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We present a nonchiral version of the intermediate long-wave (ILW) equation that can model nonlinear waves
propagating on two opposite edges of a quantum Hall system, taking into account interedge interactions. We
obtain exact soliton solutions governed by the hyperbolic Calogero-Moser-Sutherland (CMS) model, and we
give a Lax pair, a Hirota form, and conservation laws for this new equation. We also present a periodic nonchiral
ILW equation, together with its soliton solutions governed by the elliptic CMS model.
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I. INTRODUCTION

One important feature of the fractional quantum Hall ef-
fect (FQHE) is the strikingly high accuracy by which the
Hall conductance σH is measured in units of the inverse von
Klitzing constant, e2/h [1]. Therefore, satisfactory explana-
tions of these FQHE measurements, σHh/e2 = 1

3 , 2
5 , 3

7 , . . .,
must be based on exact analytic arguments, and theories
of the FQHE have close connections to integrable systems.
Two important classes of integrable systems which are seem-
ingly very different but which are both connected with the
FQHE are (i) Calogero-Moser-Sutherland (CMS) [2] models
describing FQHE edge states [3–9], and (ii) soliton equa-
tions of Benjamin-Ono (BO) type describing the dynamics
of nonlinear waves propagating along FQHE edges [10–12]
(background on the soliton equations appearing in this paper
can be found in Sec. VI B). These systems are related by
a fundamental correspondence between CMS systems and
BO-type soliton equations, which provides the basis for a
mathematically precise derivation of hydrodynamic descrip-
tions of CMS systems [13–16]. It is worth noting that this
subject has recently received considerable attention in the
context of nonequilibrium physics [17–20].

While the CMS-BO correspondence has been successfully
used to understand FQHE physics, it is incomplete. Indeed,
CMS systems come in four types: (I) rational, (II) trigono-
metric, (III) hyperbolic, and (IV) elliptic [21,22], and while
the soliton equations related to the rational and trigonometric
cases are well understood since a long time [14–16], soliton
equations related to the hyperbolic and elliptic cases were
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only recently identified as the intermediate long-wave (ILW)
equation and the periodic ILW equation, respectively [23–25].
However, as we will show in this paper, the latter two soliton
equations are not unique: There are other equations which
are more interesting in that they are of a different kind and
describe new physics.

The correspondence between CMS and BO systems exists
both at the classical [15,16] and at the quantum [10,14] level,
and we consider both. As will be explained, we discovered the
quantum elliptic version of the soliton equation presented in
this paper from a second quantization of the quantum elliptic
CMS model [26,27]. However, the exact results on the solu-
tion of this equation presented in this paper are restricted to
the classical case for simplicity. We first give and prove our
results in the hyperbolic case; the generalization to the elliptic
case is surprisingly easy, as will be shown later on.

Plan

In Sec. II A, we give a heuristic argument motivating a
generalization of the BO equation that describes coupled
nonlinear waves propagating in opposite directions, and we
present this so-called nonchiral ILW equation in Sec. II B. Our
quantum results can be found in Sec. III: First, the relation
between the quantum elliptic CMS model and a quantum ver-
sion of the nonchiral ILW equation is presented (Sec. III A);
second, a detailed motivation of our proposal that the quan-
tum nonchiral ILW equation can describe nonlinear waves
propagating on two opposite edges of a FQHE system bound-
ary and taking into account interactions between different
edges is given, including a review of the relevant background
(Sec. III B). Results that prove that the classical nonchiral
ILW equations are exactly solvable can be found in Secs. IV
(hyperbolic case) and V (elliptic case). In Sec. VI, we shortly
recall the application of the BO and ILW equations to nonlin-
ear water waves, and we present a simple physical argument
suggesting that the nonchiral ILW equation is also relevant
in that context. We conclude with final remarks in Sec. VII.
Appendix A provides mathematical details, and Appendix B
shortly explains numerical computations we performed to test
our exact analytic solutions.
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FIG. 1. Schematic picture of a narrow FQHE system with two
edges carrying the two nonlinear waves u(x, t ) and v(x, t ).

II. CLASSICAL PHYSICS DESCRIPTION

As explained in Sec. III, we discovered the quantum ver-
sion of the nonchiral ILW in the context of the FQHE.
However, for simplicity, we first present in this section a
simpler heuristic argument on the classical level which leads
to the classical version of this equation. As elaborated in
Sec. VI in one example, this heuristic argument can be
straightforwardly adapted to other situations, suggesting that
the nonchiral ILW will also find other applications in physics.

A. Heuristic motivation

The CMS models can be defined by Newton’s equations

z̈ j = −
N∑

k �= j

4V ′(z j − zk ) ( j = 1, . . . , N ), (1)

where the two-body interaction potential is V (r) = r−2 in
the rational case and V (r) = (π/L)2 sin−2(πr/L), L > 0, in
the trigonometric case [21] (the arguments in this paragraph
apply to both cases) [28]. Equation (1) describes an arbi-
trary number N of interacting particles with positions z j ≡
z j (t ) at time t . While one often restricts to real positions
when interpreting the CMS model as a dynamical system,
one has to allow for complex z j when studying the rela-
tion to the BO equation [15,16]; this generalization preserves
the integrability [29]. The CMS model is invariant under
the parity transformation P : z j → −z j for all j. However,
the corresponding BO equation is not parity invariant: It is
given by ut + 2uux + Huxx = 0, where u ≡ u(x, t ) and H is
the Hilbert transform [in the rational case, (H f )(x) = (1/π )
× –

∫
R (x′ − x)−1 f (x′)dx′, where –

∫
R denotes the usual Cauchy

principle value integral], and under the parity transformation
P : u(x, t ) → u(−x, t ) ≡ v(x, t ), it changes to vt − 2vvx −
Hvxx = 0. This mismatch of symmetry is paradoxical at first
sight, but the paradox is resolved by interpreting u as a wave
propagating on one edge of a FQHE system and noting that, in
general, there is another edge far away carrying another wave
v. Thus, actually, the rational CMS model corresponds to two
uncoupled BO equations for u and v. This system of equa-
tions is invariant under a parity transformation interchanging u
and v,

P : [u(x, t ), v(x, t )] → [v(−x, t ), u(−x, t )]. (2)

It is peculiar that these two BO equations are uncoupled,
and it is for this reason that one can reduce the system to a
single equation, ignoring the other. While this uncoupling is
reasonable if the two edges are infinitely far apart, it is natural
to ask what would happen if the two edges are parallel and
close together; see Fig. 1. In this case, one would expect that
the nonlinear waves propagating on the two edges interact.

We now give a simple heuristic argument to suggest that the
hyperbolic CMS model can describe this situation.

The hyperbolic CMS model can be defined by Newton’s
equations (1) with the interaction potential

V (r) =
∑
n∈Z

1

(r + 2iδn)2
=

(
π

2δ

)2

sinh−2

(
π

2δ
r

)
, (3)

where δ > 0 is an arbitrary length parameter. Dividing the par-
ticle positions z j into two groups and shifting the ones in the
second group by the imaginary half period, wk ≡ zk−N1 + iδ
for k = 1, . . . , N2 ≡ N − N1, with 1 < N1 < N , we can write
these Newton’s equations as

z̈ j = −
N1∑

j′ �= j

4V ′(z j − z j′ ) −
N2∑

k=1

4Ṽ ′(z j − wk ),

ẅk = −
N2∑

k′ �=k

4V ′(wk − wk′ ) −
N1∑
j=1

4Ṽ ′(wk − z j ) (4)

for j = 1, . . . , N1 and k = 1, . . . , N2, with

Ṽ (r) ≡ V (r − iδ) = −
(

π

2δ

)2

cosh−2

(
π

2δ
r

)
. (5)

This can be interpreted as a model of two kinds of particles,
z j and wk , in which particles of the same kind interact via the
singular repulsive two-body potential V , whereas particles of
different kinds interact via the weakly attractive nonsingular
potential Ṽ . We interpret δ as a parameter of the same order
of magnitude as the distance Ly between the two edges of the
FQHE system; see Fig. 1. In the rational limit δ → ∞, we
have Ṽ → 0, so particles of different types do not interact and
the two corresponding soliton equations for u and v decouple;
for finite δ, the system is coupled.

