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Modal Purcell factor in PT -symmetric waveguides
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We study the spontaneous emission rate of a dipole emitter in PT -symmetric environment of two coupled
waveguides using the reciprocity approach generalized to nonorthogonal eigenmodes of non-Hermitian systems.
Considering emission to the guided modes, we define and calculate the modal Purcell factor composed of
contributions of independent and interfering nonorthogonal modes leading to the emergence of cross-mode terms
in the Purcell factor. We reveal that the closed-form expression for the modal Purcell factor within the coupled
mode theory slightly alters for the non-Hermitian coupled waveguide compared to the Hermitian case. It is true
even near the exceptional point, where the eigenmodes coalesce and the Petermann factor goes to infinity. This
result is fully confirmed by the numerical simulations of active and passive PT -symmetric systems being the
consequence of the mode nonorthogonality.
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I. INTRODUCTION

Quantum mechanics is based on the postulate that all phys-
ical observables must correspond to the real eigenvalues of
quantum mechanical operators. For a long time this assertion
had been considered to be equivalent to the requirement of the
Hermiticity of the operators. The situation has changed after
the seminal work [1] of Bender and Boettcher, who discov-
ered a wide class of non-Hermitian Hamiltonians exhibiting
entirely real-valued spectra. A number of intriguing proper-
ties are related to the non-Hermitian Hamiltonians possessing
parity-time (PT ) symmetry that is the symmetry with respect
to the simultaneous coordinate and time reversal. For instance,
a system described by the Hamiltonian Ĥ = p̂2

2m + V (r) �= Ĥ†

is PT symmetric, if the complex potential V (r) satisfies con-
dition V (r) = V ∗(−r), where † and ∗ stand for designation of
the Hermitian and complex conjugations, respectively.

A couple of important features of the PT -symmetric
Hamiltonians are worth mentioning [2–4]. First, their eigen-
functions corresponding to the real eigenvalues are not
orthogonal. Second, the systems are able to experience
a phase transition from PT -symmetric to PT -symmetry-
broken states, when the system’s parameters pass an excep-
tional point. The transfer of the PT symmetry concept from
quantum mechanics to optics is straightforward due to the
similarity of the Schrödinger and diffraction equations [2,5,6].
Photonic PT -symmetric structures are implemented by com-
bining absorbing and amplifying spatial regions to ensure a
complex refractive index n(r) = n∗(−r) that substitutes the
quantum-mechanical complex potential V . A possibility of the
experimental investigation of the PT -symmetric structures
certainly heats up the interest to this subject in optics [7–9]
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in order to apply these systems for sensing [10,11], lasing,
and coherent perfect absorption (antilasing) [12,13].

It was Purcell who revealed that a spontaneous emission
rate is not an intrinsic property of the emitter but is pro-
portional to the local density of modes (density of photonic
states) in the vicinity of the transition frequency [14]. In
other words, the spontaneous emission rate is determined by
an environment. Phenomenon of the spontaneous emission
enhancement owing to the influence of the environment is
known now as the Purcell effect. The enhancement is defined
as a ratio of the spontaneous emission rate in the system
under consideration to that in the free space [15]. With the
development of nanotechnology, nanophotonics opens up new
avenues for engineering spontaneous emission of quantum
emitters in specific surrounding media [16–21] including non-
Hermitian media. Investigation of the spontaneous emission
of the dipole emitter inside a PT -symmetric planar cavity has
been recently performed by Akbarzadeh et al. in Ref. [22].
The authors have found suppression of the spontaneous re-
laxation rate of a two-level atom below the vacuum level.
The suppression of the spontaneous relaxation rate has also
been discovered for a high-Q cavity at exceptional points in
Ref. [23]. A general theory of the spontaneous emission at the
exceptional points of non-Hermitian systems was developed
in Ref. [24] and revealed high enhancement factors at excep-
tional points.

A number of methods including numerical techniques
[25] have been developed for calculation of the Purcell
factor of dipole and quadrupole emitters in various environ-
ments. The most general one is based on the calculation of
Green’s dyadics Ĝ(r, r0). Since the photonic local density
of states is proportional to the imaginary part of the dyadic
ImĜ(r0, r0) [26], the purely quantum phenomenon of spon-
taneous emission can be reduced to the problem of classical
electrodynamics. The Purcell factor Fp = P/P0 can be written
in terms of the powers P and P0 emitted by a source in an

2469-9950/2020/102(15)/155303(10) 155303-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3528-5926
https://orcid.org/0000-0001-9553-7318
https://orcid.org/0000-0002-4338-349X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.155303&domain=pdf&date_stamp=2020-10-14
https://doi.org/10.1103/PhysRevB.102.155303


MOROZKO, NOVITSKY, AND KARABCHEVSKY PHYSICAL REVIEW B 102, 155303 (2020)

environment and in the free space, respectively. This approach
is widely adopted and can be exploited, e.g., for description
of the spontaneous relaxation of molecules in absorbing pla-
nar cavities [27], explanation of the surface-enhanced Raman
scattering [28], finding anomalous Purcell factor scaling in
hyperbolic metamaterials [29], and many others.

