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Exciton oscillator strength in two-dimensional Dirac materials
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The exciton problem is solved in the two-dimensional Dirac model with allowance for strong electron-hole
attraction. The exciton binding energy is assumed smaller than but comparable to the band gap. The exciton wave
function is found in the momentum space as a superposition of all four two-particle states including electron
and hole states with both positive and negative energies. The matrix element of exciton generation is shown to
depend on the additional components of the exciton wave function. Both the Coulomb and the Rytova–Keldysh
potentials are considered. The dependence of the binding energy on the coupling constant is analyzed for the
ground and first excited exciton states. The binding energy and the oscillator strength are studied as functions
of the environmental-dependent dielectric constant for real transition metal dichalcogenide monolayers. We
demonstrate that the multicomponent nature of the exciton wave function is crucial for description of resonant
optical properties of two-dimensional Dirac systems.
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I. INTRODUCTION

In recent decade, a new family of condensed-matter
systems is being investigated which is classified as Dirac
materials [1]. The main feature of the Dirac materials is
a moderate value of the band gap in comparison to other
energy scales. These systems can be effectively described
by the Dirac equation. There are some specific properties
of two-dimensional (2D) Dirac materials, e.g., a half-integer
Chern number [2]. A prominent example of two-dimensional
massive Dirac materials is transition metal dichalcogenide
(TMD) monolayers. They are extremely attractive due to
strong Coulomb effects which are probed by various opti-
cal spectroscopy methods where a series of strong exciton
and trion resonances are present [3–5]. Exciton resonances
as well as continuous absorption spectra are very different
from those in conventional semiconductors. In particular, the
exciton binding energy is comparable with the band gap.

Strong Coulomb interaction in the Dirac materials makes
invalid the traditional theoretical approach to the exciton prob-
lem based on the parabolic band approximation. Hence, it
is insufficient to consider the exciton problem assuming the
Coulomb interaction as a small perturbation as it has been
done in Refs. [6,7]. Furthermore, the Coulomb scattering in
the Dirac systems involves both intra- and interband processes
[8]. In fact, the exciton state becomes a superposition of two-
particle excitations with both the conduction and valence band
single-particle states: All the four possibilities are realized
with the electron and the hole having both signs of energy
[9,10]. Therefore, ignoring the negative-energy electron and
hole states used in a number of works, see, e.g., Refs. [11–15],
is inappropriate. Indeed, the inter- and intraband Coulomb
energies are of the same order in the Dirac materials because
a parameter making them strongly different in ordinary semi-
conductors is a ratio of the exciton Rydberg energy to the

band gap. In Ref. [16], the exciton problem in the 2D Dirac
materials was reduced, without justification, to an analytically
solvable system of two equations equivalent to the problem of
a charged particle bound to an immobile Coulomb center. The
nonequivalence of the bound-particle and motionless exciton
problems is a specific feature of the nonparabolic energy spec-
trum of free electrons and holes in the Dirac materials where
the two-particle Schrödinger equation cannot be reduced to
a single-particle one. Because of the unjustified approach,
both the exciton level positions and the Sommerfeld factor
calculated in the work [16] are questionable.

A correct approach has been used in Refs. [17,18] where
numerical solutions of four coupled differential equations for
the exciton wave-function components have been obtained
and exciton energies have been calculated. However, the ex-
citon oscillator strength calculation performed in Ref. [17]
ignores the four-component form of the wave function.

In this work, the theory of excitons in the 2D Dirac mate-
rials is developed accounting for the exciton binding energy
being comparable (but smaller) than the band gap and the
exciton oscillator strength is calculated as a function of the
electron-hole coupling strength.

The paper is organized as follows. In Sec. II, we present
equations for the four-component exciton wave function and
derive a general expression for the oscillator strength. In
Sec. III, we calculate and discuss the binding energy and oscil-
lator strength for both the 2D Coulomb and Rytova–Keldysh
potentials. Concluding remarks are presented in Sec. IV.

II. EXCITON IN THE 2D DIRAC MODEL

We consider here the 2D Hamiltonian describing the be-
havior of electrons in the two valleys K and K ′ related by
the time inversion operation T . The single-electron effective
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Hamiltonian in the K valley has the form

HK (k) = h̄v0σ · k + Eg

2
σz , (1)

where k = (kx, ky) is the 2D wave vector counted from the K
point of the 2D Brillouin zone, σx,y,z are the pseudospin Pauli
matrices acting in the basis of two Bloch functions ψK

1 , ψK
2 at

the K point (k = 0), and v0, Eg are the Dirac velocity and the
energy gap. In the TMD monolayer of MoS2, the two Bloch
functions are the bottom conduction band �11 and the topmost
valence band �7 in the K valley (K+ valley in notation of
Ref. [19]).