B. Nonchiral ILW equation

In the hyperbolic case, the two-component generalization
of the BO equation we present in this paper is given by

ut + 2uux + Tuxx + T̃ vxx = 0,

vt − 2vvx − T vxx − T̃ uxx = 0 (6)

for u = u(x, t ) and v = v(x, t ), with

(T f )(x) ≡ 1

2δ
–
∫
R

coth

(
π

2δ
(x′ − x)

)
f (x′)dx′,

(T̃ f )(x) ≡ 1

2δ

∫
R

tanh

(
π

2δ
(x′ − x)

)
f (x′)dx′. (7)

The standard ILW equation is ut + 2uux + Tuxx = 0 [30–32];
it reduces to the BO equation in the limit δ → ∞. Thus, if
one drops the T̃ terms, (6) corresponds to a system of uncou-
pled ILW equations generalizing the system of uncoupled BO
equations discussed above. However, due to the presence of
the T̃ terms, the nonlinear waves u and v interact. For this
reason, and since equation (6) is invariant under the parity
transformation (2), we call it the nonchiral ILW equation;
another motivation for this name is its relation to a nonchiral
conformal field theory explained in Sec. III A.
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For later reference, we also give the nonchiral version of
the periodic ILW equation [33]: It is defined by (6) but with
the integral operators

(T f )(x) = 1

π
–
∫ L/2

−L/2
ζ1(x′ − x) f (x′)dx′,

(T̃ f )(x) = 1

π

∫ L/2

−L/2
ζ1(x′ − x + iδ) f (x′)dx′, (8)

where

ζ1(z) = π

L
lim

M→∞

M∑
n=−M

cot

(
π

L
(z − 2inδ)

)
(9)

is equal to the Weierstrass elliptic ζ function with periods
(L, 2iδ), up to a term proportional to z [34]. To see that the
operators in (8) are natural periodic generalizations of the ones
in (7), we recall that

π

2δ
coth

(
π

2δ
z

)
= lim

M→∞

M∑
n=−M

1

z − 2iδn
. (10)

III. QUANTUM PHYSICS DESCRIPTION

It is known that the edge excitations in a FQHE system
can be described by a conformal field theory (CFT) of chi-
ral bosons [35] and that this CFT accommodates a quantum
version of the BO equation [10,14] which, at the same time,
provides a second quantization of the trigonometric CMS
system [3–9]. This CFT is a nonlinear, exactly solvable sys-
tem that can describe universal features of FQHE physics; in
particular, as proposed by Wiegmann [12], this description
implies that the dynamics of FQHE edge states is essentially
nonlinear, and it features fractionally charged solitons with
charges determined by the filling level ν.

In this section, we explain how these results generalize to
the elliptic case and how this led us to the nonchiral ILW equa-
tion (Sec. III A). We also substantiate our proposal that the
(quantum version of the) nonchiral ILW equation can describe
the interaction of nonlinear waves on two edges in a FQHE
system, taking into account interedge effects (Sec. III B). This
section can be skipped without loss of continuity.

A. CFT and nonchiral ILW equation

The (quantum) elliptic CMS system is defined by the
Hamiltonian

HN (x) = −1

2

N∑
j=1

∂2

∂x2
+

∑
1� j<k�N

g (g − 1)℘1(x j − xk ) (11)

where

℘1(x) =
∑
n∈Z

(
π
L

)2

sin2
(

π
L (x − 2inδ)

) (12)

equals the Weierstrass elliptic ℘ function with periods
(L, 2iδ), up to an additive constant [34] (we use units such that
2m = h̄ = 1). The parameter g > 0 is the coupling constant,
and (g − 1) is to be interpreted as (g − h̄), i.e., g(g − 1) → g2

in the classical limit. Thus, for g = 2, the Hamiltonian in (11)

defines the quantum analog of the classical model defined by
Newton’s equations in (1) for V (x) = ℘1(x). It is important to
note that g is an essential parameter in the quantum case, dif-
ferent from the classical case where we can set g = 2 without
loss of generality [28].

The CFT corresponding to the elliptic CMS system
can be defined by two chiral boson operators ρ0(x) (right
movers) and σ0(x) (left movers) labeled by a coordinate x ∈
[−L/2, L/2] on the circle with circumference L > 0 and sat-
isfying the commutator relations

[ρ0(x), ρ0(x′)] = −2π iν∂xδ(x − x′),

[σ0(x), σ0(x′)] = 2π iν∂xδ(x − x′), (13)

and [ρ0(x), σ0(x′)] = 0, with ν the filling factor of the FQHE
system [35]; the latter can be identified with the inverse of the
coupling parameter in the corresponding CMS Hamiltonian:
ν = 1/g [26,27]. For simplicity, we restrict our discussion to
FQHE states where g = 3, 5, . . ., even though the mathemat-
ical results discussed here hold true for arbitrary (rational)
g > 0 [36]; we use the subscript 0 to distinguish these bare
fields from dressed boson fields ρ(x) and σ (x) obtained from
them by a Bogoliubov transformation, as described below.

The linear dynamics of these fields is given by the Hamilto-
nian (in this section and only here, we write

∫
short for

∫ L/2
−L/2,

to simplify notation)

H2 = g

4π

∫
dx :

(
ρ0(x)2 + σ0(x)2

+
∫

dx′
[
U2(x − x′)[ρ0(x)ρ0(x′) + σ0(x)σ0(x′)]

−U1(x − x′)ρ0(x)σ0(x′)
])

: (14)

with colons indicating normal ordering and

Uj (x) =
∞∑

n=1

4q jn

1 − q2n
cos(2πnx/L) ( j = 1, 2) (15)

interaction potentials determined by the parameter

q = e−2πδ/L (δ > 0). (16)

The operator H2 is a special case of a Luttinger Hamiltonian
which, as is well known, can be diagonalized by a Bogoli-
ubov transformation [37]. This case is special in that the
Bogoliubov transformed Hamiltonian has the same form as
for q = 0, except that the bare field operators are replaced by
Bogoliubov transformed ones [27]:

H2 = g

4π

∫
dx : (ρ2 + σ 2) : . (17)

This is a consequence of the special form of the interactions
in (15), and it corresponds to the fact that the Bogoliubov
transformed fields ρ and σ provide two commuting represen-
tations of the Virasoro algebra by the Sugawara construction,
as in the special case q = 0 where this is obvious; this is a
manifestation of the fact that we are dealing with a nonchiral
CFT (see, e.g., Refs. [38,39] for background on CFT). How-
ever, for nonzero q, the bare vacuum |0〉 is not a highest weight
state for the dressed fields ρ and σ , and this has important
consequences.
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The CFT described above accommodates the following
two kinds of vertex operators,

φ(x) = :e−ig
∫ x

ρ(x′ )dx′
:,

φ̃(x) = :eig
∫ x

σ (x′ )dx′
:. (18)

Moreover, using the boson operators above, one can construct
a self-adjoint operator H3, providing a second quantization of
the elliptic CMS model in the following sense: This operator
satisfies the relations

[H3, φ(x1) · · · φ(xN )]|0〉 = HN (x)φ(x1) · · · φ(xN )|0〉, (19)

for arbitrary particle number N [26,27].
We recently observed that it is possible to generalize H3

so that one has relations similar to the ones in (19) also for
the vertex operators φ̃ [40]. This generalized operator can be
written as

H3 =
∫

:

[
g2

12π
(ρ3 + σ 3) + g(g − 1)

8π

× (ρT ρx + σT σx + ρT̃ σx + σ T̃ ρx )

]
: dx (20)

with the integral operators T, T̃ in (8)–(9). Thus, the operator
H3 defines the following quantum version of the periodic
nonchiral ILW equation,

ût + 2 : ûûx : + 1
2 (g − 1)[T ûxx + T̃ v̂xx] = 0,

v̂t − 2 : v̂v̂x : − 1
2 (g − 1)[T v̂xx + T̃ ûxx] = 0. (21)

To see this, we compute the Heisenberg equations of motion
At = i[H3, A] for A = ρ, σ and rescale, ρ → û ≡ gρ/2 and
σ → v̂ ≡ gσ/2, to obtain (21). Moreover, by taking the clas-
sical limit where the boson operators (û, v̂) become functions
(u, v) and (g − 1) is replaced by g, and specializing to g= 2,
(21) reduces to (6).