The Purcell factor can be calculated separately for each
of the discrete scattering channels. Due to the highly de-
manding field of photonic integrated circuitry (PIC) offering
chip-scale miniaturization of actual devices and transforma-
tion of academy governed knowledge to the industry, recently
the research has been accelerated towards utilization of im-
portant optical phenomena in integrated photonic devices as
summarized in the recent review on on-chip nanophotonics
and future challenges [30]. For instance, just a couple of
years ago, the modal Purcell factor for the basic element of
PIC planar waveguide was introduced within the scattering
matrix formalism [31]. A year after, another approach based
on application of the reciprocity theorem was developed and
successfully exploited in a ring resonator configuration [32].

Here, we generalize the reciprocity-theorem formalism
to the case of non-Hermitian systems with nonorthogonal
modes and define the modal Purcell factor for a point-
source emitter placed in the vicinity of such systems. We
examine the developed theory by studying the influence of
the non-Hermiticity and the nonorthogonality on the spon-
taneous emission rate of the point-source emitter placed
near the coupled-PT -symmetric waveguide systems. We
show analytically, utilizing the coupled mode approach, and
verify numerically using finite-difference frequency-domain
(FDFD) based mode solver, that although PT -symmetric sys-
tems are known to exhibit Purcell factor enhancement near the
exceptional point as reported in Ref. [24], almost no change
in modal Purcell factor occurs for PT -symmetric coupled-
waveguides system even near the exceptional point where the
supermodes coalesce leading to infinite values of the Peter-
mann factor.

The rest of the paper is organized in the following way.
In Sec. II, we formulate a method for the Purcell factor
calculation based on the reciprocity approach that accounts
for the modes nonorthogonality. In Sec. III, we probe the
developed formalism by considering a PT -symmetric cou-
pled waveguides system in terms of coupled mode approach
and reveal no dependence of the modal Purcell factor on the
non-Hermiticity. In Sec. IV, we show the proof-of-concept
calculations of the Purcell factor for the system demonstrated
in Fig. 1 and reveal an agreement with the results obtained us-
ing the coupled-mode approach. Eventually, Sec. V concludes
the paper.

II. MODAL PURCELL FACTOR FOR
NON-HERMITIAN WAVEGUIDES

A. Reciprocity approach

Utilizing the reciprocity approach (a method for calculat-
ing the power P emitted by a current source into a particular
propagating mode leaving an open optical system), we nor-
malize this power by the power of radiation into the free space
P0 to find the so-called modal Purcell factor Fp = P/P0. We

FIG. 1. Schematics of the PT -symmetric system: Gain (refrac-
tive index nr = nco + iγ ) and loss (nl = nco − iγ ) waveguides of the
width w and height h are embedded in the dielectric medium with
index of ncl . Waveguides are separated by the distance g. Modes
propagate in the ẑ direction.

consider an emitting current source (current density distribu-
tion J1) situated inside a coupled waveguide system with two
exit ports at z1 and zn [32]. For brevity, we introduce a four-
component vector joining transverse electric and magnetic
fields as

|ψ (z)〉 =
(Et (x, y, z)

Ht (x, y, z)

)
. (1)

In this way we can describe the fields of guiding (and leaking)
modes. For the kth mode we write

|Mk (z)〉 =
(Et,k (x, y, z)

Ht,k (x, y, z)

)
= |k〉e−iβk z, (2)

where

|k〉 =
(et,k (x, y)

ht,k (x, y)

)
(3)

and (Et,k (x, y, z)
Ht,k (x, y, z)

)
=

(et,k (x, y)
ht,k (x, y)

)
e−iβk z. (4)

Here we define the inner product as a cross product of the
bra-electric and ket-magnetic fields integrated over the cross-
section z = const:

〈φ1|φ2〉 ≡
∫

(E1 × H2) · ẑdxdy. (5)

Such a definition is justified by the non-Hermitian system we
explore. In the above and following relations we can drop t
subscripts, because the z component of the vector products
of the fields depends only on their transverse components.
It is well known that the modes of Hermitian systems are
orthogonal in the sense∫

(ek × h∗
l ) · ẑdxdy ∼ δkl , (6)

where δkl is the Kronecker delta. However, the loss and
gain channels of the non-Hermitian waveguide break the or-
thogonality of the modes. In this case, one should use a
nonconjugate inner product [4,33,34] bringing us to the or-
thogonality relationship

〈k|l〉 =
∫

(ek × hl ) · ẑdxdy = 2Nkδkl , (7)
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where Nk is a normalization parameter. It is worth noting
that redefinition of the inner product is required in the non-
Hermitian quantum mechanics. It appears that left and right
eigenvectors of non-Hermitian operators obey the so-called
biorthogonality relations. Discussion of quantum mechanics
based on biorthogonal states is given in Refs. [35–38].

