

2ξ
e− 2(L−2l )

ξ (. . . )(. . . ) = 0 (A10)

which cannot be true except when the surface is sharp (l 
 ξ )
and the distance between two QWs (L � l, ξ ). In fact, when
l → 0, there are only three domains along the z direction:
z < −L/2, z ∈] − L/2, L/2[, and z > L/2. So we have only
two continuity relations for four coefficients, which means

two degenerate solutions for ω = 0. Another interesting value
for ω is ω = 1. We can verify that ω = 1 is always a solution
of Eq. (A9) for any parameters. So, we also retrieve automat-

ically the bulk spectrum E = ±
√

h̄2v2k2
‖ + �2

0 in our model.

Next, let us consider the situation when l 
 ξ and derive a
formula to evaluate the mass gap of the chiral mode. To do so,
we can develop Eq. (A9) in terms l/ξ and suppose in the first
approximation that ω is at most of same order of

√
l/ξ . After

some algebra, we have

2�E = 2�0e− L
ξ

√
1 + 4l2

3ξ 2
. (A11)
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