It is interesting to note that the operator in (20) satisfies the
following generalization of (19), allowing for both kinds of
vertex operators, φ and φ̃, at the same time:

[H3, φ(x1) · · · φ(xN1 )φ̃(x̃1) · · · φ̃(x̃N2 )]|0〉
= HN1,N2 (x, x̃)φ(x1) · · · φ̃(x̃N2 )|0〉, (22)

where

HN1,N2 (x, x̃) = HN1 (x) + HN2 (x̃)

+
N1∑
j=1

N2∑
k=1

g (g − 1)℘1(x j − x̃k + iδ), (23)

for arbitrary particle numbers N1, N2. This is a generalization
of the elliptic CMS Hamiltonian (11) describing two types
of particles, where particles of the same type interact with
the singular two-body potential ℘1(x), and particles of dif-
ferent types interact with the nonsingular attractive potential
℘1(x + iδ). It can be obtained from a standard elliptic CMS
Hamiltonian (11) by dividing the particles into two groups and
shifting the positions in one group by iδ, similarly as in the
classical case discussed in Sec. II A; see (4) ff. This argument
proves that the Hamiltonian HN1,N2 defines a quantum inte-
grable model. However, the physically relevant eigenfunctions

of HN1,N2 can not be obtained from the ones of the correspond-
ing standard elliptic CMS Hamiltonian by this shift trick. This
suggests that the generalized model can describe new physics
which would be interesting to explore, but this is beyond the
scope of the present paper.

We finally mention that, to generate the full Hilbert space
of the CFT, one needs to consider two further kinds of vertex
operators representing hole excitations, and there is a gener-
alization of the result in (23) allowing for arbitrary numbers,
N1, M1, N2, M2, of all four types of vertex operators and with
an interesting corresponding Hamiltonian HN1,M1,N2,M2 [40], in
generalization of a known result in the trigonometric case [9].
Thus, H3 is actually the second quantization of these operators
HN1,M1,N2,M2 generalizing the elliptic CMS Hamiltonian.

B. Nonchiral CFT and FQHE

We motivate and explain our proposal that the nonchiral
ILW equation can describe the interactions of nonlinear waves
propagating on the two boundaries of a narrow FQHE system,
in generalization of previous proposals for FQHE systems
where the boundaries are well separated and interboundary
interactions can be ignored [12]. To prepare for this, we review
known facts about the FQHE, bosonization, and quantum
hydrodynamics.

1. Projection to lowest Landau level

We recall the quantum mechanical description of a charged
particle confined to the xy plane in the presence of a constant
magnetic orthogonal to the plane (Landau problem): Assum-
ing periodic boundary conditions in the x direction: −L/2 �
x � L/2 with L = Lx > 0, and y ∈ R, the exact eigenfunc-
tions in the lowest Landau level (LLL) have the form

ψk (x, y) = eikxe−(y−k)2/2, (24)

using the Landau gauge and units where the magnetic length
is set to 1, with k (short for kx) an arbitrary integer multiple of
2π/L. In such a state, the particle has the behavior of a plane
wave in the x direction but is well localized in the y direction,
and the quantum number k therefore has a twofold physical
interpretation: It can be interpreted as momentum in the x
direction and, at the same time, it corresponds to the location
of the wave packet in the y direction. As is well known, the
wave functions in the LLL are all degenerate: The energy is k
independent.

We now consider the situation where, in addition to the
magnetic field, we also have a potential, Vconf (y), confining
the charged particle to a region −Ly/2 � y � Ly/2 for some
Ly > 0; this potential is zero at positions y farther away than
some distance �b > 0 from the boundary: Vconf (y) = 0 for
|y ∓ Ly/2| > �b, and it grows smoothly to very large values
in the boundary regions |y ∓ Ly/2| < �b. In this situation, the
degeneracy of the eigenfunctions in the LLL is lifted, and
the energy E0(k) of the particle as a function of k is quali-
tatively similar to the function Vconf (y) with y identified with
k; see Fig. 2. Thus, to describe noninteracting such particles
projected to the LLL, one can use the quantum many-body
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FIG. 2. Schematic picture of the lowest Landau level E0(k) in
the presence of a potential confining the charged particles to a region
−Ly/2 < y < Ly/2, as illustrated in Fig. 1. The gray lines indicate
higher Landau levels that we ignore.

Hamiltonian

HLLL =
∑

k

(E0(k) − μ)ψ̂†(k)ψ̂ (k) (25)

with fermion field operators ψ̂ (†)(k) obeying canonical an-
ticommutator relations, {ψ̂ (k), ψ̂†(k′)} = δk,k′ etc. (μ is the
chemical potential). By symmetry, we can assume E0(−k) =
E0(k).

Thus, even though we consider a two-dimensional system,
it is modelled by a one-dimensional Hamiltonian that can
be treated by the bosonization method pioneered by Hal-
dane [41]. This bosonized description is useful since it allows
us to find interactions that can be added to the Hamiltonian
without spoiling integrability; as discussed in the introduction,
such interactions are particularly interesting in the context of
FQHE physics.

2. Bosonization

We recall some pertinent facts about bosonization [41,42].
Consider the free fermion model defined by the Hamilto-
nian (25). Its ground state is the Dirac sea where all states
−kF < k < kF are filled and all others are empty, with the
Fermi momentum kF > 0 determined by E0(kF ) = 0. It is
convenient to decompose the (inverse) Fourier transform of
the fermion field, ψ (x) = ∑

k (2π/L)ψ̂ (k)eikx, as follows,

ψ (x) = ψ+(x)eikF x + ψ−(x)e−ikF x (26)

with fermion field operators ψ±(x) representing the low-
energy excitations in the vicinity of the Fermi surface points
±kF . As explained in Sec. III B 1, these Fermi surface points
can be identified with the two boundaries, y = ±Ly/2, of a
FQHE system, as illustrated in Fig. 1.

The fermion fields on the RHS in (26) can be represented
by vertex operators,

ψ±(x) = :e∓i
∫ x

ρ±(x′ )dx′
:, (27)

where ρ±(x) are operators satisfying the commutator relations
of chiral bosons,

[ρ±(x), ρ±(x′)] = ∓2π i∂xδ(x − x′) (28)

and [ρ+(x), ρ−(x′)] = 0. These boson operators can be iden-
tified with the corresponding fermion densities,

ρ±(x) = 2π :ψ†
±(x)ψ±(x) : . (29)

We note in passing that the boson fields ρ+(x) and ρ−(x) are
equal, up to a factor

√
g and zero mode details [9], to the bare

boson fields ρ0(x) and σ0(x), respectively; see Sec. III A.
By Taylor expanding the dispersion relation in the vicinity

of the Fermi surface points:

E0(∓kF + k) = ±vF k + k2

2m∗ + · · · (30)

with the Fermi velocity vF = E ′
0(kF ) and the effective mass

m∗ = 1/E ′′
0 (kF ), one can expand

HLLL = vF
(
H(0)

2,+ + H(0)
2,−

) + 1

m∗
(
H(0)

3,+ + H(0)
3,−

) + · · · (31)

with

H(0)
2,± = 1

4π

∫
:ρ±(x)2 : dx,

H(0)
3,± = 1

12π

∫
:ρ±(x)3 : dx (32)

etc. This provides a basis for the quantum hydrodynamic
description of such systems proposed by Abanov and Wieg-
mann [10].