The fields excited by the current source J1 at the cross
section of exit ports can be expanded into a set of modes as
follows

|ψ1(z1)〉 =
∑

k

Ak,z1 |k, z1〉,

|ψ1(zn)〉 =
∑

k

A−k,zn | − k, zn〉. (8)

Here Ak,z1 and A−k,zn are the amplitudes of the modes propa-
gating forward to port z1 and backward to port zn, respectively,
while |k, z1〉 and | − k, zn〉 are, respectively, eigenmodes fields
at ports z1 and zn escaping the cavity.

In our notations, the Lorentz reciprocity theorem∫
δV

(E1 × H2 − E2 × H1) · ẑdxdy

=
∫

V
(E2 · J1 − E1 · J2)dV (9)

should be rewritten as

〈ψ1(z1)|ψ2(z1)〉 − 〈ψ2(z1)|ψ1(z1)〉
− 〈ψ1(zn)|ψ2(zn)〉 + 〈ψ2(zn)|ψ1(zn)〉

=
∫

V
(E2 · J1 − E1 · J2)dV, (10)

where δV is the surface enclosing the cavity volume V be-
tween two planes z = z1 and z = zn. In Eq. (10), J1 and |ψ1〉
are defined above, while the source J2 and the fields |ψ2〉
produced by it can be chosen as we need. Let the source
current J2, being outside the volume V (J2 = 0), excite a
single mode | − k, z1〉. In general, this mode is scattered by
the cavity V and creates the set of transmitted and reflected
modes as discussed in Ref. [32]. In our case the cavity is a
tiny volume (z1 ≈ zn) of the waveguide embracing the source
J1. Therefore, the field just passes the waveguide without
reflection and we get

|ψ2(z1)〉 = B−k,z1 | − k, z1〉, (11)

|ψ2(zn)〉 = B−k,zn | − k, zn〉. (12)

Forward and backward transverse modal fields et,k and ht,k

(et,k ẑ = 0) used in Eq. (10) satisfy the symmetry relations

et,−k = et,k, ht,−k = −ht,k (13)

both in the case of Hermitian and non-Hermitian ports.
This means that the inner product of modes also meets the

symmetry relations for its bra and ket parts: 〈k|l〉 = 〈−k|l〉
and 〈k|l〉 = −〈k| − l〉. Adding the orthogonality conditions
(7), one straightforwardly derives

〈ψ1(z1)|ψ2(z1)〉 = −〈ψ2(z1)|ψ1(z1)〉 = −2Ak,z1 B−k,z1 Nk,z1 ,

〈ψ1(zn)|ψ2(zn)〉 = 〈ψ2(zn)|ψ1(zn)〉 = 0, (14)

where Nk,z1 the norm of the mode |k, z1〉 as defined in (7).
These inner products in the general case of reflection and
transmission of the reciprocal mode by a cavity are given in
the Appendix. By substituting these equations into Eq. (10),
we arrive at the amplitude Ak,z1 of the mode excited by the
source current J1

Ak,z1 = − 1

4B−k,z1 Nk,z1

∫
V

E2,−k · J1dV, (15)

where E2,−k = B−k,z1 e−k (x, y)eiβk (z−z1 ) is the electric field cre-
ated by the excitation of the system with reciprocal mode
| − k, z1〉 at the port z1.

B. Purcell factor

As an emitter we consider a point dipole oscillating at the
circular frequency ω and having the current density distribu-
tion

J1(r) = iωpδ(r − r0), (16)

where p is the dipole moment of the emitter and r0 is its
position. Then we are able to carry out the integration in
Eq. (15) and obtain

Ak,z1 = − iω

4B−k,z1 Nk,z1

E2,−k (r0) · p. (17)

Here we can observe a dramatic difference compared to
the Hermitian case considered in Ref. [32]. This difference
appears due to invalidity of the conventional orthogonality
condition Eq. (6). This means that the expansion coefficients
Ak,z1 are not directly related to the powers carried by the
modes. To circumvent this challenge, we propose a calculation
of the total power carried by the set of modes as given below.