The eigenenergies of the Hamiltonian (1) are given by

ελk = λεk, λ = ±, εk =
√

(Eg/2)2 + (h̄v0k)2 . (2)

The corresponding eigenfunctions can be written as a sum
of two products of envelopes depending on k and the Bloch
functions at k = 0:

�K
λ,k(ρ) = ψK

λ,k,1(ρ)ψK
1 + ψK

λ,k,2(ρ)ψK
2 , (3)

where ρ = (x, y) is the 2D radius vector. According to Eq. (1),
one can conveniently present the envelope functions as two-
component spinors

ψK
λ,k(ρ) = eik·ρuK

λ,k , (4)

where uK
λ,k are eigencolumns of the Hamiltonian (1) corre-

sponding to the positive and negative energies [20]

u+,k =
[

T+e−iϕk/2

T−eiϕk/2

]
, u−,k =

[−T−e−iϕk/2

T+eiϕk/2

]
. (5)

Here, ϕk is the azimuth angle of the vector k, and

T± =
√

1

2

(
1 ± Eg

2εk

)
. (6)

The exciton is a two-particle electron-hole state. For
definiteness, we consider excitons formed by an electron be-
longing to the K valley and a K ′ valley hole representing
the missing electron also in the K valley. The exciton wave
function satisfies the Schrödinger equation [7,18]

[HK (k̂e) ⊗ 1 + 1 ⊗ Hh,K ′
(k̂h) + V (ρ)]�exc(ρe, ρh)

= E�exc(ρe, ρh), (7)

where ρ is the difference ρe − ρh, V (ρ) is the attractive (neg-
ative) Coulomb potential, �exc(ρe, ρh) is a column consisting
of four components (ψ++, ψ+−, ψ−+, ψ−−) dependent on the
electron and hole coordinates, respectively xe, ye and xh, yh, k̂
is the differential operator −i∇, HK (k̂e) and Hh,K ′

(k̂h) are the
electron and hole effective Hamiltonians, and we use the index
notation ++,+−,−+,−− instead of AA, AB, BA, BB [9] or
cc, cv, vc, vv [7,18].

Note that we do not consider nonlinear terms in the one-
particle Hamiltonians HK and Hh,K ′

. Although the quadratic
terms describing the trigonal warping of the electron and
hole energy dispersions lead to quasi-bound states even in
graphene with Eg = 0 [21,22], the analysis of their effect on
the exciton oscillator strength is beyond the scope of this
paper.

A. Relation between the K and K ′ valley states

The states in the K ′ valley are related with those in the K
valley by the time reversal operator

T = −iσ2K0 , (8)

with K0 being the complex conjugate operation and σ2 being
the second spin Pauli matrix. Particularly, the energy spectrum
in the K ′ valley is also described by Eq. (2) and the sign λ

has the same meaning. Moreover, there is a linear relation be-
tween the Bloch wave functions ψK ′

j ( j = 1, 2) at the K ′ point
and the functions T ψK

j′ ( j′ = 1, 2). We take this relation in the
form

ψK ′
1 = −T ψK

2 , ψK ′
2 = T ψK

1 . (9)

In this case, the indices j, j′ can be conceived as the spin com-
ponents ±1/2. In the chosen basis the effective Hamiltonian
in the K ′ valley reads

HK ′
(k) = h̄v0(σxkx + σyky) − Eg

2
σz . (10)

For simplicity, we omit in Eq. (10) rigid band shifts due to the
spin-orbit interaction.

The single hole states are defined as the empty electron
states as follows: the missing electron state |e, K,−λ,−k〉
with the energy ε−λ,−k = −λεk in the K valley is equivalently
described by the hole state |h, K ′, λ, k〉 with the energy λεk

in the opposite K ′ valley. In the symbolic form the relation
between the electron and hole representations can be written
in the following way:

|e, K,−λh,−kh〉 = T |h, K ′, λh, kh〉 .