3. Chiral Luttinger liquids and FQHE

We recall Wen’s chiral Luttinger liquid description of
FQHE systems [35]. The leading term in (31),

H(0)
2 = vF

(
H(0)

2,+ + H(0)
2,−

)
, (33)

provides a good starting point to describe FQHE systems,
but the low-energy excitations are not fermions but rather
collective excitations that can be described by vertex operators

φ±(x) =: e∓i
√

g
∫ x

ρ±(x′ )dx′
: (34)

with g = 3, 5, . . . at filling level ν = 1/g; the fermion case
g = 1 corresponds to the integer Hall effect and, for g > 1,
the vertex operators (34) describe composite fermions. If the
two boundaries are far apart, it is natural to assume that the
low-energy excitations at distinct boundaries do not interact,
and one can restrict the discussion to one boundary or, equiv-
alently, to one chiral sector, + or −. This is Wen’s chiral
Luttinger liquid model [35].

4. Boundary waves in FQHE systems

The dynamics of the boson fields provided by the Hamilto-
nian H(0)

2 via the Heisenberg equations of motion is

∂tρ± ± vF ∂xρ± = 0. (35)

These linear equations describe waves propagating at the two
boundaries of a FQHE system [12]: At each boundary, the
wave packets move in one direction, right (+) or left (−),
with constant speed vF and without changing shape.

The Hamiltonian H(0)
2 is highly degenerate, and it is natural

to ask if one can lift this degeneracy by adding interactions
that fulfill the following requirements: (i) They do not spoil
integrability, (ii) they provide nonlinear corrections to the
linear wave equations (35), (iii) they are compatible with
the vertex operators (34) describing composite fermions [12].
An interesting Hamiltonian obtained by adding such terms to
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H(0)
3,± (32) is [10]

H3,± =
∫

:

( √
g

12π
ρ±(x)3 + g − 1

8π
ρ±H (ρ±)x

)
: dx (36)

with the Hilbert transform H [obtained from T in (8) by
taking the limit δ → ∞]: The dynamics for the boson fields
provided by this Hamiltonian is a quantum version of the
BO equation which is integrable [10], and this Hamiltonian
is compatible with the composite fermion operators in that
it also provides a second quantization of trigonometric CMS
model [3–9]; using the latter and the known eigenfunctions
of the trigonometric CMS system, one can construct the exact
eigenstates of H3,± [9].

5. Proposal

We now are ready to motivate and explain our proposal that
the nonchiral ILW equation can describe waves propagating
on parallel boundaries of FQHE systems. We recall that, in
generic applications of bosonization, the most important in-
teractions to be added to the Hamiltonian H(0)

2 are quadratic
in the boson operator, and thus, generically, one obtains a
Luttinger Hamiltonian as in (14), for some potentials, U2(x)
and U1(x) [41]; these potentials describe interactions between
the same (U2) and opposite (U1) chiral degrees of freedom.
Moreover, one often assumes that these interactions are local
since this guarantees that the resulting model is conformally
invariant. In the context of the FQHE, such Luttinger inter-
actions are usually ignored by the following arguments: (i)
The two chiral degrees of freedom describe excitations at
two separated boundaries of the system, and U2(x) therefore
describes interedge interactions which are negligible if the
boundaries are sufficiently far apart; (ii) a local interaction
U1(x) within the same boundary only renormalizes the Fermi
velocity and thus can be taken into account by redefining vF .
However, since the one-particle eigenfunctions of the Landau
Hamiltonian are spatially extended, and Coulomb interac-
tions in a FQHE system are long range, there is no reason
to exclude nonlocal interactions which preserve conformal
symmetry. Moreover, it is known that transport coefficients
in Luttinger liquid are universal even if the interactions mix
the chiral degrees of freedom and are nonlocal [43], i.e., the
accurate quantization of the Hall conductance observed in real
FQHE systems is compatible with generic Luttinger model
interactions; see Ref. [44] for a recent construction of the
pertinent general Luttinger model for general vertex operators
as in (34).

As discussed in Sec. III A, the Luttinger Hamiltonian (14)
with the fine-tuned interactions in (15) is conformally in-
variant, for arbitrary fixed δ > 0, and there are natural
corresponding generalizations of the composite fermion op-
erators and the operator in (36) satisfying the requirements
stated in Sec. III B 4: They are given in (18) and (20), re-
spectively. Our proposal to model a FQHE system at filling
1/g, g = 3, 5, . . ., and with the geometry illustrated in Fig. 1
is therefore as follows: The boson field operators ρ0 and
σ0, satisfying the commutator relations in (13), describe
low-energy excitations located at the upper and lower edge,
respectively, of the FQHE system boundary; the low-energy
description of the system is by the HamiltonianH2 in (14)–(15),

with the parameters vF and δ determined by system details
like the edge distance Ly and the confining potential Vconf (y);
the linear- and nonlinear dynamics of the boundary waves is
described by the operators in (14) and (20), respectively; the
vertex operators in (18) describe quasiparticle excitations in
the system.

6. Interedge effects in FQHE systems

We argue that the model proposed in Sec. III B 5 can de-
scribe interedge effects in narrow FQHE system. Our model
predicts that the quasiparticles of the system are the Bo-
goliubov transformed boson fields, ρ and σ , diagonalizing
H2 in (14); see (17). Thus, the linear dynamics is given by
the same equations as for δ = ∞, i.e., ρt − vF ρx = 0 and
σt + vF σx = 0. However, since ρ [45] is a superposition of
the fields ρ0 and σ0 localized at two distinct boundaries,
a right-moving wave excited at the upper edge will always
develop into a pair of well-defined corresponding excitations
at both edges moving in parallel. Thus, our proposal can
be tested already in experiments on real FQHE systems that
can only resolve linear boundary waves: Our model predicts
corresponding excitations, u0(x − vFt ) and v0(x − vFt ) pro-
portional to the expectation values of ρ0(x, t ) and σ0(x, t ),
respectively, where u0(x) and v0(x) are determined by a single
function, u(x), and the inverse of the Bogoliubov transfor-
mation described in Sec. III A [u(x) is proportional to the
expectation value of ρ(x, t = 0)]. Furthermore, our model
predicts nonlinear waves described by the quantum nonchiral
ILW equation (21), in generalization of the Wiegmann pro-
posal quoted in the beginning of this section [12]. It would
be interesting to elaborate these predictions in detail and to
propose specific experiments on real FQHE systems to test
them. Clearly, this is a research project in its own. Our results
in Secs. IV and V are a first step, giving an indication of the
new physics that the nonchiral ILW equation can describe.

To elaborate predictions of our model, it would be interest-
ing to construct the exact eigenstates of the Hamiltonian H3

in (20), in generalization of known results for δ = ∞ [9]. This
is challenging. One reason is that, while the exact eigenstates
of the trigonometric CMS model have been known for a long
time, the ones of the relevant elliptic CMS-type systems are
the subject of ongoing research [46].