The power emitted by the current source J1 into the port z1

can be written as

P = 1

2
Re

∫
z=z1

(E1 × H∗
1 ) · ẑdxdy = 1

2
Re〈ψ1(z1)|ψ∗

1 (z1)〉,
(18)

where |ψ∗〉 = (E∗
t , H∗

t )T . Expanding the electromagnetic
fields |ψ1(z1)〉 according to Eq. (8) we represent the power
transmitted through the port Eq. (18) as follows

P = Re
∑
k,l

Ak,z1 A∗
l,z1

Pkl , (19)

where Pkl is the so called cross-power equal to the Hermitian
inner product of the modal fields

Pkl,z1 = 1

2
〈k, z1|l∗, z1〉 = 1

2

∫
z=z1

(
ek,z1 × h∗

l,z1

) · ẑdxdy.

(20)

For k = l the cross-power reduces to the Hermitian norm of
the mode which we denote as

Nh
k,z1

= Pkk,z1 = 1
2 〈k, z1|k∗, z1〉. (21)

Real part of the Hermitian norm is equal to the modal power
Pk,z1 = ReNh

k,z1
. By considering the expansion coefficients

(17) we rewrite the power (19) in terms of the reciprocal fields
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E2,−k as

P = ω2

16
Re

∑
k,l

(E2,−k (r0) · p)(E∗
2,−l (r0) · p∗)

B−kB∗
−l NkN∗

l

Pkl

= ω2

16
Re

∑
k,l

(e−k (x0, y0) · p)(e∗
−l (x0, y0) · p∗)

NkN∗
l

Pkl . (22)

The last equality is the consequence of the substitution of
E2,−k at the emitter position r0 = (x0, y0, z0) and taking into
account negligible dimensions of the cavity z1 ≈ zn ≈ z0.
Note that here we dropped z1 subscripts.

In order to find the Purcell factor we divide Eq. (22) by the
power emitted by the same dipole into the free space

P0 = μ0

12πc
ω4|p|2, (23)

where μ0 is the vacuum permeability and c is the speed of
light in vacuum. The dipole moment, located in the xy plane,
can be presented using the unit vector p̂ as follows

p = pp̂, (24)

therefore,

E2,−k (r0) · p = E2,−k (r0) · p̂p = Ep,k (r0)p. (25)

Here Ep,k denotes projection of the vector E2,−k onto the
dipole orientation vector p̂

Ep,k = E2,−k · p̂. (26)

Then the Purcell factor reads

Fp = P

P0
= 3πc

4ω2μ0
Re

∑
k,l

ep,k (x0, y0)e∗
p,l (x0, y0)

NkN∗
l

Pkl . (27)

It is convenient to rewrite Eq. (27) through the normalized
fields as

Fp = 3πc

4ω2μ0
Re

∑
k,l

êp,k ê∗
p,l Kkl P̂kl , (28)

where we have introduced normalized modal electric fields

ê2,k = e2,k√
Nh

k

(29)

and normalized cross-power coefficients

P̂kl = 1√
Nh

k Nh
l

Pkl . (30)

Here we generalize the well-known Petermann factor [39]

Kk = Kkk (31)

defining cross-mode Petermann factor

Kkl = Nh
k

Nk

Nh∗
l

N∗
l

= 〈k|k∗〉
〈k|k〉

〈l|l∗〉∗
〈l|l∗〉∗ . (32)

It should be noticed that the Petermann factor is often related
to the mode nonorthogonality [24,40–42] being obviously
equal to the unity for Hermitian systems owing to the coin-
cidence of the non-Hermitian norm Nk and Hermitian one Nh

k
in this case. The modal Purcell factor can be naturally divided

into two parts, the first of which is the sum of all diagonal
(k = l ) terms, while the second part is the sum of off-diagonal
(k �= l ) terms:

Fp = Fp,diag + Fp,off−diag =
∑

k

Fp,k +
∑
k �=l

Fp,kl , (33)

where

Fp,i = 3πc

4ω2μ0
|êp,k|2Ki, (34)

Fp,kl = 3πc

4ω2μ0
Reêp,k ê∗

p,l Kkl P̂kl . (35)

In the Hermitian case, the off-diagonal terms (35) reduce to
zero due to the regular orthogonality of the modes expressed
by P̂kl = δkl . That is why the Purcell factor (28) applied to
Hermitian systems coincides with the expression in Ref. [32].