For the relation (9), the hole effective Hamiltonian is ex-
pressed via HK (k) as

Hh,K ′
(k) = −HK ′

(k) = HK (−k) . (11)

B. The exciton wave function

In this work, we take the electron-hole total momentum
h̄(ke + kh) to be zero which allows us to set ke = −kh ≡ k
and to seek the exciton wave-function dependent on ρ. In this
case the exciton wave-function expansion in the states of non-
interacting electron-hole pairs |e, λe, ke; h, λh, kh〉 is written
as follows:

|exc〉 =
∑
λeλh

∑
k

Cλeλh (k)|e, λe, k; h, λh,−k〉 , (12)

where Cλeλh are the expansion coefficients dependent on the k
vector. In what follows, in order to simplify the normalization
procedure, we set the sample area to unity. The expansion
coefficients satisfy a set of four coupled equations

(λe + λh)εkCλeλh (k)

+
∑
λ′

eλ
′
h

∑
k′

Jλeλh;λ′
eλ

′
h
(k ← k′)Cλ′

eλ
′
h
(k′) = ECλeλh (k), (13)

where the Coulomb scattering matrix element is formally
given by

Jλeλh;λ′
eλ

′
h
(k ← k′)

= 〈e, λe, k; h, λh,−k|V |e, λ′
e, k′; h, λ′

h,−k′〉. (14)
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Bearing in mind the relation between the hole state and the
missing electron state we can present (14) as

V (q)
∫ [

ψK
λe,k(ρ)

]†
eiqρψK

λ′
e,k

′ (ρ)dρ

×
∫ [

ψK
−λ′

h,k
′ (ρ′)

]†
e−iqρ′

ψK
−λh,k(ρ′)dρ′, (15)

where q = k − k′ and V (q) is the 2D Fourier image of the
potential V (ρ). Substituting (4) into the integrands, we obtain
instead of Eq. (15)

V (q)
(
u†

λe,k
uλ′

e,k
′
)(

u†
−λ′

h,−k′u−λh,−k
)
. (16)

By using the identity

u†
λ′,k′uλ,k = λλ′u†

−λ,ku−λ′,k′ , (17)

we can rewrite the last term in Eq. (16) as

λhλ
′
h u†

λh,k
uλ′

h,k
′ .

It is convenient to introduce the coefficients

Cλeλh (k) = λhCλeλh (k). (18)

The set of equations for Cλeλh (k) coincides with the set (13)
where the scattering matrix element has the form

Jλeλh;λ′
eλ

′
h
(k ← k′)

= V (q)(u†
λe,k

uλ′
e,k

′ )(u†
λh,k

uλ′
h,k

′ ).

We note that the exciton is formed by the free electron-hole
pair states with a sum excitation energy (λe + λh)εk which
takes not only values 2εk but also zero and −2εk . This ac-
counts for both intra- and inter-band scattering of free carriers
by the potential V . In Ref. [16], in the low-intensity limit
the exciton is described by a single variable, the micro-
scopic polarization pk, which is equivalent to the coefficient
C++(k) in Eq. (12). This particularly means that, in the work
[16], the role of the coefficients C+−(k),C−+(k),C−−(k)
is unjustifiably ignored, and the four-component structure
(ψ++, ψ+−, ψ−+, ψ−−) of the exciton wave function is
missed.

C. Matrix elements of exciton optical generation

We take the electron-photon interaction in the form Ve-ph =
−c−1

∫
jμ(ρ)Aμ(ρ, t )dρ, where A(ρ, t ) is the vector-potential

of the plane electromagnetic wave of the frequency ω, and
j(ρ) is the operator of the electric current density. Then the
exciton excitation matrix element can be written as

〈exc|Ve-ph|0〉 = −A

c
e−iωt M(e) , (19)

where M is the current density matrix element

M(e) =
∑
λeλhk

λhC∗
λeλh

(k)〈λe, k; λh,−k|e · j(0)|0〉. (20)

A, e are the amplitude and the polarization unit vector of the
electromagnetic wave, and j(0) is the Fourier component of
the electron current density operator taken at zero wave vector.
The matrix element of the electron-hole pair excitation is

written in the electron representation as

〈e, λe, k; h, λh,−k|e · j(0)|0〉
= e 〈e, K, λe, k|(e · v)T |h, K ′, λh,−k〉
= e

(
uK

λe,k

)†
e · v uK

−λh,k ,

where the velocity operator

v = 1

h̄

∂HK (k)

∂k
= v0σ .

As a result, we obtain instead of Eq. (20)

M(e) = ev0

∑
λeλhk

λhC∗
λeλh

(k)
(
uK

λe,k

)†
e · σ uK

−λh,k . (21)

We remind that for the right and left circular polarizations the
unit vector e reads

eσ+ = êx + iêy√
2

, eσ− = êx − iêy√
2

,

where êx and êy are the unit vectors pointing in the directions
x and y.

So far as we know, it is the first time when the expression
for the exciton optical matrix element contains all the four
terms rather than only one term with λe = + and λh = +.
The following calculation shows that the additional terms
remarkably contribute to the exciton oscillator strength if the
exciton binding energy is not very small as compared to the
band gap.