IV. RESULTS: HYPERBOLIC CASE

A. Multisoliton solutions

The following fundamental result shows that (6) admits
multisoliton solutions whose dynamics is described by the
hyperbolic CMS model, thus generalizing a famous result
for the rational case [47]: For arbitrary integers N � 1 and
complex parameters a j with imaginary parts in the range
δ/2 < Ima j < 3δ/2 for j = 1, . . . , N, the following is an
exact solution of the nonchiral ILW equation (6):(

u(x, t )
v(x, t )

)
= i

N∑
j=1

(
α(x − z j (t ) − iδ/2)

−α(x − z j (t ) + iδ/2)

)
+ c.c., (37)

where α(x) = (π/2δ) coth(πx/2δ) and the poles z j (t ) are
determined by Newton’s equations (1) with V (r) given by (3)
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FIG. 3. Time evolution of a two-soliton solution of the nonchiral ILW equation (6) with a u-channel dominated soliton (big blue and small
red humps) colliding with a v-channel dominated soliton (big red and small blue humps), as explained in the main text. The plots show u(x, t )
(blue line) and v(x, t ) (red line) at successive times t = (n − 1)t0, n = 1, . . . , 5; the parameters are δ = π, a1 = −4 + 1.2iδ, a2 = 3 + 0.85iδ,
and t0 = 2.25.

and with initial conditions z j (0) = a j and

ż j (0) = 2i
N∑

j′ �= j

α(a j − a j′ ) − 2i
N∑

k=1

α(a j − ak + iδ) (38)

(the bar denotes complex conjugation, c.c.). Thus, to obtain
an exact solution of (6), one chooses complex parameters
a j satisfying δ/2 < Ima j < 3δ/2; next, the time evolution
of z j (t ) is obtained by solving the hyperbolic CMS model
with initial conditions determined by the a j ; finally, the so-
lution of (6) is obtained from (37). Using the exact analytic
solution of the hyperbolic CMS model obtained by the pro-
jection method [21], the numerical effort to compute such a
multisoliton solution at an arbitrary time t is reduced to diago-
nalizing an explicitly known N×N matrix. As elaborated on in
Appendix B, we tested this result by comparing with a nu-
meric solution of (6).

B. Examples

The one-soliton solution of (6) is given by(
u(x, t )
v(x, t )

)
= i

(
α(x − z(t ) − iδ/2)

−α(x − z(t ) + iδ/2)

)
+ c.c., (39)

where the poles evolve linearly in time, with initial conditions
determined by a complex parameter a such that δ/2 < Ima �
3δ/2,

z(t ) = a + ż(0)t, ż(0) = 2iα(a − a + iδ). (40)

It is important to note that ż(0) is real, and therefore, Imz(t ) =
Ima independent of t . Thus, the functions u(x, t ) and v(x, t )
both describe humps whose shapes do not change with time.
These humps are centered at the same point and move with
constant velocity, Rez(t ) = Rea + ż(0)t , and their heights,
max u > 0 and max v > 0, are determined by Ima. For Ima
close to 3δ/2, max u � max v, and the solitons move to the
right, ż(0) > 0. As Ima decreases, max u and ż(0) decrease
while max v increases until, at Ima = δ, max u = max v and
ż(0) = 0. Thus, if Ima lies in the range δ < Ima < 3δ/2,
then the 1-soliton is mainly in the u-channel and moves to
the right; it is therefore similar to the one-soliton solution of
the standard ILW equation ut + 2uux + Tuxx = 0. Similarly,
when δ/2 < Ima < δ, the one-soliton is mainly in the v chan-
nel and moves to the left, similar to a one-soliton solution of
the P-transformed ILW equation vt − 2vvx − T vxx = 0.

For parameters a j such that Re (a j − ak ) � δ for all j �= k,
the multisoliton solution of (6) is well approximated by a sum
of N one-solitons of the form (39) where ż j (t ) ≈ 2iα(a j −
a j + iδ) is time independent for times such that Re (z j (t ) −
zk (t )) � δ; see Fig. 3 for a two-soliton solution, with the cor-
responding motion of poles in Fig. 4(a). However, when two
solitons meet, they interact in a nontrivial way, and after the
interaction they re-emerge with the same shape but with phase
shifts; see Fig. 4(b). Such nontrivial interactions between
solitons can also be modeled by the system of decoupled
ILW equations obtained from (6) by dropping the T̃ terms.
A qualitatively new effect stemming from the T̃ terms is that
u-channel dominated solitons (u solitons) interact nontrivially
with v solitons, as clearly seen in our example in Figs. 3 and 4.
It is interesting to note that the poles corresponding to the u
and v solitons interchange their imaginary parts and directions
during the collision and thus, in this sense, exchange their
identities: While the first pole corresponds to the u soliton
and the second to the v soliton before the collision, it is the
other way around after the collision; see Figs. 4(a) and 4(b).
We note that such an identity change of poles during soliton
collisions is known for the BO equation [48], but only for
solitons moving in one direction.

C. Derivation of multisoliton solutions

We explain the key difference between the derivation of
solitons for (6) and the corresponding derivation in the ratio-
nal case [47]; further details can be found in Appendix A 1.

(b)

FIG. 4. (a) Time evolution of the poles z j (t ), j = 1, 2, in the
complex plane corresponding to the two-soliton solution in Fig. 3.
The times t = (n − 1)t0, n = 1, . . . , 5, defined in the caption of
Fig. 3 are indicated by circles; the arrows mark circles corresponding
to n = 1. The dotted lines indicate the evolution of poles without
interactions. (b) Time evolution of the center-of-mass locations of
the solitons given by Rez j (t ).
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The Hilbert transform H satisfies H2 = −I , and this prop-
erty is crucial for the existence of eigenfunctions of H
needed in the derivation of the CMS-related soliton solutions
of the BO equation ut + 2uux + Huxx = 0 [47]. However,
while the trigonometric generalization of H also has this
property, the hyperbolic generalization of H is the operator
T in (7), and T 2 �= −I . This is the reason why the soliton
solution of the BO equation straightforwardly generalizes to
the trigonometric case [47], but the naive generalization to
the hyperbolic case fails. However, the nonchiral ILW equa-
tion (6) can be written in vector form as

ut + (u.u)x + T uxx = 0,

u ≡
(u
v

)
, u.u ≡

(
u2

−v2

)
, T ≡

(
T T̃

−T̃ −T

)
, (41)

where the matrix operator T satisfies T 2 = −I . Moreover,
(α(x + z ± iδ/2),−α(x + z ∓ iδ/2))t are eigenfunctions of
T with eigenvalues ±i. The latter are the eigenfunctions
needed to be able to use the method developed for the ratio-
nal case [47]: Using well-known identities for the function
α(x) [49], as well as a Bäcklund transformation for the hyper-
bolic CMS model [50], it is straightforward to adapt a known
derivation of multisoliton solutions of the BO equation [47] to
the hyperbolic case.

D. Integrability

We found a Lax pair, a Hirota bilinear form, a Bäcklund
transformation, and an infinite number of conservation laws
for (6). Thus, the nonchiral ILW equation is a soliton equation
that is integrable in the same strong sense as the standard ILW
equation [31]. Below we present some of these results that can
be checked by straightforward computations.

The Lax pair we found is as follows: Let ψ (z; t, k) be an an-
alytic function on the union of the strips 0 < Im z < δ and δ <

Im z < 2δ and extended to C by 2iδ periodicity, ψ±
0 (x; t, k)

and ψ±
δ (x; t, k) the boundary values of this function on R

and R + iδ, respectively, and μ1, μ2, ν1, and ν2 arbitrary
functions of the spectral parameter k. Then the compatibility
of the following linear equations yields (6):

(i∂x − u − μ1)ψ−
0 = ν1ψ

+
0 , (i∂x + v − μ1)ψ+

δ,x = ν2ψ
−
δ ,(

i∂t − 2μ1i∂x − ∂2
x + Tux + T̃ vx ± iux + μ2

)
ψ±

0 = 0,(
i∂t − 2μ1i∂x − ∂2

x + T vx + T̃ ux ± ivx + μ2
)
ψ±

δ = 0.