III. MODAL PURCELL FACTOR WITHIN THE COUPLED
MODE THEORY

To get some insight on the behavior of the modal Purcell
factor, let us analyze the system of two coupled waveguides
using the coupled mode theory as adopted in PT -symmetry
related literature. We express the total field at the port z1 in the
coupled system in terms of the modes |g〉 and |l〉 of isolated
gain and loss waveguides with corresponding z-dependent
amplitudes g and l as

|ψ1〉 = g(z)|g〉 + l (z)|l〉. (36)

We assume the overlap between the modes of isolated waveg-
uides is negligible (weak coupling condition), therefore, the
modes are orthogonal and normalized as follows

〈g|l〉 = 〈g|l∗〉 = 0, (37)

〈g|g〉 = 〈l|l〉 = 1. (38)

One more assumption is introduced for the sake of simplicity:

〈g|g∗〉 = 〈l|l∗〉 = 1. (39)

It implies that the Hermitian norms of the isolated modes
are equal to the non-Hermitian norms or, in other words, the
Petermann factors for the modes equal unity.

PT operator converts the mode of isolated lossy waveg-
uide to the mode of the isolated gain waveguide and vice versa
that is

PT |g〉 = |l〉, (40a)

PT |l〉 = |g〉. (40b)

Spatial evolution of amplitudes is governed by the system
of coupled equations

i
d

dz

[g
l

]
=

[Re(β + δ) − iα/2 κ

κ Re(β + δ) + iα/2

][g
l

]
,

(41)

where β is a propagation constant, κ is a coupling coefficient,
δ is a correction to the propagation constant, and α is an
effective gain (or loss). It can be shown that due to the weak
coupling and relations (40) the coupling constant κ is real
[5,43].
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A. PT -symmetric regime

In PT -symmetric regime, the system has the supermodes
of the form

|1, 2〉 = |g〉 ± e±iθ |l〉 (42)

with corresponding eigenvalues

β1,2 = Re(β + δ) ± κ cos θ, (43)

where sin θ = α/2κ . To find the modal Purcell factor in terms
of coupled modes we substitute the modes in the form (42)
into expression (28).

Then the quantities Kkl and P̂kl can be written in the closed
form as

K1 = |〈1|1∗〉|2
|〈1|1〉|2 = 2

1 + cos 2θ
, (44a)

K2 = |〈2|2∗〉|2
|〈2|2〉|2 = 2

1 + cos 2θ
, (44b)

K12 = 〈1|1∗〉
〈1|1〉

〈2|2∗〉∗
〈2|2〉∗ = 2(1 + e−i2θ )2

(1 + cos 2θ )2
, (44c)

K21 = 〈2|2∗〉
〈2|2〉

〈1|1∗〉∗
〈2|2〉∗ = 2(1 + e+i2θ )2

(1 + cos 2θ )2
, (44d)

P̂12 = 〈1|2∗〉√〈1|1∗〉〈2|2∗〉 = 1

2
(1 − ei2θ ), (45a)

P̂21 = 〈2|1∗〉√〈1|1∗〉〈2|2∗〉 = 1

2
(1 − e−i2θ ). (45b)

Normalized field projections êp,k in the basis of isolated
modes read

êp,1 = 1√
1
2 〈1|1∗〉

(êp,g + eiθ êp,l ) = êp,g + eiθ êp,l , (46a)

êp,2 = 1√
1
2 〈2|2∗〉

(êp,g − e−iθ êp,l ) = êp,g − e−iθ êp,l . (46b)

In above expressions êp,g and êp,l denote projections of
the fields of backward-propagating isolated modes onto dipole
orientation. If the emitter dipole moment is perpendicular to
ẑ, projections of backward-propagating modal fields are equal
to projections of forward-propagating ones.

Performing calculation of the modal Purcell factor (28)
using relations (44) and (45) we obtain

Fp = Fp,diag + Fp,off−diag = 6πc

ω2μ0
(|êp,g|2 + |êp,l |2). (47)

Diagonal and off-diagonal terms separately take the form

Fp,diag = 3πc

4ω2μ0

4

1 + cos 2θ
(|êp,g|2 + |êp,l |2), (48a)

Fp,off−diag = − 3πc

4ω2μ0

2(1 − cos 2θ )

1 + cos 2θ
(|êp,g|2 + |êp,l |2). (48b)

It is curious that although both diagonal and off-diagonal
terms (48) are singular at the EP corresponding to θEP = π/2
and cos 2θEP = −1, the singularities cancel each other mak-
ing the modal Purcell factor finite and independent of θ . The
modal Purcell factor (47) depends solely on the mode profiles

of the isolated modes in PT -symmetric regime. Further we
will show that the similar conclusion holds, when the PT
symmetry is violated.