D. Solution to the exciton wave function

While solving the two-body problem in graphene in the
real space, Sabio et al. [9] noticed that the problem of four-
component two-particle wave function � j′ j (ρ1, ρ2) ( j′, j =
A, B), for zero total center-of-mass momentum, is decoupled
under a certain unitary transformation into a set of equa-
tions for three transformed components and an independent
equation for the remaining component. The similar property
holds also for the Fourier coefficients Cλe,λh . Under the unitary
transformation of the two components

C± = C+− ± C−+√
2

, (22)

the equation set for Cλe,λh is split off into a single equation for
C− and a reduced system of three interconnected equations
for C++, C−− and C+. We define a three-component vector
C(k) with the components C++(k), C+(k), C−−(k) satisfying
the equation

EC(k) = H0(k)C(k)

+
∑

k′
V (|k − k′|)

∑
l=0,±1

F l (k, k′)eil (ϕk′−ϕk )C(k′).

(23)

Here H0(k) is the diagonal 3 × 3 matrix[2εk 0 0
0 0 0
0 0 −2εk

]
, (24)

and the 3 × 3 matrix F l (k, k′) is a product of the 3 × 1 matrix
(a column) Sl (k) and the transposed matrix (a row) ST

l (k′),

155305-3



LEPPENEN, GOLUB, AND IVCHENKO PHYSICAL REVIEW B 102, 155305 (2020)

where

S±1(k) =
⎡
⎣ T 2

∓
±√

2T+T−
T 2

±

⎤
⎦, S0(k) =

⎡
⎣

√
2T+T−

T 2
+ − T 2

−
−√

2T+T−

⎤
⎦, (25)

and the coefficients T±(k) are introduced in Eq. (6).
From symmetry considerations of the studied two-valley

band structure the motionless excitons should have a certain
value of the angular momentum component [18,23]. This
agrees with the kernel of Eq. (23) depending on the phase
difference ϕk − ϕk′ , and we can seek the solutions in the form

C(k) = Cm(k)eimϕk , (26)

where m = 0,±1,±2 . . .

Substituting C+ and C− instead of C+−, C−+ in Eq. (21),
we find that the coefficient C− makes no contribution to the
optical matrix element and obtain

M(e) = ev0

∑
k

(eiϕk e−R+ − e−iϕk e+R−), (27)

where e± = ex ± iey and

R+(k) = T 2
+C∗

++(k) + T 2
−C∗

−−(k) −
√

2T+T−C+∗(k) ,

R−(k) = T 2
−C∗

++(k) + T 2
+C∗

−−(k) +
√

2T+T−C+∗(k) . (28)

Particularly, it follows from here that for the circularly polar-
ized light, one has

M(σ+) =
√

2ev0

∑
k

eiϕk R+(k) . (29)

We see that it is the exciton state with the angular harmonics
m = 1, which is optically active in the σ+ polarization.

III. RESULTS AND DISCUSSION

We seek for the exciton eigenenergies and oscillator
strength for two forms of the attractive electron-hole interac-
tion relevant to the 2D Dirac materials and modeled by (i) the
standard 2D Coulomb potential

VC (q) = −2πe2

κq
(30)

and (ii) the Rytova–Keldysh potential [24,25]

VRK (q) = − 2πe2

κq(1 + qr0)
. (31)

Here, κ is the half sum of the dielectric susceptibilities of ma-
terials surrounding the 2D layer, and r0 = l/κ is the screening
radius with the length l determined by the susceptibility of the
2D layer [4]. We note that the conventional screened Coulomb
interaction valid for a 2D electron gas ∝1/(q + qs) with qs

being the inverse screening radius does not describe the ex-
citon properties of TMD monolayers because of the strong
dielectric contrast with the surrounding materials.

The two-body vector equation (23) gives rise to bound
(with E < Eg) and unbound (with E > Eg) excitons leading
to discrete and continuous optical absorption. In the present
work we focus our attention on the bound exciton states.

It should be noted that here we do not perform renormal-
ization of the parameters v0 and Eg by the electron-electron

interaction assuming they are already taken into account. This
problem has been intensively studied in graphene [26]. An
allowance for the renormalization for a finite band gap will
be published elsewhere.