Inspired by known results for the BO equation [16], we
obtained the following Hirota bilinear form of (6),(

iDt − D2
x

)
F− · G+ = (

iDt − D2
x

)
F+ · G− = 0 (42)

with u = i∂x log(F−/G+) and v = −i∂x log(F+/G−), where
F±(x, t ) ≡ F (x ± iδ/2, t ) and similarly for G, using standard
Hirota derivatives [51].

The first three of the conservation laws we found are

I1 =
∫
R

(u + v)dx, I2 = 1

2

∫
R

(u2 − v2)dx,

I3 =
∫
R

[
u3

3
+ uTux

2
+ uT̃ vx

2
+ (u ↔ v)

]
dx (43)

with (u ↔ v) short for the same three terms but with u and
v interchanged. Bäcklund transformations, other conservation
laws, and detailed derivations are given elsewhere [36].

V. RESULTS: ELLIPTIC CASE

To generalize (6) to the periodic setting, we use the Weier-
strass functions ℘(z) and ζ (z) with periods (2ω1, 2ω2) ≡
(L, 2iδ) [34], L > 0, and the related functions ζ j (z) ≡ ζ (z) −
η j z/ω j, η j ≡ ζ (ω j ), j = 1, 2. The function ζ1(z) is L pe-
riodic, ζ1(z + L) = ζ1(z), whereas the function ζ2(z) is 2iδ
periodic, ζ2(z + 2iδ) = ζ2(z); recall that ζ (z) is neither L nor
2iδ periodic. We note that ℘1(x) in (12) equals −ζ ′

1(x) =
℘(x) + η1/ω1.

The periodic nonchiral ILW equation is given by (6) with
the integral operators T, T̃ in (8)–(9). With that, T in (41)
still satisfies T 2 = −I , and the derivation of the multisoli-
ton equation outlined above generalizes straightforwardly to
the elliptic case provided α(z) in (A9) is chosen as the 2iδ-
periodic variant of ζ (z): The functions u(x, t ) and v(x, t ) given
in (37), with α(x) = ζ2(z), satisfy the periodic nonchiral ILW
equation provided that z j (t ) satisfy Newton’s equations (1)
with the elliptic CMS model potential V (r) = ℘(r), and with
initial conditions z j (0) = a j and ż j (0) in (38), for arbi-
trary complex a j satisfying δ/2 < Ima < 3δ/2 and −L/2 �
Rea j < L/2, j = 1, . . . , N. It is important to note that the
multisoliton solution is L periodic even though ζ2(z) is not.
The interested reader can find further details in Appendix A 2.

VI. OTHER APPLICATIONS

We present arguments suggesting that the nonchiral ILW
equation introduced in this paper will find other applications
in physics beyond the application to the FQHE described
earlier (Sec. VI A). As a specific example, we discuss a pos-
sible application in the context of nonlinear water waves and
thereby provide a complementary physical interpretation of
our mathematical results (Sec. VI B).

A. The wide applicability of soliton equations

Nonlinear evolution equations are typically more difficult
to solve than linear ones, and theoretical physics tools are of-
ten not equally powerful when nonlinear effects are important.
Soliton equations are an important exception: These nonlinear
equations are integrable, and it is therefore possible to develop
analytic [52] and numeric [53] methods to solve them reliably.
Thus, phenomena described by soliton equations can be very
well understood despite the crucial importance of nonlinear
effects. The class of such phenomena is remarkably large,
with many examples from different areas in physics such as
hydrodynamics, nonlinear optics, plasma physics, dislocation
theory of crystals, etc. A well-known explanation of this wide
applicability of soliton equations is by Calogero [54]: Cer-
tain “universal” nonlinear PDEs [55] can be obtained, by
a limiting procedure involving rescalings and an asymptotic
expansion, from very large classes of nonlinear evolution
equations [...]. Because this limiting procedure is the correct
one to evince nonlinear effects, the universal model equations
obtained in this manner [...] are widely applicable. Because
this limiting procedure generally preserves integrability, these
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universal model equations are likely to be integrable [...]. This
suggests that the nonchiral ILW (6) will find other applications
in physics.

B. Nonlinear water waves

Consider the following class of soliton equations describ-
ing, e.g., nonlinear water waves in different situations:

ut + 2uux + Duxx = 0, (44)

where D is one of the linear operators specified below and
u = u(x, t ), where x is a coordinate on one-dimensional space
and t time. This class includes the famous Korteweg-de Vries
(KdV) equation [56], the BO equation [57–59], the ILW
equation interpolating between the KdV and the BO equa-
tions [30], and periodic variants of these three equations [33]
depending on a further parameter, L > 0, corresponding to the
spatial period: u(x + L, t ) = u(x, t ).

While the nonlinear term, 2uux, is the same in all cases,
the dispersive term, Duxx, is different: It amounts to multi-
plication of u by functions i�(k) in Fourier space: Duxx =
i�(−i∂x )u, with the following dispersion relations in the dif-
ferent cases [60],

�(k) =
⎧⎨⎩

k3δ/3 (KdV)
k2sgn(k) (BO)
k2 coth(kδ) (ILW)

, (45)

where the wave number k is restricted to integer multiples of
2π/L in the periodic cases (it is real otherwise), and δ > 0
is a constant. Note that, in position space, the operator D
is represented by a differential operator in the KdV case,
D f = δ∂x f /3, whereas in the BO- and ILW cases it is given
by an integral operator denoted as H (Hilbert transform) and
T , respectively; see (A3).

It is important to note that, in general, one should add a
term cux to the LHS in (44), with c some velocity parameter, to
make manifest that (44) is a generalization of the chiral wave
equation ut + cux = 0; however, since this term is trivial in
that it can be removed by a transformation u → u − c/2, we
ignore it in our discussion.

The soliton equations in (44)–(45) provide effective de-
scriptions of nonlinear water waves taking into account the
most important nonlinear and dissipative terms [30]. It is
important to note that, when deriving these equations from
fundamental hydrodynamic laws, parity invariance is broken
and, for this reason, the equations in (44)–(45) are chi-
ral: They can only describe solitons moving to the right.
Obviously, one can obtain a corresponding equation describ-
ing solitons moving to the left by a parity transformation:
v(x, t ) ≡ u(−x, t ) satisfies vt − 2vvx − Dvxx = 0. Thus, the
chiral equation in (44)–(45) actually corresponds to a system
of two equations for u and v describing solitons moving in
both directions.

Clearly, this description is simplistic with regard to the
following: Solitary waves in nature moving in opposite di-
rections interact when they meet, but such interactions are
ignored by this uncoupled system for u and v. This suggests
to try to find integrable generalizations of these equations of

the form

ut + 2uux + Duxx + X (v, u) = 0,

vt − 2vvx − Dvxx − X (u, v) = 0 (46)

with coupling terms, X (v, u) and X (u, v), such that the sys-
tem (46) is invariant under the parity transformation in (2).
We believe that neither the KdV equation nor the BO equation
allow for such a coupling; however, the ILW equation does: It
is given by the dispersive term I (v, u) = D̃vxx = i�̃(−i∂x )v
(independent of u) with

�̃(k) = k2

sinh(kδ)
; (47)

indeed, using (A3), one sees that (46) in this case is equivalent
to the nonchiral ILW equation (6) ff.

One can check that (6) does not have a well-defined limit
δ → 0 and that T̃ uxx → 0 in the limit δ → ∞: The KdV limit
of the nonchiral ILW equation does not exist, and its BO
limit is trivial. Thus, to describe nonchiral physics, one has to
work in the regime 0 < δ < ∞. This suggests that it would be
interesting to revisit the derivation of the KdV equation from
more fundamental parity invariant equations and to see if this
can be generalized so as to obtain the nonchiral ILW equation.