B. Broken PT symmetry regime

In the PT -broken regime, supermodes of the system of
coupled waveguides take the form

|1, 2〉 = |g〉 + ie∓θ |l〉, (49)

while eigenvalues read

β1,2 = Re(β + δ) ± iκ sinh θ, (50)

where cosh θ = α/2κ . Calculating

K1 = coth2 θ, (51a)

K2 = coth2 θ, (51b)

K12 = − coth2 θ, (51c)

K21 = − coth2 θ, (51d)

P̂12 = 1

cosh θ
, (52a)

P̂21 = 1

cosh θ
, (52b)

êp,1 = 1√
1
2 (1 + e−2θ )

(êp,g + ie−θ êp,l ), (53a)

êp,2 = 1√
1
2 (1 + e2θ )

(êp,g + ieθ êp,l ) (53b)

we straightforwardly derive the diagonal and off-diagonal
terms

Fp,diag = 3πc

4ω2μ0

2 cosh θ

sinh2 θ
((|êp,g|2 + |êp,l |2) cosh θ

− 2Im(ê∗
p,gêp,l )), (54a)

Fp,off-diag = − 3πc

4ω2μ0

2

sinh2 θ
(|êp,g|2 + |êp,l |2

− 2 cosh θ Im(ê∗
p,gêp,l )) (54b)

as well as the modal Purcell factor

Fp = Fp,diag + Fp,off−diag = 6πc

ω2μ0
(|êp,g|2 + |êp,l |2). (55)

The main result of this section is that although diagonal and
off-diagonal terms of the modal Purcell factor diverge at the
EP, the modal Purcell factor itself does not exhibit a singular
behavior when approaching to the EP either from the left or
right side. Though we do not carry out a rigorous analysis of
the behavior at the EP accounting for the degeneracy of the
modes as it was done in Ref. [24], the developed approach
leads to the well-defined expressions (47) and (55) for Fp at
the exceptional point.

IV. NUMERICAL RESULTS

In this section we probe the theory developed in the pre-
vious section by analyzing numerically an optical system
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FIG. 2. Distribution of the electric field component Ex in the
PT -symmetric regime (γ = 3.5 × 10−4). Distributions of |Ex| for
(a) “even” and (b) “odd” supermodes.

consisting of two coupled rectangular waveguides separated
by the distance g as schematically shown in Fig. 1. Complex
refractive indices of the left (loss) and right (gain) waveguides
are equal to nl = nco − iγ and nr = nco + iγ , respectively,
to satisfy PT -symmetry condition n(x) = n∗(−x), where nco

is the refractive index and γ > 0 is the gain/loss (non-
Hermiticity) parameter. The waveguides are embedded in the
transparent ambient medium with refractive index ncl. Light
propagates in the z direction.

To characterize the system numerically we use VPIpho-
tonics Mode DesignerTM finite difference mode solver in the
frequency domain [44]. We take parameters of the waveguide
coupler as g = 0.8 μm, h = 0.2 μm, ncl = 1.444, and nco =
3.478 in order to limit the number of system’s modes. Re-
fractive indices of the cladding and core correspond to those
of SiO2 and Si at the wavelength 1.55 μm. Then the coupler
has only two quasi-TE supermodes at this wavelength. The
modes are visualized in Figs. 2 and 3. In PT -symmetric state,
both the first and the second supermodes have symmetric
distribution of the magnitude of the electric field |Ex| over the
loss and gain waveguides ensuring a balance of the gain and
loss [Figs. 2(a) and 2(b)]. The modes can be associated with
the eigenvalues of the scattering matrix, which are known to
be unimodular |s1,2| = 1 and correspond to propagating waves
of the form s1,2 = exp(−iβ1,2z). Since in the Hermitian limit
γ = 0 the fields of the supermodes become real possessing
even and odd symmetry, we call the supermodes “even” and
“odd” in quotes for convenience.

In PT -symmetry-broken regime, the fields of the super-
modes have a completely different behavior. According to
Fig. 3 the field is concentrated either in the loss or gain waveg-
uide. Hence, the supermodes can be named “loss” and “gain”
modes. In this case the supermodes are mirror reflections

FIG. 3. Distribution of the electric field component Ex in the
broken-PT -symmetric regime (γ = 8 × 10−4). Distributions of |Ex|
for (a) “loss” and (b) “gain” supermodes.

FIG. 4. Effective mode indices versus the non-Hermiticity pa-
rameter γ . Black curves correspond to the real parts of the effective
indices. Red curves correspond to the imaginary parts of the effective
indices. Dashed (black and red) curves are related to the first super-
mode whereas dot-dashed ones related to the second supermode.

of each other with respect to the plane x = 0. The ampli-
tude of the “loss” (“gain”) mode decreases (increases) during
propagation in accordance with the known properties of the
eigenvalues of the scattering matrix in the PT -symmetry-
broken state: |s1| = 1/|s2|.