A. Binding energy

Let us start from the Coulomb potential with the Fourier
image VC (q), Eq. (30). We study the dependence of the bind-
ing energy Eg − E on the dimensionless interaction strength

g = e2

κh̄v0
. (32)

First of all we will analyze the equation (23) in the limit of
small g where the exciton state is formed by small values of
k so that we can set T+(k) → 1, T−(k) → 0, the matrices F
become diagonal, Fl;i′i → δi′iδi,−l , and the components C−−,
C+ vanish. The energy 2εk can be written in the parabolic
approximation as Eg + h̄2k2/(2μ), where μ is the exciton
reduced mass Eg/(4v2

0 ). Then, the equation for the remaining
component C++ reduces to(

Eg + h̄2k2

2μ
− E

)
e−iϕkC++(k)

+
∑

k′
V (|k − k′|)e−iϕk′C++(k′) = 0. (33)

Thus the exciton envelope function in the effective mass the-
ory is related to C++ by

�exc(k) = e−iϕkC++(k) . (34)

We see that the angular momentum component, , of the
exciton envelope is related with the integer m in Eq. (26) by
 = m − 1. Since we assume the Fermi velocity v0 to be pos-
itive we can assign the angular momentum component +1 to
the interband electron excitation in the K valley. Therefore the
total z component of the angular momentum equals  + 1 = m
and, for the σ+ optical excitation, the optically allowed are
the exciton states with m = 1. This selection rule agrees with
Eq. (29).

For the stationary Schrödinger equation (33) the bound
state energy levels are of the form, e.g., Refs. [27,28],

E − Eg = − E (2D)
B

(2n + 1)2
(n = 0, 1, 2 . . . ) , (35)

where the binding energy of the ground exciton state is [6,7]

E (2D)
B = g2

2
Eg . (36)

The ground state level n = 0 is nondegenerate and has zero
angular momentum component  = 0 (or m = 1) while the
first excited level is triple-degenerate with  = 0,±1 (or m =
0, 1, 2). Figure 1 shows the ratio between the binding energy
Eg − E and (a) the band gap or (b) the 2D Rydberg (36).

With increasing the interaction strength (32) one should
take into account the nonparabolicity of the electron energy
dispersion and the Coulomb-scattering induced mixing of the
coefficients Cλeλh in Eq. (13). In a simplified approach, one
may switch in the relativistic dispersion (2) but neglect the
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FIG. 1. Exciton binding energy calculated in the model with the
2D Coulomb potential (30) for the lowest exciton states originating
from the levels n = 0 and n = 1. (a) Solid line shows the binding
energy of the state (n = 0, m = 1), the yellow dashed line is the non-
relativistic limit (36), and the blue dashed lines are the approximation
(39) with γ = 1. (b) The same dependencies rescaled in units of
E (2D)

B . The dotted line for n = 0 is a result of solution of the scalar
equation for C++ decoupled from C+ and C−− (scalar relativistic
simplification).

mixing and retain only the coefficient C++ in the referred
equations. This means the replacement in the scalar equation
(33) for C++(k) the kinetic energy h̄2k2/2μ by 2εk − Eg and
the Fourier image V (|k − k′|) by the Coulomb matrix element
J++,++(k ← k′) in Eq. (14). In the following, we refer to this
approach as to the scalar relativistic simplification.

For the exact solution of the relativistic equation (23), it is
convenient to introduce the dimensionless positive variables

Q = 1

g

2h̄v0k

Eg
, ε = Eg − E

E (2D)
B

= 2

g2

Eg − E

Eg
(37)

and the 2D vectors Q, Q′ determined by the absolute values
Q, Q′ and the azimuth angles ϕ, ϕ′. Then dividing the left-
and right-hand sides of Eq. (23) by Eg, we obtain in the new

variables(
1 − 2ε

g2

)
C(Q, ϕ)

= H0(Q)C(Q, ϕ)

−g2

2

∑
Q′

∑
l=0,±1 F l (gQ, gQ′)eil (ϕ′−ϕ)√

Q2 + Q′2 − 2QQ′ cos (ϕ′ − ϕ)
C(Q′, ϕ′).

(38)

Here the diagonal matrix H0(Q) and the matrix
F l (gQ, gQ′) = Sl (gQ)ST

l (gQ′) are obtained from those in
Eq. (23) by replacing 2εk to

√
1 + (gQ)2 and

T±(k) →
√

1

2

(
1 ± 1√

1 + (gQ)2

)
.

We see that the modified equation is controlled only by one
parameter, the strength g.

In order to solve the vector equation (38) for the angular
harmonics C(Q) = C(Q)eimϕ we use a modified version of the
Gauss–Legendre quadrature method [29], which avoids the
singularity of the Coulomb potential at Q = Q′ in Eq. (38).
We introduce the variable x via Q = tan (πx/2) and use the
quadrature method with mesh points xi and weights wi for
i = 1 . . . N . The integration over Q is replaced by a Riemann
summation over i via dQ → wi(dQ/dx)i. In the numerical
calculation we take N = 250 and check that a further increase
in N does not lead to visible changes of the curves in Fig. 1.