VII. FINAL REMARKS

We presented the novel soliton equation (6). We call it the
nonchiral ILW equation because it is parity invariant and can
describe interacting solitons moving in both directions. We
obtained exact multisoliton solutions determined by poles sat-
isfying the equations of motion of the hyperbolic CMS model,
and we gave a Lax pair, a Hirota form, and conservation laws.
We also presented a periodic nonchiral ILW equation and its
soliton solutions determined by the elliptic CMS model.

We proposed that the nonchiral ILW equation can model
coupled nonlinear waves in FQHE systems, and we gave
background information to make this proposal precise. How-
ever, as we argued, our results are of wider interest: Many
soliton equations containing only first-order derivatives in
time are chiral, i.e., they can only describe solitons moving
in one direction, left or right, and thus are not parity invari-
ant. Examples include the KdV equation, the BO equation
and, more generally, the ILW equation. However, the funda-
mental equations in hydrodynamics from which these soliton
equations are derived are parity invariant. This mismatch of
symmetries is not fully satisfactory. Using the nonchiral ILW
equation instead of the standard ILW equation reconciles sym-
metries, and we therefore believe that, in various applications
in physics, the former can be a better approximation to funda-
mental equations than the latter.

We hope that our results open up a route to generalize re-
cent results on a generalized hydrodynamic description of the
Toda chain [19,20] to the elliptic CMS model. This would be
interesting since, in the elliptic CMS model, one can change
the qualitative character of the interaction from long range in
the trigonometric case, to short range in the hyperbolic case,
to nearest neighbor in the Toda limit.
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APPENDIX A: DERIVATION OF SOLITON SOLUTIONS

We give details on the derivation of the N-soliton solutions
presented in the main text, both in the hyperbolic and elliptic
cases.

1. Hyperbolic case

We construct solutions of (41) with T, T̃ defined in (7) by
generalizing a known method for the BO equation [15,47].

a. Integral operators in Fourier space

We compute the Fourier space representation of the matrix
operator T in (41). We start by transforming the operators
T, T̃ in (7) to Fourier space, using the following exact integral,∫

R

π

2δ
coth

(
π

2δ
(x ∓ ia)

)
e−ikxdx = −π i

e±(ak−kδ)

sinh(kδ)
(A1)

for real parameters a, k such that 0 < a < 2δ and k �= 0
(a derivation of this result can be found at the end of this
section). This implies

–
∫
R

1

2δ
coth

(
π

2δ
x

)
e−ikxdx = −i coth(kδ),∫

R

1

2δ
tanh

(
π

2δ
x

)
e−ikxdx = −i

1

sinh(kδ)
(A2)

for real k �= 0. Indeed, the first of these identities is equivalent
to the average of the two integrals in (A1) in the limit a ↓ 0,
and the second is obtained from (A1) in the special case a =
δ. Observe that the integrals in (7) are convolutions. Using
the following conventions for Fourier transformation, û(k) =∫
R u(x)e−ikxdx, the operators defined in (7) can therefore be

expressed in Fourier space as follows,

(̂Tu)(k) = i coth(kδ)û(k),

(̂T̃ u)(k) = i
1

sinh(kδ)
û(k). (A3)

Thus, for the matrix operator T defined in (41), T̂ u(k) =
T̂ (k)û(k) with

T̂ (k) = i

(
coth(kδ) 1/ sinh(kδ)

− 1/ sinh(kδ) − coth(kδ)

)
(A4)

and û(k) = (û(k), v̂(k))t for u(x) = (u(x), v(x))t . Using this,
it is easy to check that T̂ (k)2 = −I , which is equivalent to
T 2 = −I .

Derivation of (A1). Suppose 0 < a < 2δ and define the
function h(x) by

h(x) = π

2δ
coth

(
π

2δ
(x − ia)

)
.

Even though h(x) does not decay as x → ±∞, the Fourier
transform ĥ of h is well defined as a tempered distribution.
Indeed, the derivative

h′(x) = −
(

π

2δ sinh
(

π (x−ia)
2δ

))2

has exponential decay as x → ±∞ and has a double pole at
x = ia + 2iδn for each integer n. Its Fourier transform (̂h′) can
be computed by a residue computation. The Fourier transform
ĥ can then be obtained for k �= 0 by ĥ(k) = (̂h′)(k)/(ik). A
similar computation applies if −2δ < a < 0, and we arrive
at (A1).

b. Eigenfunctions

Since T 2 = −I , the eigenvalues of T are ±i. We now
construct the corresponding eigenfunctions.

By straightforward computations we obtain the following
eigenvectors of the matrix T̂ (k) in (A4),

ĝ(k)

(
e±kδ/2

−e∓kδ/2

)
, (A5)

with corresponding eigenvalues ±i, for an arbitrary function
ĝ(k) of k. To get eigenfunctions of T with appropriate an-
alyticity properties, we restrict ourselves to functions ĝ(k)
such that ĝ(k)ekα has a well-defined inverse Fourier transform
g(x − iα) in a strip −A < α < A with A > δ/2. For such
functions, ∫

R

dk

2π
ĝ(k)e±kδ/2eikx = g(x ∓ iδ/2), (A6)

and the eigenfunctions of the operator T are therefore as
follows: For arbitrary complex valued functions g(z) of z ∈ C
analytic in a strip −A < Im (z) < A with A > δ/2, the vector
valued functions

v±(x) ≡
(

g(x ∓ iδ/2)
−g(x ± iδ/2)

)
(A7)

satisfy

T v±(x) = ±iv±(x). (A8)

c. Pole ansatz

Inspired by the CMS-related soliton solutions known for
the BO equation [15,47], we make the following ansatz to
solve (41),

u(x, t ) = i
N∑

j=1

(
α(x − z j (t ) − iδ/2)

−α(x − z j (t ) + iδ/2)

)

− i
M∑

j=1

(
α(x − w j (t ) + iδ/2)

−α(x − w j (t ) − iδ/2)

)
, (A9)

where α(x) = (π/2δ) coth(πx/2δ), N, M are arbitrary inte-
gers � 0, and with poles z j (t ) and w j (t ) to be determined.

155308-10



NONCHIRAL INTERMEDIATE LONG-WAVE EQUATION … PHYSICAL REVIEW B 102, 155308 (2020)

We note that, to obtain real-valued solutions, one must restrict
this ansatz to (37), i.e., M = N and w j (t ) = z j (t ) for all j, but
we find it convenient to derive a more general result. In the
following, we sometimes write z j as shorthand for z j (t ), etc.

The function α(z) is meromorphic with poles at z =
2iδn, n integer. Thus, if we restrict the imaginary parts of z j

and w j as follows,

Im(z j ± iδ/2) �= 2δn, Im(w j ± iδ/2) �= 2δn (A10)

for all integers n, then the result in (A7)–(A8) implies

T uxx = −
N∑

j=1

(
α′′(x − z j − iδ/2)

−α′′(x − z j + iδ/2)

)

−
M∑

j=1

(
α′′(x − w j + iδ/2)

−α′′(x − w j − iδ/2)

)
(A11)

with α′(z) ≡ ∂zα(z) etc. We now use α(−z) = −α(z) and the
well-known identities [49]

α′(z) = −V (z), ∂z[α(z)2] = V ′(z),

α(z + 2iδ) = α(z), ∂z[α(z − a)α(z − b)]

= ∂z[α(z − a) − α(z − b)]α(a − b), (A12)

with V in (3), and for arbitrary z, a, b ∈ C. Using this we
compute

ut + (u.u)x + T uxx =
N∑

j=1

(
V (x − z j − iδ/2)

−V (x − z j + iδ/2)

)

×
(

iż j + 2
N∑

k �= j

α(z j − zk ) − 2
M∑

k=1

α(z j − wk + iδ)

)

+
M∑

j=1

(
V (x − w j + iδ/2)

−V (x − w j − iδ/2)

)