Transition from the PT - to non-PT -symmetric state oc-
curs when varying some system’s parameter. The transition
is observed in the modal effective index of the coupled
waveguides neff = Re(neff ) + i Im(neff ). When increasing the
gain/loss parameter γ the system passes through the regime
of propagation (PT -symmetric state) for two nondecaying
supermodes to the regime of decay/amplification (PT -
symmetry-broken state) for the modes with the refractive
indices neff = Re(neff ) ± i Im(neff ). The curves in Fig. 4
demonstrate this behavior. The non-PT -symmetric phase
emerges at the EP around γEP = 4.21 × 10−4.

The Petermann factor for the supermodes in the coupled-
PT -symmetric waveguides depends on the non-Hermiticity
parameter γ . One can see in Fig. 5 that the Petermann
factors K1,2 almost coincide for both supermodes. When γ

approaches γEP, K1,2 become singular. This singularity might
be considered as a consequence of the degeneracy of the
modes of the PT -symmetric system at the EP, but a thor-
ough analysis in Ref. [24] demonstrates that the peak value
should be finite. Similar result for the Petermann factor in
PT -symetric system was observed also in Ref. [42].

While bearing in mind the theory developed in Sec. II,
we shall explore the Purcell factor Fp as an enhancement
factor of the spontaneous emission rate coupled to the pair of
TE-like modes of the coupled waveguide system. According
to Eq. (27), the Purcell factor is defined by the fields of the
reciprocal modes at the dipole position (x0, y0, z0 ≈ z1 ≈ zn).
In Fig. 6, we demonstrate the Purcell factor for an x-oriented
dipole as a function of x0 and y0 for different values of pa-
rameter γ (imaginary part of the Gain waveguide refractive
index nr).

One can see in Fig. 6 that the modal Purcell factor is
symmetric in (a) Hermitian regime as well as in (b) PT -
symmetric and (c) PT -symmetry broken regimes. The Purcell
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FIG. 5. Petermann factors K1 and K2, respectively, for the first
and second supermodes of the PT -symmetric coupled waveguides
as functions of the non-Hermiticity parameter γ . Parameters of
the waveguide coupler: g = 0.8 μm, h = 0.2 μm, ncl = 1.444, and
nco = 3.478.

factor Fp is less than 1 taking a maximum value of approxi-
mately 0.4 in centers of the waveguides.

According to Fig. 7 diagonal and off-diagonal terms have
opposite signs and close absolute values. This explains small
values of the modal Purcell factor in spite of the enhancement
of Fdiag and Foff-diag and their divergence at the EP.

Such a behavior well agrees with the result obtained in
Sec. II using the coupled-mode theory, namely, the numer-
ically observed distribution of the modal Purcell factor is
similar in Hermitian, PT -symmetric, and PT -symmetry bro-
ken regime. Independence of the non-Hermiticity parameter
γ including the exceptional point γEP demonstrated in Fig. 8

FIG. 6. Purcell factor distribution in the plane (x, y) (a) for the
Hermitian system characterized by γ = 0, (b) in the PT -symmetric
phase (γ = 3.5 × 10−4), (c) in the broken-PT -symmetric state (γ =
8 × 10−4). Parameters of the waveguide coupler: g = 0.8 μm, h =
0.2 μm, ncl = 1.444, and nco = 3.478.

FIG. 7. Distribution of the Purcell factor (a) diagonal and (b) off-
diagonal terms depending on the emitter position x at y = 0 for
different values of γ . Parameters of the coupled waveguide are given
in the caption of Fig. 6.

also confirms the analytical predictions given by Eqs. (47)
and (55).

It is known that phase transition can occur also in entirely
passive couplers, where the channels being either lossy or
lossless. The PT symmetry then is not exact [45]. We study
a passive coupler with the same geometry as the coupler
described previously in this paper. In the passive coupler, the
Gain waveguide is substituted with the lossless waveguide.

FIG. 8. Distribution of the Purcell factor at the line y = 0 as
function of the emitter position x and non-Hermiticity parameter
γ . Parameters of the coupled waveguide are given in the caption of
Fig. 6.
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FIG. 9. Effective mode indices for the passive coupler versus the
non-Hermiticity parameter γ . Black curves correspond to real parts
of the effective indices. Red curves correspond to imaginary parts.
Dashed (black and red) curves are related to the first supermode
whereas dot-dashed ones related to the second supermode. Param-
eters of the passive waveguide coupler: g = 0.8 μm, h = 0.2 μm,
ncl = 1.444, and nco = 3.478.