Figure 1 shows the g dependence of the four lowest exciton
levels originating from the low-g levels n = 0, m = 1 and n =
1 (m = 0, 1, 2). In accordance with Eq. (35), at small values
of g, the ratio (Eg − E )/E (2D)

B approaches 1 for n = 0 and
1/9 for n = 1. The exciton binding energy increases with g in
units of the band gap Eg but decreases in units of E (2D)

B ∝ g2.
In Appendix, we find the first asymptotic correction to the
binding energy in the regime g → 0. The result is

Eg − E ≈ E (2D)
B

(
1 − g2 ln

γ

g

)
, (39)

where γ is a constant of the order of unity. The blue dashed
line in Fig. 1 depicts this asymptotic behavior calculated with
γ = 1 and demonstrating a good agreement for small g. The
threefold degeneracy of the n = 1 level is removed with the
increasing value of g but the sublevel splitting is small and
reaches 3% of E (2D)

B only at g ≈ 0.5.
In Fig. 1(b), higher panel, we compare the exciton binding

energies obtained by solving Eq. (38) with the simplified
scalar relativistic approach. The dotted curve calculated in
this approach is in a quantitative agreement with results of
Ref. [12] where the one-component wave function was used.
Figure 1(b) demonstrates that this simplified calculation over-
estimates the binding energy by ∼20% at g = 0.5.

Now we turn to the Rytova–Keldysh potential (31). Nu-
merical solution of Eq. (38) with the screened potential yields
the binding energy values shown in Fig. 2. For comparison,
the result for pure Coulomb potential (r0 = 0) is also shown.
The binding energy grows with an increase of the coupling
constant. Naturally, the screening reduces the binding energy
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FIG. 2. Binding energy for the lowest exciton level n = 0 for
different values of the screening radius. The black curve shows the
case of a pure Coulomb potential.

for a given value of g in comparison with the pure Coulomb
potential.

In real 2D Dirac materials, the exciton binding energy and
the oscillator strength are governed by a single independent
parameter, the dielectric constant κ. It is convenient to rewrite
the Fourier-image of the screened potential (31) as follows:

VRK (|k − k′|) = − 4π (h̄v0)2

EgQ−(1 + Q−C/κ
2)

. (40)

Here, Q− = |Q − Q′|, the dimensionless vector Q is intro-
duced in Eq. (37), C is the TMD monolayer constant

C = e2Egl

2(h̄v0)2
= g2

0Egl

2e2
, (41)

and g0 = e2/(h̄v0). The parameters for four dichalcogenides
are given in Table I.

Figure 3 shows the κ dependence of the exciton bind-
ing energy for the four TMD monolayers. One can see that
the binding energy is determined mostly by the transition
metal rather than by the chalcogen. We have checked that the
variation of the binding energy with κ is in a quantitative
agreement with the results of Ref. [18]. The effect of the
dielectric environment on the exciton energy is remarkable:
The binding energy varies by a factor of three for all the four
materials when κ grows from 1 to 4.5. This decrease of the
binding energy due to screening is expected, but quantitatively
it is much weaker than in the nonrelativistic limit for the
Coulomb potential, Eq. (36), where E (2D)

B ∝ 1/κ
2. The latter

regime is realized at larger κ where the coupling constant g is
small enough.

TABLE I. Parameters of TMD monolayers from Ref. [17] and
calculated values of g0 and C.

Eg (eV) c/v0 l (Å) g0 C

MoS2 1.66 555 41.47 4.05 39.25
MoSe2 1.47 613 51.71 4.47 52.85
WS2 1.79 428 37.89 3.12 22.95
WSe2 1.60 466 45.11 3.4 29.03
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FIG. 3. The exciton binding energy for the lowest exciton level
n = 0 for real TMD monolayers as a function of environmental-
dependent dielectric constant.

B. Oscillator strength

We define the exciton oscillator strength as

� ≡ |M(σ+)|2 . (42)

In the nonrelativistic limit, E (2D)
B � Eg, and for the 2D

Coulomb potential (30), the absolute value of the matrix el-
ement M(σ+) for the exciton ground state n = 0 is given by

∣∣Mnr
0 (σ+; Coul)

∣∣ = 2|e|v0√
πa(2D)

B

= g|e|Eg√
π h̄

(43)

with a(2D)
B being the Bohr radius of a 2D exciton

a(2D)
B = h̄2

κ

2μe2
= 2h̄v0

gEg
.

Estimates show that, for all the four TMD monolayers in
Table I, a(2D)

B /κ ≈ 1 Å. Note that for values of the effective
Bohr radius comparable to the lattice constant and the di-
electric constant κ close to unity the performed calculation
has a qualitative character, and a quantitative result could be
obtained only in the ab initio computation. For higher values
of κ, the calculation is quantitatively consistent.