×
(

−iẇ j + 2
M∑

k �= j

α(w j − wk )− 2
N∑

k=1

α(w j − zk + iδ)

)

(the computations leading to this result are nearly the same as
in the BO case [15] and thus omitted). This implies the fol-
lowing result: The function in (A9) satisfies the nonchiral ILW
equation in (41) provided the following system of equations is
satisfied,

ż j = 2i
N∑

k �= j

α(z j − zk ) − 2i
M∑

k=1

α(z j − wk + iδ),

ẇ j = −2i
M∑

k �= j

α(w j − wk ) + 2i
N∑

k=1

α(w j − zk + iδ), (A13)

and the conditions in (A10) hold true.
The system in (A13) is known as a Bäcklund transfor-

mation for the hyperbolic CMS system [50]. It implies two

decoupled systems of Newton’s equations,

z̈ j = −
N∑

k �= j

4V ′(z j − zk ) ( j = 1, . . . , N ), (A14a)

ẅ j = −
M∑

k �= j

4V ′(w j − wk ) ( j = 1, . . . , M ) (A14b)

with V as in (3); see Ref. [61] for a recent alternative
derivation of this result. We thus obtain the following gener-
alization of the result stated in the main text: For arbitrary
non-negative integers N, M and complex parameters a j,

j = 1, . . . , N, and b j, j = 1, . . . , M, satisfying

Im (a j ± iδ/2) �= 2δn, Im (b j ± iδ/2) �= 2δn (A15)

for all integers n, the function u(x, t ) in (A9) is a solution
of the nonchiral ILW equation (41) provided the poles z j (t )
and w j (t ) satisfy Newton’s equations for the hyperbolic CMS
model in (A14) with initial conditions

z j (0) = a j, w j (0) = b j,

ż j (0) = 2i
N∑

k �= j

α(a j − ak ) − 2i
M∑

k=1

α(a j − bk + iδ),

ẇ j (0) = −2i
M∑

k �= j

α(b j − bk ) + 2i
N∑

k=1

α(b j − ak + iδ).

Restricting to M = N and bj = a j for all j, we obtain the
result stated in the main text (note that, in this special case,
the initial conditions imply w j (t ) = z j (t ) for all t).

A technical remark is in order. Strictly speaking, we proved
the result above only for times t where the conditions in (A10)
hold true. We did not point out this restriction before since
we believe that, if the conditions in (A10) and (A13) hold
true at time t = 0, then the solutions z j (t ) and w j (t ) of (A14)
satisfy the conditions in (A10) for all t > 0. We checked this
in several special cases by integrating (A14) numerically. We
expect that this can be proved in general using the known
explicit solution of the hyperbolic CMS model obtained with
the projection method [21]; this is left for future work.

2. Elliptic case

We give details on how the derivation in Appendix A 1
generalizes to the L-periodic case.

a. Periodic nonchiral ILW equation

To see that (6) with T, T̃ in (8)–(9) is the correct L-periodic
generalization of the nonchiral ILW equation, one can check
that (A3) still holds true but with Fourier modes k restricted
to integer multiples of (2π/L), and for L-periodic functions
f (x) that have zero mean, f̂ (0) ≡ ∫ L/2

−L/2 f (x)dx = 0. Thus,

T 2 = −I , and the result in (A7)–(A8) holds true as it stands
provided the function f (z) is L periodic, has zero mean, and is
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analytic in a strip −A < Im (z) < A for A > δ/2. In particular,

T ∂2
x

(
ζ2(x − z ∓ iδ/2)

−ζ2(x − z ± iδ/2)

)
= ∓i

(
℘′(x − z ∓ iδ/2)

−℘′ (x − z ± iδ/2)

)
(A16)

using ζ ′′
2 (z) = −℘′(z). We can use this to construct soliton so-

lutions related to the elliptic CMS model defined by Newton’s
equations (1) with the potential

V (x) = ℘(x). (A17)

b. Pole ansatz

The discussion above suggests to use the pole ansatz
in (A9) with α(x) equal to ζ1(x). However, this choice does
not work since the third identity in (A12) is not satisfied. The
choice that works is

α(x) = ζ2(x) (A18)

since ζ2(z) is 2iδ periodic. However, ζ2(z) is not L periodic:
ζ2(z + L) = ζ2(z) + c for some nonzero constant c. Thus,
u(x + L, t ) = u(x, t ) + i(N − M )(c,−c)t , and, to get a L-
periodic function u(x, t ), we must restrict to M = N .

We use (A16) to obtain

T uxx =
N∑

j=1

(
V ′(x − z j − iδ/2)

−V ′(x − z j + iδ/2)

)

+
N∑

j=1

(
V ′(x − w j + iδ/2)

−V ′(x − w j − iδ/2)

)
(A19)

with V in (A17). We define f2(z) ≡ ∂z[ζ2(z)2 −℘(z)] and
observe that the generalizations of the second and fourth iden-
tities in (A12) are

∂zα(z)2 = V ′(z) + f2(z) (A20)

and

∂x[α(x − a)α(x − b)]

= ∂x[α(x − a) − α(x − b)]α(a − b)

+ 1
2 [ f2(x − a) + f2(x − b)], (A21)

respectively (the latter follows from the following well-known
functional equation satisfied by the Weierstrass functions [34],

[ζ (x) + ζ (y) + ζ (z)]2 = ℘(x) +℘(y) +℘(z)

provided x + y + z = 0). The first and third identities in (A12)
hold true as they stand.

While f2(z) = 0 in the hyperbolic case, it is a nontriv-
ial function in the elliptic case. However, going through the
computations described in Appendix A 1 c, one finds that
they generalize straightforwardly to the elliptic case provided

M = N (that (A13) for M = N implies (A14) even in the
elliptic case has been known for a long time [50]). One thus
obtains the same result as in the hyperbolic case but with the
restriction M = N .

APPENDIX B: NUMERICAL METHOD

We verified our soliton solutions numerically by adapting a
method developed for solving the standard ILW equation [62]
to the nonchiral ILW equation (6). The numerical method
applies to the periodic problem on the interval [−L/2, L/2];
for initial conditions and for times t such that u(x, t ) and
v(x, t ) are significantly different from zero only in an interval
[−�/2, �/2] with 0 < � � L, this is an excellent approxi-
mation for the nonperiodic problem on R. We thus checked
numerically various two- and three-soliton solutions both for
the periodic and nonperiodic problem, and we found excellent
agreement. For example, the two-soliton solution in Fig. 3
computed with our numerical method cannot be distinguished
with bare eyes from the one obtained with our analytic result.
We mention in passing that our numerical method is much
more stable for initial conditions which give rise to soliton
solutions than for generic initial conditions. In what follows,
we describe our numeric method in more detail.

We employ the discrete Fourier transform

u(x, t ) ≈
N−1∑

n=−N

ûn(t )eiknx, kn ≡ n
2π

L

ûn(t ) = 1

2N

N−1∑
j=−N

u(x j )e
−iknx j , x j ≡ j

L

2N
(B1)

and the Fourier multiplier representations (A3) of the singular
integral operators (7),

(̂Tu)n(t ) = i coth(knδ)ûn(t ),

(̂T̃ u)n(t ) = i
1

sinh(knδ)
ûn(t ), (B2)

to obtain a system of ordinary differential equations for the
time evolution of the Fourier coefficients via a semidiscrete
collocation approximation [62] [note that ûn(t )/L can be
identified with the Fourier transform û(kn, t )]. The numer-
ical approximation for the nonlinear terms is ̂(2uux )n(t ) =
ikn (̂u2)n(t ) with

(̂u2)n(t ) ≈
∑

m

ûn−m(t )ûm(t ) (−N � n � N − 1), (B3)

where the sum on the right-hand side is over the integers m in
the range −N � m � N − 1 such that −N � n − m�N − 1.
In our tests we used L = 200 and N = 512.
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