Imaginary part of the refractive index of the lossy waveguide
is chosen to be −2γ . For such a choice of parameters, the
phase transition in the passive coupler occurs at the same point
as that in the original PT -symmetric coupler. This can be
observed in Fig. 9. The Petermann factor is resonant at the ex-
ceptional point in the passive system as well (see Fig. 10), and
the modal Purcell factor in analogy with true PT -symmetric
system shows no dependence on the non-Hermiticity parame-
ter γ as confirmed by Figs. 11 and 12.

We have verified results for the modal Purcell factor in
the passive system by finite-difference time-domain (FDTD)
simulations. We have investigated Purcell enhancement for an
x-polarized dipole source placed in the center of the lossless
waveguide at different values of γ . In full agreement with
results obtained using reciprocity approach we have revealed
almost no change in the Purcell factor in comparison to that
in the Hermitian system. FDTD simulations were performed
using an open-source software package [46].

FIG. 10. Petermann factors K1 and K2, respectively, for the first
and second supermodes of the passive coupler as functions of the
non-Hermiticity parameter γ . Parameters of the guiding system are
given in the caption of Fig. 9.

FIG. 11. Purcell factor distribution in the plane (x, y) (a) below
phase transition (γ = 3.5 × 10−4), (b) above the phase transition
(γ = 8 × 10−4). Parameters of the guiding system are given in the
caption of Fig. 9.

V. SUMMARY

In this paper, we have reported on the investigation of the
spontaneous emission rate enhancement for a point-source
emitter in PT -symmetric system of coupled waveguides.
We have generalized the reciprocity technique proposed in
Ref. [32] taking into account the nonorthogonality of modes
of the PT -symmetric system. We have revealed analytically
using the coupled-mode approach that the Purcell factor for
PT -symmetric system of coupled waveguides does not de-
pend on the non-Hermiticity taking close values for Hermitian
and PT -symmetric systems. Even at the exceptional point,
where the Petermann factor diverges due to the modes self-
orthogonality, the modal Purcell factor remains finite and
almost coincides with that for the Hermitian system. Such
a behavior of the Purcell factor is motivated by interplay of
in-mode and cross-mode terms, that diverge themselves at the
EP, resulting in compensation of each other. It is interesting
that we do not observe any notable enhancement of the modal
Purcell factor near EP for the entire class of PT -symmetric
coupled-waveguide systems in contrast to the result reported
in Ref. [24]. We claim that there is no contradiction though.
We believe that the absence of the enhancement of the modal

FIG. 12. Distribution of the Purcell factor at the line y = 0 as
function of emitter position x and non-Hermiticity parameter γ .
Parameters of the guiding system are given in the caption of Fig. 9.
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Purcell factor comes from the fact that coupled waveguide
systems are nonresonant in contrast to systems considered in
Ref. [24]. Indeed, the systems studied in Ref. [24] are high-Q
systems typically characterized by Lorentzian-shape isolated
resonances in nondegenerate cases. Then the presence of
the EPs leads to degenerate resonances with non-Lorentzian
shapes and nonlinear scaling of the Purcell factor with respect
to the quality factor Q.
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APPENDIX: NON-HERMITIAN RECIPROCITY
APPROACH FOR A CAVITY

Generally, a cavity causes reflection and transmission of
the reciprocal mode | − k, z1〉:

|ψ2(z1)〉 = B−k,z1 | − k, z1〉 +
∑

j

B j,z1 | j, z1〉, (A1a)

|ψ2(zn)〉 =
∑

j

B− j,zn | − j, zn〉. (A1b)

Using the orthogonality condition (7) and symmetry rela-
tions (13) we obtain the inner products of the fields

〈ψ1(z1)|ψ2(z1)〉
=

∑
j

A j,z1 B−k,z1〈 j, z1| − k, z1〉 +
∑

j,l

A j,z1 Bl,z1〈 j, z1|l, z1〉

= −2Ak,z1 B−k,z1 Nk + 2
∑

j

A j,z1 Bj,z1 Nj,z1 . (A2a)

〈ψ2(z1)|ψ1(z1)〉
=

∑
j

A j,z1 B−k,z1〈−k, z1| j, z1〉 +
∑

j,l

A j,z1 Bl,z1〈 j, z1|l, z1〉

= 2Ak,z1 B−k,z1 Nk,z1 + 2
∑

j

A j,z1 Bj,z1 Nj,z1 . (A2b)

〈ψ1(zn)|ψ2(zn)〉 = 〈ψ2(zn)|ψ1(zn)〉
=

∑
j,l

A− j,zn B−l,zn〈− j, zn| − l, zn〉

= 2
∑

j

A− j,zn B− j,zn N− j,zn . (A2c)

By substituting these equations into the reciprocity theo-
rem (10), we again derive Eq. (15).
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