As compared with the Coulomb potential, the Rytova–
Keldysh attraction leads to a smaller exciton binding energy
and, therefore, to a weaker oscillator strength. Figure 4 depicts
the r0 dependence of the ratio, �nr

0 (RK)/�nr
0 (Coul), of the

ground-state exciton oscillator strengths calculated for the
two potentials in the nonrelativistic limit g → 0, Eg → ∞,
a(2D)

B = const. The effect of screening-induced suppression of
the absorption efficiency is clearly seen: For the screening
radius r0 = 2a(2D)

B , the ratio drops by an order of magnitude.
Figure 5 presents the calculation of the optical matrix el-

ement M(σ+), Eq. (29), for the exciton ground state n = 0
for the Rytova–Keldysh potential. In order to demonstrate
the nonparabolicity effect, we plot in this figure the ra-
tio of M0(σ+; RK) to |Mnr

0 (σ+; Coul; vac)| calculated in the
nonrelativistic limit, for a suspended TMD monolayer in
vacuum: ∣∣Mnr

0 (σ+; Coul; vac)
∣∣ = |e|3Eg√

π h̄2v0
. (44)
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FIG. 4. The ratio of ground-state exciton oscillator strengths
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0 (RK)/�nr
0 (Coul) calculated in the nonrelativistic limit for the

Rytova–Keldysh and Coulomb potentials as a function of the screen-
ing radius.

Dashed lines show the partial contributions of the three com-
ponents C++, C+, and C−− in Eq. (28). While the contribution
from C−− is negligible, the term due to C+ is negative and its
absolute value is ∼25% of the contribution from the compo-
nent C++. Thus, the optical absorption efficiency is smaller
than the value obtained in the scalar relativistic simple model
due to the admixture of the states |e,+, k; h,−,−k〉 and
|e,−, k; h,+,−k〉 to the exciton wave function (12).

In Ref. [17], the exciton wave function is found in the
real space and the equation for the exciton oscillator strength
contains only the squared wave function |φe,h, j

c,v (0)|2 at ρ = 0.
In our notations the function φ

e,h, j
c,v (ρ) coincides with

ψ++(ρ) =
∑

k

ei(k·ρ+ϕk )C++(k) .

Our calculation, Fig. 5, shows that the sum

−
√

2ev0

∑
k

eiϕk T+T−C+∗(k)

makes a remarkable contribution which is missed in Eq. (26)
of Ref. [17].
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FIG. 5. The dependence of the optical matrix element (29) for
the lowest exciton state n = 0 in MoS2 monolayer on the dielectric
constant (solid black line). The matrix element is given in units
M0(σ+)/|Mnr

0 (σ+; Coul; vac)|. Dashed lines show partial contribu-
tions to the matrix element.
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FIG. 6. The ratio of the oscillator strengths
�0(RK)/�nr

0 (Coul; vac) for the lowest exciton level n = 0 for
the TMD monolayers as a function of environmental-dependent
dielectric constant κ.

Figure 6 shows the κ dependence of the oscillator strength
for the four TMD monolayers. The oscillator strength de-
creases slower as compared to the nonrelativistic limit for the
Coulomb potential, Eq. (43), which yields �nr

0 (Coul) ∝ 1/κ
2.

This limit is achieved at the higher κ and the smaller cou-
pling constant g. Thus, due to the nonparabolicity effects, the
strength of the exciton absorption peak is less sensitive to the
dielectric constant κ than in the limit of parabolic free-carrier
dispersion, in particular, due to a multicomponent nature of
the excitonic wave function.

IV. CONCLUDING REMARKS

Beginning from 1960s it has been recognized that, if the
band gap Eg of an intrinsic semiconductor is smaller than
the exciton binding energy EB, the crystal becomes unstable,
and a new phase, “excitonic insulator,” emerges [30–33]. A
similar transition, the “excitonic collapse,” has been recently
analyzed in conjunction with the TMD 2D crystals [34],
whereas single-walled carbon nanotubes show no transition
to an excitonic insulator [35]. The existing TMD monolayers,
particularly those listed in Table I, are stable semiconductors.
They are nonetheless characterized by large values of the
binding energy-to-gap ratio EB/Eg. The studies [13,17,18]
show that in semiconductors with increasing the ratio EB/Eg,
before the many-body effects become important, the structure
of the exciton wave function is strongly modified, Eq. (12),
and acquires new features. In this work, we have demon-
strated an importance of the four-component structure of the
exciton wave function for the description of resonant opti-
cal properties of TMD monolayers. Both the Coulomb and
Rytova–Keldysh potentials have been used for the calculation
of the exciton binding energy and oscillator strength.

In this work, we have focused on the exciton oscillator
strength in an undoped 2D semiconductor measured at low
light intensities. The planned future work will be aimed at
the optical excitation of trions in weakly doped samples with
allowance for electron and hole states with both positive and
negative energy. Another way of generalization is a calcula-
tion of the exciton oscillator strength including the effects of
extrinsic carriers in doped materials and many-body effects at
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high light intensities, see, e.g., Refs. [36,37] on quantum well
structures, and [38,39] on TMD monolayers.
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APPENDIX: WEAK COULOMB INTERACTION:
EXPANSION IN POWERS OF g

Taking the electron and hole effective Hamiltonians in the
form (1) and (11) we can explicitly rewrite Eq. (7) as a set of
four equations

(Eg + V )ψ++ + v0 p−ψ+− + v0 p−ψ−+ = Eψ++, (A1a)

v0 p+ψ++ + V ψ+− + v0 p−ψ−− = Eψ+−, (A1b)

v0 p+ψ++ + V ψ−+ + v0 p−ψ−− = Eψ−+, (A1c)

v0 p+(ψ+− + ψ−+) + (V − Eg)ψ−− = Eψ−−. (A1d)

Here p± = −ih̄(∂/∂x ± i∂/∂y) and V = −e2/(κρ). We cal-
culate a correction to the binding energy E (2D)

B obtained in the
effective mass theory, see Eq. (36).

Introducing ε = E − Eg and assuming |ε| � Eg, we obtain
in the first order in v0 p/Eg

ψ+− = ψ−+ = v0

Eg
p+ψ++, ψ−− = 0. (A2)

Substituting ψ+−, ψ−+ into Eq. (A1a), we obtain an uncou-
pled equation for ψ++(

V + 2v2
0

Eg
p2

)
ψ++ = εψ++. (A3)

This is the equation for 2D Coulomb problem with the re-
duced effective mass μ = Eg/(4v2

0 ). For the exciton ground
state, the energy ε equals −E (2D)

B and the envelope is given by

ψ0(ρ) =
√

2

π

exp
( − ρ/a(2D)

B

)
a(2D)

B

. (A4)

Now we turn to a correction of the order (v0 p/Eg)2. To this
order, ψ−− becomes nonzero and is approximated by

ψ−− = v0

2Eg
p+(ψ+− + ψ−+). (A5)

Substituting ψ−− into Eqs. (A1b) and (A1c), we find with the
second-order accuracy

ψ+− + ψ−+ = 2v0

Eg

(
1 − ε − V

Eg
+ v2

0

E2
g

p2

)
p+ψ++ . (A6)

The substitution of this sum into Eq. (A1a) yields a corrected
equation for the function ψ++. In analogy with the three-
dimensional Dirac problem [40], we introduce, instead of
ψ++, the function

ψShr =
(

1 + v2
0

E2
g

p2

)
ψ++ . (A7)

It satisfies the following Schrödinger equation:

(H0 + U )ψShr = εψShr , (A8)

where H0 is the Hamiltonian of 2D Coulomb problem (A3)
and the perturbation has the form

U = −2v4
0

E3
g

p4 +
(

h̄v0

Eg

)2

∇2V + 2h̄v2
0

E2
g

[∇V × p]z , (A9)

with ∇2 being the 2D Laplace operator ∂2
x + ∂2

y .
The correction to the binding energy is given by the aver-

age 〈U 〉 = ∫
ψ0(ρ)Uψ0(ρ)dρ which can be reduced to

〈U 〉 = 2(h̄v0)4

E3
g (a(2D)

B )2

[
〈ρ−2〉 + 2

a(2D)
B

〈ρ−1〉 − 1(
a(2D)

B

)2

]
.

The first term is singular at ρ = 0, and the contributions from
the other terms can be neglected. Assuming its integration to
start from ρmin = γ −1(h̄v0/Eg) = g

2γ
a(2D)

B , where γ ∼ 1 and

therefore ρmin � a(2D)
B , we obtain

〈U 〉 = 8(h̄v0)4

E3
g

(
a(2D)

B

)4

(
− ln

2ρmin

a(2D)
B

)
= E (2D)

B g2 ln
γ

g
. (A10)

This yields Eq. (39) of the main text.
Equation (A9) is a 2D analog of a corresponding pertur-

bation appeared at expansion in powers of 1/c of a 3D Dirac
equation [40]. We note that in the papers [14,41–43] only the
second and third terms in the rhs of Eq. (A9) are taken into
account. We emphasize that the first term ∝ p4 contributes by
the same order of magnitude to 〈U 〉 as the second, “Darwin,”
term, while the third term makes no contribution to 〈U 〉.
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